boringssl/ssl/ssl_cipher.c

2127 lines
57 KiB
C
Raw Normal View History

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE. */
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <openssl/buf.h>
#include <openssl/err.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/sha.h>
#include <openssl/stack.h>
#include "internal.h"
/* kCiphers is an array of all supported ciphers, sorted by id. */
static const SSL_CIPHER kCiphers[] = {
/* The RSA ciphers */
/* Cipher 02 */
{
SSL3_TXT_RSA_NULL_SHA,
SSL3_CK_RSA_NULL_SHA,
SSL_kRSA,
SSL_aRSA,
SSL_eNULL,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* Cipher 04 */
{
SSL3_TXT_RSA_RC4_128_MD5,
SSL3_CK_RSA_RC4_128_MD5,
SSL_kRSA,
SSL_aRSA,
SSL_RC4,
SSL_MD5,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* Cipher 05 */
{
SSL3_TXT_RSA_RC4_128_SHA,
SSL3_CK_RSA_RC4_128_SHA,
SSL_kRSA,
SSL_aRSA,
SSL_RC4,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* Cipher 0A */
{
SSL3_TXT_RSA_DES_192_CBC3_SHA,
SSL3_CK_RSA_DES_192_CBC3_SHA,
SSL_kRSA,
SSL_aRSA,
SSL_3DES,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* New AES ciphersuites */
/* Cipher 2F */
{
TLS1_TXT_RSA_WITH_AES_128_SHA,
TLS1_CK_RSA_WITH_AES_128_SHA,
SSL_kRSA,
SSL_aRSA,
SSL_AES128,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* Cipher 33 */
{
TLS1_TXT_DHE_RSA_WITH_AES_128_SHA,
TLS1_CK_DHE_RSA_WITH_AES_128_SHA,
SSL_kDHE,
SSL_aRSA,
SSL_AES128,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* Cipher 35 */
{
TLS1_TXT_RSA_WITH_AES_256_SHA,
TLS1_CK_RSA_WITH_AES_256_SHA,
SSL_kRSA,
SSL_aRSA,
SSL_AES256,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* Cipher 39 */
{
TLS1_TXT_DHE_RSA_WITH_AES_256_SHA,
TLS1_CK_DHE_RSA_WITH_AES_256_SHA,
SSL_kDHE,
SSL_aRSA,
SSL_AES256,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* TLS v1.2 ciphersuites */
/* Cipher 3C */
{
TLS1_TXT_RSA_WITH_AES_128_SHA256,
TLS1_CK_RSA_WITH_AES_128_SHA256,
SSL_kRSA,
SSL_aRSA,
SSL_AES128,
SSL_SHA256,
SSL_HANDSHAKE_MAC_SHA256,
},
/* Cipher 3D */
{
TLS1_TXT_RSA_WITH_AES_256_SHA256,
TLS1_CK_RSA_WITH_AES_256_SHA256,
SSL_kRSA,
SSL_aRSA,
SSL_AES256,
SSL_SHA256,
SSL_HANDSHAKE_MAC_SHA256,
},
/* Cipher 67 */
{
TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256,
TLS1_CK_DHE_RSA_WITH_AES_128_SHA256,
SSL_kDHE,
SSL_aRSA,
SSL_AES128,
SSL_SHA256,
SSL_HANDSHAKE_MAC_SHA256,
},
/* Cipher 6B */
{
TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256,
TLS1_CK_DHE_RSA_WITH_AES_256_SHA256,
SSL_kDHE,
SSL_aRSA,
SSL_AES256,
SSL_SHA256,
SSL_HANDSHAKE_MAC_SHA256,
},
/* PSK cipher suites. */
/* Cipher 8A */
{
TLS1_TXT_PSK_WITH_RC4_128_SHA,
TLS1_CK_PSK_WITH_RC4_128_SHA,
SSL_kPSK,
SSL_aPSK,
SSL_RC4,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* Cipher 8C */
{
TLS1_TXT_PSK_WITH_AES_128_CBC_SHA,
TLS1_CK_PSK_WITH_AES_128_CBC_SHA,
SSL_kPSK,
SSL_aPSK,
SSL_AES128,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* Cipher 8D */
{
TLS1_TXT_PSK_WITH_AES_256_CBC_SHA,
TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
SSL_kPSK,
SSL_aPSK,
SSL_AES256,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* GCM ciphersuites from RFC5288 */
/* Cipher 9C */
{
TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256,
TLS1_CK_RSA_WITH_AES_128_GCM_SHA256,
SSL_kRSA,
SSL_aRSA,
SSL_AES128GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
/* Cipher 9D */
{
TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_RSA_WITH_AES_256_GCM_SHA384,
SSL_kRSA,
SSL_aRSA,
SSL_AES256GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA384,
},
/* Cipher 9E */
{
TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256,
TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256,
SSL_kDHE,
SSL_aRSA,
SSL_AES128GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
/* Cipher 9F */
{
TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_DHE_RSA_WITH_AES_256_GCM_SHA384,
SSL_kDHE,
SSL_aRSA,
SSL_AES256GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA384,
},
/* CECPQ1 (combined elliptic curve + post-quantum) suites. */
/* Cipher 16B7 */
{
TLS1_TXT_CECPQ1_RSA_WITH_CHACHA20_POLY1305_SHA256,
TLS1_CK_CECPQ1_RSA_WITH_CHACHA20_POLY1305_SHA256,
SSL_kCECPQ1,
SSL_aRSA,
SSL_CHACHA20POLY1305,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
/* Cipher 16B8 */
{
TLS1_TXT_CECPQ1_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
TLS1_CK_CECPQ1_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
SSL_kCECPQ1,
SSL_aECDSA,
SSL_CHACHA20POLY1305,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
/* Cipher 16B9 */
{
TLS1_TXT_CECPQ1_RSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_CECPQ1_RSA_WITH_AES_256_GCM_SHA384,
SSL_kCECPQ1,
SSL_aRSA,
SSL_AES256GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA384,
},
/* Cipher 16BA */
{
TLS1_TXT_CECPQ1_ECDSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_CECPQ1_ECDSA_WITH_AES_256_GCM_SHA384,
SSL_kCECPQ1,
SSL_aECDSA,
SSL_AES256GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA384,
},
/* Cipher C007 */
{
TLS1_TXT_ECDHE_ECDSA_WITH_RC4_128_SHA,
TLS1_CK_ECDHE_ECDSA_WITH_RC4_128_SHA,
SSL_kECDHE,
SSL_aECDSA,
SSL_RC4,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* Cipher C009 */
{
TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
SSL_kECDHE,
SSL_aECDSA,
SSL_AES128,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* Cipher C00A */
{
TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
SSL_kECDHE,
SSL_aECDSA,
SSL_AES256,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* Cipher C011 */
{
TLS1_TXT_ECDHE_RSA_WITH_RC4_128_SHA,
TLS1_CK_ECDHE_RSA_WITH_RC4_128_SHA,
SSL_kECDHE,
SSL_aRSA,
SSL_RC4,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* Cipher C013 */
