2014-06-20 20:00:00 +01:00
|
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This package is an SSL implementation written
|
|
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
|
|
*
|
|
|
|
* This library is free for commercial and non-commercial use as long as
|
|
|
|
* the following conditions are aheared to. The following conditions
|
|
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
|
|
* included with this distribution is covered by the same copyright terms
|
|
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
|
|
*
|
|
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
|
|
* the code are not to be removed.
|
|
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
|
|
* as the author of the parts of the library used.
|
|
|
|
* This can be in the form of a textual message at program startup or
|
|
|
|
* in documentation (online or textual) provided with the package.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* "This product includes cryptographic software written by
|
|
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
|
|
* being used are not cryptographic related :-).
|
|
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* The licence and distribution terms for any publically available version or
|
|
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
|
|
* copied and put under another distribution licence
|
|
|
|
* [including the GNU Public Licence.] */
|
|
|
|
|
|
|
|
#include <ctype.h>
|
|
|
|
|
|
|
|
#include <openssl/asn1.h>
|
|
|
|
#include <openssl/asn1t.h>
|
|
|
|
#include <openssl/buf.h>
|
|
|
|
#include <openssl/err.h>
|
|
|
|
#include <openssl/mem.h>
|
|
|
|
#include <openssl/obj.h>
|
|
|
|
#include <openssl/stack.h>
|
|
|
|
#include <openssl/x509.h>
|
|
|
|
|
|
|
|
#include "../asn1/asn1_locl.h"
|
|
|
|
|
|
|
|
|
|
|
|
typedef STACK_OF(X509_NAME_ENTRY) STACK_OF_X509_NAME_ENTRY;
|
|
|
|
DECLARE_STACK_OF(STACK_OF_X509_NAME_ENTRY)
|
|
|
|
|
|
|
|
static int x509_name_ex_d2i(ASN1_VALUE **val,
|
|
|
|
const unsigned char **in, long len,
|
|
|
|
const ASN1_ITEM *it,
|
|
|
|
int tag, int aclass, char opt, ASN1_TLC *ctx);
|
|
|
|
|
|
|
|
static int x509_name_ex_i2d(ASN1_VALUE **val, unsigned char **out,
|
|
|
|
const ASN1_ITEM *it, int tag, int aclass);
|
|
|
|
static int x509_name_ex_new(ASN1_VALUE **val, const ASN1_ITEM *it);
|
|
|
|
static void x509_name_ex_free(ASN1_VALUE **val, const ASN1_ITEM *it);
|
|
|
|
|
|
|
|
static int x509_name_encode(X509_NAME *a);
|
|
|
|
static int x509_name_canon(X509_NAME *a);
|
|
|
|
static int asn1_string_canon(ASN1_STRING *out, ASN1_STRING *in);
|
|
|
|
static int i2d_name_canon(STACK_OF(STACK_OF_X509_NAME_ENTRY) *intname,
|
|
|
|
unsigned char **in);
|
|
|
|
|
|
|
|
|
|
|
|
static int x509_name_ex_print(BIO *out, ASN1_VALUE **pval,
|
|
|
|
int indent,
|
|
|
|
const char *fname,
|
|
|
|
const ASN1_PCTX *pctx);
|
|
|
|
|
|
|
|
ASN1_SEQUENCE(X509_NAME_ENTRY) = {
|
|
|
|
ASN1_SIMPLE(X509_NAME_ENTRY, object, ASN1_OBJECT),
|
|
|
|
ASN1_SIMPLE(X509_NAME_ENTRY, value, ASN1_PRINTABLE)
|
|
|
|
} ASN1_SEQUENCE_END(X509_NAME_ENTRY)
|
|
|
|
|
|
|
|
IMPLEMENT_ASN1_FUNCTIONS(X509_NAME_ENTRY)
|
|
|
|
IMPLEMENT_ASN1_DUP_FUNCTION(X509_NAME_ENTRY)
|
|
|
|
|
|
|
|
/* For the "Name" type we need a SEQUENCE OF { SET OF X509_NAME_ENTRY }
|
|
|
|
* so declare two template wrappers for this
|
|
|
|
*/
|
|
|
|
|
|
|
|
ASN1_ITEM_TEMPLATE(X509_NAME_ENTRIES) =
|
|
|
|
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SET_OF, 0, RDNS, X509_NAME_ENTRY)
|
|
|
|
ASN1_ITEM_TEMPLATE_END(X509_NAME_ENTRIES)
|
|
|
|
|
|
|
|
ASN1_ITEM_TEMPLATE(X509_NAME_INTERNAL) =
|
|
|
|
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, Name, X509_NAME_ENTRIES)
|
|
|
|
ASN1_ITEM_TEMPLATE_END(X509_NAME_INTERNAL)
|
|
|
|
|
|
|
|
/* Normally that's where it would end: we'd have two nested STACK structures
|
|
|
|
* representing the ASN1. Unfortunately X509_NAME uses a completely different
|
|
|
|
* form and caches encodings so we have to process the internal form and convert
|
|
|
|
* to the external form.
|
|
|
|
*/
|
|
|
|
|
|
|
|
const ASN1_EXTERN_FUNCS x509_name_ff = {
|
|
|
|
NULL,
|
|
|
|
x509_name_ex_new,
|
|
|
|
x509_name_ex_free,
|
|
|
|
0, /* Default clear behaviour is OK */
|
|
|
|
x509_name_ex_d2i,
|
|
|
|
x509_name_ex_i2d,
|
|
|
|
x509_name_ex_print
|
|
|
|
};
|
|
|
|
|
|
|
|
IMPLEMENT_EXTERN_ASN1(X509_NAME, V_ASN1_SEQUENCE, x509_name_ff)
|
|
|
|
|
|
|
|
IMPLEMENT_ASN1_FUNCTIONS(X509_NAME)
|
|
|
|
IMPLEMENT_ASN1_DUP_FUNCTION(X509_NAME)
|
|
|
|
|
|
|
|
static int x509_name_ex_new(ASN1_VALUE **val, const ASN1_ITEM *it)
|
|
|
|
{
|
|
|
|
X509_NAME *ret = NULL;
|
|
|
|
ret = OPENSSL_malloc(sizeof(X509_NAME));
|
|
|
|
if(!ret) goto memerr;
|
|
|
|
if ((ret->entries=sk_X509_NAME_ENTRY_new_null()) == NULL)
|
|
|
|
goto memerr;
|
|
|
|
if((ret->bytes = BUF_MEM_new()) == NULL) goto memerr;
|