{
TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA,
SSL_kECDHE,
SSL_aRSA,
SSL_AES128,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* Cipher C014 */
{
TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA,
SSL_kECDHE,
SSL_aRSA,
SSL_AES256,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* HMAC based TLS v1.2 ciphersuites from RFC5289 */
/* Cipher C023 */
{
TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_SHA256,
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256,
SSL_kECDHE,
SSL_aECDSA,
SSL_AES128,
SSL_SHA256,
SSL_HANDSHAKE_MAC_SHA256,
},
/* Cipher C024 */
{
TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_SHA384,
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384,
SSL_kECDHE,
SSL_aECDSA,
SSL_AES256,
SSL_SHA384,
SSL_HANDSHAKE_MAC_SHA384,
},
/* Cipher C027 */
{
TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256,
TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256,
SSL_kECDHE,
SSL_aRSA,
SSL_AES128,
SSL_SHA256,
SSL_HANDSHAKE_MAC_SHA256,
},
/* Cipher C028 */
{
TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384,
TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384,
SSL_kECDHE,
SSL_aRSA,
SSL_AES256,
SSL_SHA384,
SSL_HANDSHAKE_MAC_SHA384,
},
/* GCM based TLS v1.2 ciphersuites from RFC5289 */
/* Cipher C02B */
{
TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
SSL_kECDHE,
SSL_aECDSA,
SSL_AES128GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
/* Cipher C02C */
{
TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
SSL_kECDHE,
SSL_aECDSA,
SSL_AES256GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA384,
},
/* Cipher C02F */
{
TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
SSL_kECDHE,
SSL_aRSA,
SSL_AES128GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
/* Cipher C030 */
{
TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
SSL_kECDHE,
SSL_aRSA,
SSL_AES256GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA384,
},
/* ECDHE-PSK cipher suites. */
/* Cipher C035 */
{
TLS1_TXT_ECDHE_PSK_WITH_AES_128_CBC_SHA,
TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA,
SSL_kECDHE,
SSL_aPSK,
SSL_AES128,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* Cipher C036 */
{
TLS1_TXT_ECDHE_PSK_WITH_AES_256_CBC_SHA,
TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA,
SSL_kECDHE,
SSL_aPSK,
SSL_AES256,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
/* ChaCha20-Poly1305 cipher suites. */
#if !defined(BORINGSSL_ANDROID_SYSTEM)
{
TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305_OLD,
TLS1_CK_ECDHE_RSA_CHACHA20_POLY1305_OLD,
SSL_kECDHE,
SSL_aRSA,
SSL_CHACHA20POLY1305_OLD,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
{
TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_OLD,
TLS1_CK_ECDHE_ECDSA_CHACHA20_POLY1305_OLD,
SSL_kECDHE,
SSL_aECDSA,
SSL_CHACHA20POLY1305_OLD,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
#endif
/* Cipher CCA8 */
{
TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
SSL_kECDHE,
SSL_aRSA,
SSL_CHACHA20POLY1305,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
/* Cipher CCA9 */
{
TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
SSL_kECDHE,
SSL_aECDSA,
SSL_CHACHA20POLY1305,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
/* Cipher CCAB */
{
TLS1_TXT_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,
TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,
SSL_kECDHE,
SSL_aPSK,
SSL_CHACHA20POLY1305,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
/* Cipher D001 */
{
TLS1_TXT_ECDHE_PSK_WITH_AES_128_GCM_SHA256,
TLS1_CK_ECDHE_PSK_WITH_AES_128_GCM_SHA256,
SSL_kECDHE,
SSL_aPSK,
SSL_AES128GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
/* Cipher D002 */
{
TLS1_TXT_ECDHE_PSK_WITH_AES_256_GCM_SHA384,
TLS1_CK_ECDHE_PSK_WITH_AES_256_GCM_SHA384,
SSL_kECDHE,
SSL_aPSK,
SSL_AES256GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA384,
},
};
static const size_t kCiphersLen = sizeof(kCiphers) / sizeof(kCiphers[0]);
#define CIPHER_ADD 1
#define CIPHER_KILL 2
#define CIPHER_DEL 3
#define CIPHER_ORD 4
#define CIPHER_SPECIAL 5
typedef struct cipher_order_st {
const SSL_CIPHER *cipher;
int active;
int in_group;
struct cipher_order_st *next, *prev;
} CIPHER_ORDER;
typedef struct cipher_alias_st {
/* name is the name of the cipher alias. */
const char *name;
/* The following fields are bitmasks for the corresponding fields on
* |SSL_CIPHER|. A cipher matches a cipher alias iff, for each bitmask, the
* bit corresponding to the cipher's value is set to 1. If any bitmask is
* all zeroes, the alias matches nothing. Use |~0u| for the default value. */
uint32_t algorithm_mkey;
uint32_t algorithm_auth;
uint32_t algorithm_enc;
uint32_t algorithm_mac;
/* min_version, if non-zero, matches all ciphers which were added in that
* particular protocol version. */
uint16_t min_version;
} CIPHER_ALIAS;
static const CIPHER_ALIAS kCipherAliases[] = {
/* "ALL" doesn't include eNULL nor kCECPQ1. These must be explicitly
* enabled. */
{"ALL", ~SSL_kCECPQ1, ~0u, ~SSL_eNULL, ~0u, 0},
/* The "COMPLEMENTOFDEFAULT" rule is omitted. It matches nothing. */
/* key exchange aliases
* (some of those using only a single bit here combine
* multiple key exchange algs according to the RFCs,
* e.g. kEDH combines DHE_DSS and DHE_RSA) */
{"kRSA", SSL_kRSA, ~0u, ~0u, ~0u, 0},
{"kDHE", SSL_kDHE, ~0u, ~0u, ~0u, 0},
{"kEDH", SSL_kDHE, ~0u, ~0u, ~0u, 0},
{"DH", SSL_kDHE, ~0u, ~0u, ~0u, 0},
{"kECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
{"kCECPQ1", SSL_kCECPQ1, ~0u, ~0u, ~0u, 0},
{"kEECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
{"ECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
{"kPSK", SSL_kPSK, ~0u, ~0u, ~0u, 0},
/* server authentication aliases */
{"aRSA", ~SSL_kCECPQ1, SSL_aRSA, ~SSL_eNULL, ~0u, 0},
{"aECDSA", ~SSL_kCECPQ1, SSL_aECDSA, ~0u, ~0u, 0},
{"ECDSA", ~SSL_kCECPQ1, SSL_aECDSA, ~0u, ~0u, 0},
{"aPSK", ~0u, SSL_aPSK, ~0u, ~0u, 0},
/* aliases combining key exchange and server authentication */
{"DHE", SSL_kDHE, ~0u, ~0u, ~0u, 0},
{"EDH", SSL_kDHE, ~0u, ~0u, ~0u, 0},
{"ECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
{"EECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
{"RSA", SSL_kRSA, SSL_aRSA, ~SSL_eNULL, ~0u, 0},
{"PSK", SSL_kPSK, SSL_aPSK, ~0u, ~0u, 0},
/* symmetric encryption aliases */
{"3DES", ~0u, ~0u, SSL_3DES, ~0u, 0},
{"RC4", ~0u, ~0u, SSL_RC4, ~0u, 0},
{"AES128", ~0u, ~0u, SSL_AES128 | SSL_AES128GCM, ~0u, 0},
{"AES256", ~SSL_kCECPQ1, ~0u, SSL_AES256 | SSL_AES256GCM, ~0u, 0},
{"AES", ~SSL_kCECPQ1, ~0u, SSL_AES, ~0u, 0},
{"AESGCM", ~SSL_kCECPQ1, ~0u, SSL_AES128GCM | SSL_AES256GCM, ~0u, 0},
{"CHACHA20", ~SSL_kCECPQ1, ~0u, SSL_CHACHA20POLY1305 | SSL_CHACHA20POLY1305_OLD, ~0u,
0},
/* MAC aliases */
{"MD5", ~0u, ~0u, ~0u, SSL_MD5, 0},
{"SHA1", ~0u, ~0u, ~SSL_eNULL, SSL_SHA1, 0},
{"SHA", ~0u, ~0u, ~SSL_eNULL, SSL_SHA1, 0},
{"SHA256", ~SSL_kCECPQ1, ~0u, ~0u, SSL_SHA256, 0},
{"SHA384", ~SSL_kCECPQ1, ~0u, ~0u, SSL_SHA384, 0},
/* Legacy protocol minimum version aliases. "TLSv1" is intentionally the
* same as "SSLv3". */
{"SSLv3", ~SSL_kCECPQ1, ~0u, ~SSL_eNULL, ~0u, SSL3_VERSION},
{"TLSv1", ~SSL_kCECPQ1, ~0u, ~SSL_eNULL, ~0u, SSL3_VERSION},
{"TLSv1.2", ~SSL_kCECPQ1, ~0u, ~SSL_eNULL, ~0u, TLS1_2_VERSION},
/* Legacy strength classes. */
{"MEDIUM", ~0u, ~0u, SSL_RC4, ~0u, 0},
{"HIGH", ~SSL_kCECPQ1, ~0u, ~(SSL_eNULL|SSL_RC4), ~0u, 0},
{"FIPS", ~SSL_kCECPQ1, ~0u, ~(SSL_eNULL|SSL_RC4), ~0u, 0},
};
static const size_t kCipherAliasesLen =
sizeof(kCipherAliases) / sizeof(kCipherAliases[0]);
static int ssl_cipher_id_cmp(const void *in_a, const void *in_b) {
const SSL_CIPHER *a = in_a;
const SSL_CIPHER *b = in_b;
if (a->id > b->id) {
return 1;
} else if (a->id < b->id) {
return -1;
} else {
return 0;
}
}
static int ssl_cipher_ptr_id_cmp(const SSL_CIPHER **a, const SSL_CIPHER **b) {
return ssl_cipher_id_cmp(*a, *b);
}
const SSL_CIPHER *SSL_get_cipher_by_value(uint16_t value) {
SSL_CIPHER c;
c.id = 0x03000000L | value;
return bsearch(&c, kCiphers, kCiphersLen, sizeof(SSL_CIPHER),
ssl_cipher_id_cmp);
}
int ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
size_t *out_mac_secret_len,
size_t *out_fixed_iv_len,
const SSL_CIPHER *cipher, uint16_t version) {
*out_aead = NULL;
*out_mac_secret_len = 0;
*out_fixed_iv_len = 0;
switch (cipher->algorithm_enc) {
case SSL_AES128GCM:
*out_aead = EVP_aead_aes_128_gcm();
*out_fixed_iv_len = 4;
break;
case SSL_AES256GCM:
*out_aead = EVP_aead_aes_256_gcm();
*out_fixed_iv_len = 4;
break;
#if !defined(BORINGSSL_ANDROID_SYSTEM)
case SSL_CHACHA20POLY1305_OLD:
*out_aead = EVP_aead_chacha20_poly1305_old();
*out_fixed_iv_len = 0;
break;
#endif
case SSL_CHACHA20POLY1305:
*out_aead = EVP_aead_chacha20_poly1305();
*out_fixed_iv_len = 12;
break;
case SSL_RC4:
switch (cipher->algorithm_mac) {
case SSL_MD5:
if (version == SSL3_VERSION) {
*out_aead = EVP_aead_rc4_md5_ssl3();
} else {
*out_aead = EVP_aead_rc4_md5_tls();
}
*out_mac_secret_len = MD5_DIGEST_LENGTH;
break;
case SSL_SHA1:
if (version == SSL3_VERSION) {
*out_aead = EVP_aead_rc4_sha1_ssl3();
} else {
*out_aead = EVP_aead_rc4_sha1_tls();
}
*out_mac_secret_len = SHA_DIGEST_LENGTH;
break;
default:
return 0;
}
break;
case SSL_AES128:
switch (cipher->algorithm_mac) {
case SSL_SHA1:
if (version == SSL3_VERSION) {
*out_aead = EVP_aead_aes_128_cbc_sha1_ssl3();
*out_fixed_iv_len = 16;
} else if (version == TLS1_VERSION) {
*out_aead = EVP_aead_aes_128_cbc_sha1_tls_implicit_iv();
*out_fixed_iv_len = 16;
} else {
*out_aead = EVP_aead_aes_128_cbc_sha1_tls();
}
*out_mac_secret_len = SHA_DIGEST_LENGTH;
break;
case SSL_SHA256:
*out_aead = EVP_aead_aes_128_cbc_sha256_tls();
*out_mac_secret_len = SHA256_DIGEST_LENGTH;
break;
default:
return 0;
}
break;
case SSL_AES256:
switch (cipher->algorithm_mac) {
case SSL_SHA1:
if (version == SSL3_VERSION) {
*out_aead = EVP_aead_aes_256_cbc_sha1_ssl3();
*out_fixed_iv_len = 16;
} else if (version == TLS1_VERSION) {
*out_aead = EVP_aead_aes_256_cbc_sha1_tls_implicit_iv();
*out_fixed_iv_len = 16;
} else {
*out_aead = EVP_aead_aes_256_cbc_sha1_tls();
}
*out_mac_secret_len = SHA_DIGEST_LENGTH;
break;
case SSL_SHA256:
*out_aead = EVP_aead_aes_256_cbc_sha256_tls();
*out_mac_secret_len = SHA256_DIGEST_LENGTH;
break;
case SSL_SHA384:
*out_aead = EVP_aead_aes_256_cbc_sha384_tls();
*out_mac_secret_len = SHA384_DIGEST_LENGTH;
break;
default:
return 0;
}
break;
case SSL_3DES:
switch (cipher->algorithm_mac) {
case SSL_SHA1:
if (version == SSL3_VERSION) {
*out_aead = EVP_aead_des_ede3_cbc_sha1_ssl3();
*out_fixed_iv_len = 8;
} else if (version == TLS1_VERSION) {
*out_aead = EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv();
*out_fixed_iv_len = 8;
} else {
*out_aead = EVP_aead_des_ede3_cbc_sha1_tls();
}
*out_mac_secret_len = SHA_DIGEST_LENGTH;
break;
default:
return 0;
}
break;
case SSL_eNULL:
switch (cipher->algorithm_mac) {
case SSL_SHA1:
if (version == SSL3_VERSION) {
*out_aead = EVP_aead_null_sha1_ssl3();
} else {
*out_aead = EVP_aead_null_sha1_tls();
}
*out_mac_secret_len = SHA_DIGEST_LENGTH;
break;
default:
return 0;
}
break;
default:
return 0;
}
/* In TLS 1.3, the iv_len is equal to the AEAD nonce length whereas the code
* above computes the TLS 1.2 construction.
*
* TODO(davidben,svaldez): Avoid computing the wrong value and fixing it. */
if (version >= TLS1_3_VERSION) {
*out_fixed_iv_len = EVP_AEAD_nonce_length(*out_aead);
assert(*out_fixed_iv_len >= 8);
}
return 1;
}
const EVP_MD *ssl_get_handshake_digest(uint32_t algorithm_prf) {
switch (algorithm_prf) {
case SSL_HANDSHAKE_MAC_DEFAULT:
return EVP_sha1();
case SSL_HANDSHAKE_MAC_SHA256:
return EVP_sha256();
case SSL_HANDSHAKE_MAC_SHA384:
return EVP_sha384();
default:
return NULL;
}
}
#define ITEM_SEP(a) \
(((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
/* rule_equals returns one iff the NUL-terminated string |rule| is equal to the
* |buf_len| bytes at |buf|. */
static int rule_equals(const char *rule, const char *buf, size_t buf_len) {
/* |strncmp| alone only checks that |buf| is a prefix of |rule|. */
return strncmp(rule, buf, buf_len) == 0 && rule[buf_len] == '\0';
}
static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail) {
if (curr == *tail) {
return;
}
if (curr == *head) {
*head = curr->next;
}
if (curr->prev != NULL) {
curr->prev->next = curr->next;
}
if (curr->next != NULL) {
curr->next->prev = curr->prev;
}
(*tail)->next = curr;
curr->prev = *tail;
curr->next = NULL;
*tail = curr;
}
static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail) {
if (curr == *head) {
return;
}
if (curr == *tail) {
*tail = curr->prev;
}
if (curr->next != NULL) {
curr->next->prev = curr->prev;
}
if (curr->prev != NULL) {
curr->prev->next = curr->next;
}
(*head)->prev = curr;
curr->next = *head;
curr->prev = NULL;
*head = curr;
}
static void ssl_cipher_collect_ciphers(const SSL_PROTOCOL_METHOD *ssl_method,
CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p) {
/* The set of ciphers is static, but some subset may be unsupported by
* |ssl_method|, so the list may be smaller. */
size_t co_list_num = 0;
size_t i;
for (i = 0; i < kCiphersLen; i++) {
const SSL_CIPHER *cipher = &kCiphers[i];
if (ssl_method->supports_cipher(cipher)) {
co_list[co_list_num].cipher = cipher;
co_list[co_list_num].next = NULL;
co_list[co_list_num].prev = NULL;
co_list[co_list_num].active = 0;
co_list[co_list_num].in_group = 0;
co_list_num++;
}
}
/* Prepare linked list from list entries. */
if (co_list_num > 0) {
co_list[0].prev = NULL;
if (co_list_num > 1) {
co_list[0].next = &co_list[1];
for (i = 1; i < co_list_num - 1; i++) {
co_list[i].prev = &co_list[i - 1];
co_list[i].next = &co_list[i + 1];
}
co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
}
co_list[co_list_num - 1].next = NULL;
*head_p = &co_list[0];
*tail_p = &co_list[co_list_num - 1];
}
}
/* ssl_cipher_apply_rule applies the rule type |rule| to ciphers matching its
* parameters in the linked list from |*head_p| to |*tail_p|. It writes the new
* head and tail of the list to |*head_p| and |*tail_p|, respectively.
*
* - If |cipher_id| is non-zero, only that cipher is selected.
* - Otherwise, if |strength_bits| is non-negative, it selects ciphers
* of that strength.
* - Otherwise, it selects ciphers that match each bitmasks in |alg_*| and
* |min_version|. */
static void ssl_cipher_apply_rule(
uint32_t cipher_id, uint32_t alg_mkey, uint32_t alg_auth,
uint32_t alg_enc, uint32_t alg_mac, uint16_t min_version, int rule,
int strength_bits, int in_group, CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p) {
CIPHER_ORDER *head, *tail, *curr, *next, *last;
const SSL_CIPHER *cp;
int reverse = 0;
if (cipher_id == 0 && strength_bits == -1 && min_version == 0 &&
(alg_mkey == 0 || alg_auth == 0 || alg_enc == 0 || alg_mac == 0)) {
/* The rule matches nothing, so bail early. */
return;
}
if (rule == CIPHER_DEL) {
/* needed to maintain sorting between currently deleted ciphers */
reverse = 1;
}
head = *head_p;
tail = *tail_p;
if (reverse) {
next = tail;
last = head;
} else {
next = head;
last = tail;
}
curr = NULL;
for (;;) {
if (curr == last) {
break;
}
curr = next;
if (curr == NULL) {
break;
}
next = reverse ? curr->prev : curr->next;
cp = curr->cipher;
/* Selection criteria is either a specific cipher, the value of
* |strength_bits|, or the algorithms used. */
if (cipher_id != 0) {
if (cipher_id != cp->id) {
continue;
}
} else if (strength_bits >= 0) {
if (strength_bits != SSL_CIPHER_get_bits(cp, NULL)) {
continue;
}
} else if (!(alg_mkey & cp->algorithm_mkey) ||
!(alg_auth & cp->algorithm_auth) ||
!(alg_enc & cp->algorithm_enc) ||
!(alg_mac & cp->algorithm_mac) ||
(min_version != 0 &&
SSL_CIPHER_get_min_version(cp) != min_version)) {
continue;
}
/* add the cipher if it has not been added yet. */
if (rule == CIPHER_ADD) {
/* reverse == 0 */
if (!curr->active) {
ll_append_tail(&head, curr, &tail);
curr->active = 1;
curr->in_group = in_group;
}
}
/* Move the added cipher to this location */
else if (rule == CIPHER_ORD) {
/* reverse == 0 */
if (curr->active) {
ll_append_tail(&head, curr, &tail);
curr->in_group = 0;
}
} else if (rule == CIPHER_DEL) {
/* reverse == 1 */
if (curr->active) {
/* most recently deleted ciphersuites get best positions
* for any future CIPHER_ADD (note that the CIPHER_DEL loop
* works in reverse to maintain the order) */
ll_append_head(&head, curr, &tail);
curr->active = 0;
curr->in_group = 0;
}
} else if (rule == CIPHER_KILL) {
/* reverse == 0 */
if (head == curr) {
head = curr->next;
} else {
curr->prev->next = curr->next;
}
if (tail == curr) {
tail = curr->prev;
}
curr->active = 0;
if (curr->next != NULL) {
curr->next->prev = curr->prev;
}
if (curr->prev != NULL) {
curr->prev->next = curr->next;
}
curr->next = NULL;
curr->prev = NULL;
}
}
*head_p = head;
*tail_p = tail;
}
static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p) {
int max_strength_bits, i, *number_uses;
CIPHER_ORDER *curr;
/* This routine sorts the ciphers with descending strength. The sorting must
* keep the pre-sorted sequence, so we apply the normal sorting routine as
* '+' movement to the end of the list. */
max_strength_bits = 0;
curr = *head_p;
while (curr != NULL) {
if (curr->active &&
SSL_CIPHER_get_bits(curr->cipher, NULL) > max_strength_bits) {
max_strength_bits = SSL_CIPHER_get_bits(curr->cipher, NULL);
}
curr = curr->next;
}
number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int));
if (!number_uses) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return 0;
}
memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int));
/* Now find the strength_bits values actually used. */
curr = *head_p;
while (curr != NULL) {
if (curr->active) {
number_uses[SSL_CIPHER_get_bits(curr->cipher, NULL)]++;
}
curr = curr->next;
}
/* Go through the list of used strength_bits values in descending order. */
for (i = max_strength_bits; i >= 0; i--) {
if (number_uses[i] > 0) {
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, CIPHER_ORD, i, 0, head_p, tail_p);
}
}
OPENSSL_free(number_uses);
return 1;
}
static int ssl_cipher_process_rulestr(const SSL_PROTOCOL_METHOD *ssl_method,
const char *rule_str,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p) {
uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
uint16_t min_version;
const char *l, *buf;
int multi, skip_rule, rule, retval, ok, in_group = 0, has_group = 0;
size_t j, buf_len;
uint32_t cipher_id;
char ch;
retval = 1;
l = rule_str;
for (;;) {
ch = *l;
if (ch == '\0') {
break; /* done */
}
if (in_group) {
if (ch == ']') {
if (*tail_p) {
(*tail_p)->in_group = 0;
}
in_group = 0;
l++;
continue;
}
if (ch == '|') {
rule = CIPHER_ADD;
l++;
continue;
} else if (!(ch >= 'a' && ch <= 'z') && !(ch >= 'A' && ch <= 'Z') &&
!(ch >= '0' && ch <= '9')) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_OPERATOR_IN_GROUP);
retval = in_group = 0;
break;
} else {
rule = CIPHER_ADD;
}
} else if (ch == '-') {
rule = CIPHER_DEL;
l++;
} else if (ch == '+') {
rule = CIPHER_ORD;
l++;
} else if (ch == '!') {
rule = CIPHER_KILL;
l++;
} else if (ch == '@') {
rule = CIPHER_SPECIAL;
l++;
} else if (ch == '[') {
if (in_group) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NESTED_GROUP);
retval = in_group = 0;
break;
}
in_group = 1;
has_group = 1;
l++;
continue;
} else {
rule = CIPHER_ADD;
}
/* If preference groups are enabled, the only legal operator is +.
* Otherwise the in_group bits will get mixed up. */
if (has_group && rule != CIPHER_ADD) {
OPENSSL_PUT_ERROR(SSL, SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS);
retval = in_group = 0;
break;
}
if (ITEM_SEP(ch)) {
l++;
continue;
}
multi = 0;
cipher_id = 0;
alg_mkey = ~0u;
alg_auth = ~0u;
alg_enc = ~0u;
alg_mac = ~0u;
min_version = 0;
skip_rule = 0;
for (;;) {
ch = *l;
buf = l;
buf_len = 0;
while (((ch >= 'A') && (ch <= 'Z')) || ((ch >= '0') && (ch <= '9')) ||
((ch >= 'a') && (ch <= 'z')) || (ch == '-') || (ch == '.')) {
ch = *(++l);
buf_len++;
}
if (buf_len == 0) {
/* We hit something we cannot deal with, it is no command or separator
* nor alphanumeric, so we call this an error. */
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
retval = in_group = 0;
l++;
break;
}
if (rule == CIPHER_SPECIAL) {
break;
}
/* Look for a matching exact cipher. These aren't allowed in multipart
* rules. */
if (!multi && ch != '+') {
for (j = 0; j < kCiphersLen; j++) {
const SSL_CIPHER *cipher = &kCiphers[j];
if (rule_equals(cipher->name, buf, buf_len)) {
cipher_id = cipher->id;
break;
}
}
}
if (cipher_id == 0) {
/* If not an exact cipher, look for a matching cipher alias. */
for (j = 0; j < kCipherAliasesLen; j++) {
if (rule_equals(kCipherAliases[j].name, buf, buf_len)) {
alg_mkey &= kCipherAliases[j].algorithm_mkey;
alg_auth &= kCipherAliases[j].algorithm_auth;
alg_enc &= kCipherAliases[j].algorithm_enc;
alg_mac &= kCipherAliases[j].algorithm_mac;
if (min_version != 0 &&
min_version != kCipherAliases[j].min_version) {
skip_rule = 1;
} else {
min_version = kCipherAliases[j].min_version;
}
break;
}
}
if (j == kCipherAliasesLen) {
skip_rule = 1;
}
}
/* Check for a multipart rule. */
if (ch != '+') {
break;
}
l++;
multi = 1;
}
/* If one of the CHACHA20_POLY1305 variants is selected, include the other
* as well. They have the same name to avoid requiring changes in
* configuration. Apply this transformation late so that the cipher name
* still behaves as an exact name and not an alias in multipart rules.
*
* This is temporary and will be removed when the pre-standard construction
* is removed. */
if (cipher_id == TLS1_CK_ECDHE_RSA_CHACHA20_POLY1305_OLD ||
cipher_id == TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256) {
cipher_id = 0;
alg_mkey = SSL_kECDHE;
alg_auth = SSL_aRSA;
alg_enc = SSL_CHACHA20POLY1305|SSL_CHACHA20POLY1305_OLD;
alg_mac = SSL_AEAD;
} else if (cipher_id == TLS1_CK_ECDHE_ECDSA_CHACHA20_POLY1305_OLD ||
cipher_id == TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256) {
cipher_id = 0;
alg_mkey = SSL_kECDHE;
alg_auth = SSL_aECDSA;
alg_enc = SSL_CHACHA20POLY1305|SSL_CHACHA20POLY1305_OLD;
alg_mac = SSL_AEAD;
}
/* Ok, we have the rule, now apply it. */
if (rule == CIPHER_SPECIAL) {
/* special command */
ok = 0;
if (buf_len == 8 && !strncmp(buf, "STRENGTH", 8)) {
ok = ssl_cipher_strength_sort(head_p, tail_p);
} else {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
}
if (ok == 0) {
retval = 0;
}
/* We do not support any "multi" options together with "@", so throw away
* the rest of the command, if any left, until end or ':' is found. */
while (*l != '\0' && !ITEM_SEP(*l)) {
l++;
}
} else if (!skip_rule) {
ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, alg_enc, alg_mac,
min_version, rule, -1, in_group, head_p, tail_p);
}
}
if (in_group) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
retval = 0;
}
return retval;
}
STACK_OF(SSL_CIPHER) *
ssl_create_cipher_list(const SSL_PROTOCOL_METHOD *ssl_method,
struct ssl_cipher_preference_list_st **out_cipher_list,
STACK_OF(SSL_CIPHER) **out_cipher_list_by_id,
const char *rule_str) {
int ok;
STACK_OF(SSL_CIPHER) *cipherstack = NULL, *tmp_cipher_list = NULL;
const char *rule_p;
CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
uint8_t *in_group_flags = NULL;
unsigned int num_in_group_flags = 0;
struct ssl_cipher_preference_list_st *pref_list = NULL;
/* Return with error if nothing to do. */
if (rule_str == NULL || out_cipher_list == NULL) {
return NULL;
}
/* Now we have to collect the available ciphers from the compiled in ciphers.
* We cannot get more than the number compiled in, so it is used for
* allocation. */
co_list = OPENSSL_malloc(sizeof(CIPHER_ORDER) * kCiphersLen);
if (co_list == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return NULL;
}
ssl_cipher_collect_ciphers(ssl_method, co_list, &head, &tail);
/* Now arrange all ciphers by preference:
* TODO(davidben): Compute this order once and copy it. */
/* Everything else being equal, prefer ECDHE_ECDSA then ECDHE_RSA over other
* key exchange mechanisms */
ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, ~0u, ~0u, 0, CIPHER_ADD, -1,
0, &head, &tail);
ssl_cipher_apply_rule(0, SSL_kECDHE, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, 0,
&head, &tail);
ssl_cipher_apply_rule(0, SSL_kECDHE, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, 0,
&head, &tail);
/* Order the bulk ciphers. First the preferred AEAD ciphers. We prefer
* CHACHA20 unless there is hardware support for fast and constant-time
* AES_GCM. Of the two CHACHA20 variants, the new one is preferred over the
* old one. */
if (EVP_has_aes_hardware()) {
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1, 0,
&head, &tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1, 0,
&head, &tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD,
-1, 0, &head, &tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305_OLD, ~0u, 0,
CIPHER_ADD, -1, 0, &head, &tail);
} else {
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD,
-1, 0, &head, &tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305_OLD, ~0u, 0,
CIPHER_ADD, -1, 0, &head, &tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1, 0,
&head, &tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1, 0,
&head, &tail);
}
/* Then the legacy non-AEAD ciphers: AES_128_CBC, AES_256_CBC,
* 3DES_EDE_CBC_SHA, RC4_128_SHA, RC4_128_MD5. */
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128, ~0u, 0, CIPHER_ADD, -1, 0,
&head, &tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256, ~0u, 0, CIPHER_ADD, -1, 0,
&head, &tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_3DES, ~0u, 0, CIPHER_ADD, -1, 0, &head,
&tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_RC4, ~SSL_MD5, 0, CIPHER_ADD, -1, 0,
&head, &tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_RC4, SSL_MD5, 0, CIPHER_ADD, -1, 0,
&head, &tail);
/* Temporarily enable everything else for sorting */
ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, 0, &head,
&tail);
/* Move ciphers without forward secrecy to the end. */
ssl_cipher_apply_rule(0, ~(SSL_kDHE | SSL_kECDHE), ~0u, ~0u, ~0u, 0,
CIPHER_ORD, -1, 0, &head, &tail);
/* Now disable everything (maintaining the ordering!) */
ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, 0, &head,
&tail);
/* If the rule_string begins with DEFAULT, apply the default rule before
* using the (possibly available) additional rules. */
ok = 1;
rule_p = rule_str;
if (strncmp(rule_str, "DEFAULT", 7) == 0) {
ok = ssl_cipher_process_rulestr(ssl_method, SSL_DEFAULT_CIPHER_LIST, &head,
&tail);
rule_p += 7;
if (*rule_p == ':') {
rule_p++;
}
}
if (ok && strlen(rule_p) > 0) {
ok = ssl_cipher_process_rulestr(ssl_method, rule_p, &head, &tail);
}
if (!ok) {
goto err;
}
/* Allocate new "cipherstack" for the result, return with error
* if we cannot get one. */
cipherstack = sk_SSL_CIPHER_new_null();
if (cipherstack == NULL) {
goto err;
}
in_group_flags = OPENSSL_malloc(kCiphersLen);
if (!in_group_flags) {
goto err;
}
/* The cipher selection for the list is done. The ciphers are added
* to the resulting precedence to the STACK_OF(SSL_CIPHER). */
for (curr = head; curr != NULL; curr = curr->next) {
if (curr->active) {
if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
goto err;
}
in_group_flags[num_in_group_flags++] = curr->in_group;
}
}
OPENSSL_free(co_list); /* Not needed any longer */
co_list = NULL;
tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
if (tmp_cipher_list == NULL) {
goto err;
}
pref_list = OPENSSL_malloc(sizeof(struct ssl_cipher_preference_list_st));
if (!pref_list) {
goto err;
}
pref_list->ciphers = cipherstack;
pref_list->in_group_flags = OPENSSL_malloc(num_in_group_flags);
if (!pref_list->in_group_flags) {
goto err;
}
memcpy(pref_list->in_group_flags, in_group_flags, num_in_group_flags);
OPENSSL_free(in_group_flags);
in_group_flags = NULL;
if (*out_cipher_list != NULL) {
ssl_cipher_preference_list_free(*out_cipher_list);
}
*out_cipher_list = pref_list;
pref_list = NULL;
if (out_cipher_list_by_id != NULL) {
sk_SSL_CIPHER_free(*out_cipher_list_by_id);
*out_cipher_list_by_id = tmp_cipher_list;
tmp_cipher_list = NULL;
(void) sk_SSL_CIPHER_set_cmp_func(*out_cipher_list_by_id,
ssl_cipher_ptr_id_cmp);
sk_SSL_CIPHER_sort(*out_cipher_list_by_id);
} else {
sk_SSL_CIPHER_free(tmp_cipher_list);
tmp_cipher_list = NULL;
}
return cipherstack;
err:
OPENSSL_free(co_list);
OPENSSL_free(in_group_flags);
sk_SSL_CIPHER_free(cipherstack);
sk_SSL_CIPHER_free(tmp_cipher_list);
if (pref_list) {
OPENSSL_free(pref_list->in_group_flags);
}
OPENSSL_free(pref_list);
return NULL;
}
uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *cipher) { return cipher->id; }
uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher) {
uint32_t id = cipher->id;
/* All ciphers are SSLv3. */
assert((id & 0xff000000) == 0x03000000);
return id & 0xffff;
}
int SSL_CIPHER_is_AES(const SSL_CIPHER *cipher) {
return (cipher->algorithm_enc & SSL_AES) != 0;
}
int SSL_CIPHER_has_MD5_HMAC(const SSL_CIPHER *cipher) {
return (cipher->algorithm_mac & SSL_MD5) != 0;
}
int SSL_CIPHER_has_SHA1_HMAC(const SSL_CIPHER *cipher) {
return (cipher->algorithm_mac & SSL_SHA1) != 0;
}
int SSL_CIPHER_has_SHA256_HMAC(const SSL_CIPHER *cipher) {
return (cipher->algorithm_mac & SSL_SHA256) != 0;
}
int SSL_CIPHER_is_AESGCM(const SSL_CIPHER *cipher) {
return (cipher->algorithm_enc & (SSL_AES128GCM | SSL_AES256GCM)) != 0;
}
int SSL_CIPHER_is_AES128GCM(const SSL_CIPHER *cipher) {
return (cipher->algorithm_enc & SSL_AES128GCM) != 0;
}
int SSL_CIPHER_is_AES128CBC(const SSL_CIPHER *cipher) {
return (cipher->algorithm_enc & SSL_AES128) != 0;
}
int SSL_CIPHER_is_AES256CBC(const SSL_CIPHER *cipher) {
return (cipher->algorithm_enc & SSL_AES256) != 0;
}
int SSL_CIPHER_is_CHACHA20POLY1305(const SSL_CIPHER *cipher) {
return (cipher->algorithm_enc &
(SSL_CHACHA20POLY1305 | SSL_CHACHA20POLY1305_OLD)) != 0;
}
int SSL_CIPHER_is_NULL(const SSL_CIPHER *cipher) {
return (cipher->algorithm_enc & SSL_eNULL) != 0;
}
int SSL_CIPHER_is_RC4(const SSL_CIPHER *cipher) {
return (cipher->algorithm_enc & SSL_RC4) != 0;
}
int SSL_CIPHER_is_block_cipher(const SSL_CIPHER *cipher) {
/* Neither stream cipher nor AEAD. */
return (cipher->algorithm_enc & (SSL_RC4 | SSL_eNULL)) == 0 &&
cipher->algorithm_mac != SSL_AEAD;
}
int SSL_CIPHER_is_ECDSA(const SSL_CIPHER *cipher) {
return (cipher->algorithm_auth & SSL_aECDSA) != 0;
}
int SSL_CIPHER_is_DHE(const SSL_CIPHER *cipher) {
return (cipher->algorithm_mkey & SSL_kDHE) != 0;
}
int SSL_CIPHER_is_ECDHE(const SSL_CIPHER *cipher) {
return (cipher->algorithm_mkey & SSL_kECDHE) != 0;
}
int SSL_CIPHER_is_CECPQ1(const SSL_CIPHER *cipher) {
return (cipher->algorithm_mkey & SSL_kCECPQ1) != 0;
}
uint16_t SSL_CIPHER_get_min_version(const SSL_CIPHER *cipher) {
if (cipher->algorithm_prf != SSL_HANDSHAKE_MAC_DEFAULT) {
/* Cipher suites before TLS 1.2 use the default PRF, while all those added
* afterwards specify a particular hash. */
return TLS1_2_VERSION;
}
return SSL3_VERSION;
}
uint16_t SSL_CIPHER_get_max_version(const SSL_CIPHER *cipher) {
if (cipher->algorithm_mac == SSL_AEAD &&
(cipher->algorithm_enc & SSL_CHACHA20POLY1305_OLD) == 0 &&
(cipher->algorithm_mkey & SSL_kECDHE) != 0 &&
/* TODO(davidben,svaldez): Support PSK-based ciphers in TLS 1.3. */
(cipher->algorithm_auth & SSL_aCERT) != 0) {
return TLS1_3_VERSION;
}
return TLS1_2_VERSION;
}
/* return the actual cipher being used */
const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher) {
if (cipher != NULL) {
return cipher->name;
}
return "(NONE)";
}
const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher) {
if (cipher == NULL) {
return "";
}
switch (cipher->algorithm_mkey) {
case SSL_kRSA:
return "RSA";
case SSL_kDHE:
switch (cipher->algorithm_auth) {
case SSL_aRSA:
return "DHE_RSA";
default:
assert(0);
return "UNKNOWN";
}
case SSL_kECDHE:
switch (cipher->algorithm_auth) {
case SSL_aECDSA:
return "ECDHE_ECDSA";
case SSL_aRSA:
return "ECDHE_RSA";
case SSL_aPSK:
return "ECDHE_PSK";
default:
assert(0);
return "UNKNOWN";
}
case SSL_kCECPQ1:
switch (cipher->algorithm_auth) {
case SSL_aECDSA:
return "CECPQ1_ECDSA";
case SSL_aRSA:
return "CECPQ1_RSA";
default:
assert(0);
return "UNKNOWN";
}
case SSL_kPSK:
assert(cipher->algorithm_auth == SSL_aPSK);
return "PSK";
default:
assert(0);
return "UNKNOWN";
}
}
static const char *ssl_cipher_get_enc_name(const SSL_CIPHER *cipher) {
switch (cipher->algorithm_enc) {
case SSL_3DES:
return "3DES_EDE_CBC";
case SSL_RC4:
return "RC4";
case SSL_AES128:
return "AES_128_CBC";
case SSL_AES256:
return "AES_256_CBC";
case SSL_AES128GCM:
return "AES_128_GCM";
case SSL_AES256GCM:
return "AES_256_GCM";
case SSL_CHACHA20POLY1305:
case SSL_CHACHA20POLY1305_OLD:
return "CHACHA20_POLY1305";
break;
default:
assert(0);
return "UNKNOWN";
}
}
static const char *ssl_cipher_get_prf_name(const SSL_CIPHER *cipher) {
switch (cipher->algorithm_prf) {
case SSL_HANDSHAKE_MAC_DEFAULT:
/* Before TLS 1.2, the PRF component is the hash used in the HMAC, which is
* only ever MD5 or SHA-1. */
switch (cipher->algorithm_mac) {
case SSL_MD5:
return "MD5";
case SSL_SHA1:
return "SHA";
}
break;
case SSL_HANDSHAKE_MAC_SHA256:
return "SHA256";
case SSL_HANDSHAKE_MAC_SHA384:
return "SHA384";
}
assert(0);
return "UNKNOWN";
}
char *SSL_CIPHER_get_rfc_name(const SSL_CIPHER *cipher) {
if (cipher == NULL) {
return NULL;
}
const char *kx_name = SSL_CIPHER_get_kx_name(cipher);
const char *enc_name = ssl_cipher_get_enc_name(cipher);
const char *prf_name = ssl_cipher_get_prf_name(cipher);
/* The final name is TLS_{kx_name}_WITH_{enc_name}_{prf_name}. */
size_t len = 4 + strlen(kx_name) + 6 + strlen(enc_name) + 1 +
strlen(prf_name) + 1;
char *ret = OPENSSL_malloc(len);
if (ret == NULL) {
return NULL;
}
if (BUF_strlcpy(ret, "TLS_", len) >= len ||
BUF_strlcat(ret, kx_name, len) >= len ||
BUF_strlcat(ret, "_WITH_", len) >= len ||
BUF_strlcat(ret, enc_name, len) >= len ||
BUF_strlcat(ret, "_", len) >= len ||
BUF_strlcat(ret, prf_name, len) >= len) {
assert(0);
OPENSSL_free(ret);
return NULL;
}
assert(strlen(ret) + 1 == len);
return ret;
}
int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, int *out_alg_bits) {
if (cipher == NULL) {
return 0;
}
int alg_bits, strength_bits;
switch (cipher->algorithm_enc) {
case SSL_AES128:
case SSL_AES128GCM:
case SSL_RC4:
alg_bits = 128;
strength_bits = 128;
break;
case SSL_AES256:
case SSL_AES256GCM:
#if !defined(BORINGSSL_ANDROID_SYSTEM)
case SSL_CHACHA20POLY1305_OLD:
#endif
case SSL_CHACHA20POLY1305:
alg_bits = 256;
strength_bits = 256;
break;
case SSL_3DES:
alg_bits = 168;
strength_bits = 112;
break;
case SSL_eNULL:
alg_bits = 0;
strength_bits = 0;
break;
default:
assert(0);
alg_bits = 0;
strength_bits = 0;
}
if (out_alg_bits != NULL) {
*out_alg_bits = alg_bits;
}
return strength_bits;
}
const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf,
int len) {
const char *kx, *au, *enc, *mac;
uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
alg_mkey = cipher->algorithm_mkey;
alg_auth = cipher->algorithm_auth;
alg_enc = cipher->algorithm_enc;
alg_mac = cipher->algorithm_mac;
switch (alg_mkey) {
case SSL_kRSA:
kx = "RSA";
break;
case SSL_kDHE:
kx = "DH";
break;
case SSL_kECDHE:
kx = "ECDH";
break;
case SSL_kCECPQ1:
kx = "CECPQ1";
break;
case SSL_kPSK:
kx = "PSK";
break;
default:
kx = "unknown";
}
switch (alg_auth) {
case SSL_aRSA:
au = "RSA";
break;
case SSL_aECDSA:
au = "ECDSA";
break;
case SSL_aPSK:
au = "PSK";
break;
default:
au = "unknown";
break;
}
switch (alg_enc) {
case SSL_3DES:
enc = "3DES(168)";
break;
case SSL_RC4:
enc = "RC4(128)";
break;
case SSL_AES128:
enc = "AES(128)";
break;
case SSL_AES256:
enc = "AES(256)";
break;
case SSL_AES128GCM:
enc = "AESGCM(128)";
break;
case SSL_AES256GCM:
enc = "AESGCM(256)";
break;
case SSL_CHACHA20POLY1305_OLD:
enc = "ChaCha20-Poly1305-Old";
break;
case SSL_CHACHA20POLY1305:
enc = "ChaCha20-Poly1305";
break;
case SSL_eNULL:
enc="None";
break;
default:
enc = "unknown";
break;
}
switch (alg_mac) {
case SSL_MD5:
mac = "MD5";
break;
case SSL_SHA1:
mac = "SHA1";
break;
case SSL_SHA256:
mac = "SHA256";
break;
case SSL_SHA384:
mac = "SHA384";
break;
case SSL_AEAD:
mac = "AEAD";
break;
default:
mac = "unknown";
break;
}
if (buf == NULL) {
len = 128;
buf = OPENSSL_malloc(len);
if (buf == NULL) {
return NULL;
}
} else if (len < 128) {
return "Buffer too small";
}
BIO_snprintf(buf, len, "%-23s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n",
cipher->name, kx, au, enc, mac);
return buf;
}
const char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher) {
return "TLSv1/SSLv3";
}
COMP_METHOD *SSL_COMP_get_compression_methods(void) { return NULL; }
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { return 1; }
const char *SSL_COMP_get_name(const COMP_METHOD *comp) { return NULL; }
int ssl_cipher_get_key_type(const SSL_CIPHER *cipher) {
uint32_t alg_a = cipher->algorithm_auth;
if (alg_a & SSL_aECDSA) {
return EVP_PKEY_EC;
} else if (alg_a & SSL_aRSA) {
return EVP_PKEY_RSA;
}
return EVP_PKEY_NONE;
}
int ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher) {
return (cipher->algorithm_auth & SSL_aCERT) != 0;
}
int ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher) {
/* Ephemeral Diffie-Hellman key exchanges require a ServerKeyExchange. */
if (cipher->algorithm_mkey & SSL_kDHE ||
cipher->algorithm_mkey & SSL_kECDHE ||
cipher->algorithm_mkey & SSL_kCECPQ1) {
return 1;
}
/* It is optional in all others. */
return 0;
}
Factor out the buffering and low-level record code. This begins decoupling the transport from the SSL state machine. The buffering logic is hidden behind an opaque API. Fields like ssl->packet and ssl->packet_length are gone. ssl3_get_record and dtls1_get_record now call low-level tls_open_record and dtls_open_record functions that unpack a single record independent of who owns the buffer. Both may be called in-place. This removes ssl->rstate which was redundant with the buffer length. Future work will push the buffer up the stack until it is above the handshake. Then we can expose SSL_open and SSL_seal APIs which act like *_open_record but return a slightly larger enum due to other events being possible. Likewise the handshake state machine will be detached from its buffer. The existing SSL_read, SSL_write, etc., APIs will be implemented on top of SSL_open, etc., combined with ssl_read_buffer_* and ssl_write_buffer_*. (Which is why ssl_read_buffer_extend still tries to abstract between TLS's and DTLS's fairly different needs.) The new buffering logic does not support read-ahead (removed previously) since it lacks a memmove on ssl_read_buffer_discard for TLS, but this could be added if desired. The old buffering logic wasn't quite right anyway; it tried to avoid the memmove in some cases and could get stuck too far into the buffer and not accept records. (The only time the memmove is optional is in DTLS or if enough of the record header is available to know that the entire next record would fit in the buffer.) The new logic also now actually decrypts the ciphertext in-place again, rather than almost in-place when there's an explicit nonce/IV. (That accidentally switched in https://boringssl-review.googlesource.com/#/c/4792/; see 3d59e04bce96474099ba76786a2337e99ae14505.) BUG=468889 Change-Id: I403c1626253c46897f47c7ae93aeab1064b767b2 Reviewed-on: https://boringssl-review.googlesource.com/5715 Reviewed-by: Adam Langley <agl@google.com>
2015-07-29 02:34:45 +01:00
size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher) {
size_t block_size;
switch (cipher->algorithm_enc) {
case SSL_3DES:
block_size = 8;
break;
case SSL_AES128:
case SSL_AES256:
block_size = 16;
break;
default:
return 0;
}
size_t mac_len;
switch (cipher->algorithm_mac) {
case SSL_MD5:
mac_len = MD5_DIGEST_LENGTH;
break;
case SSL_SHA1:
mac_len = SHA_DIGEST_LENGTH;
break;
default:
return 0;
}
size_t ret = 1 + mac_len;
ret += block_size - (ret % block_size);
return ret;
}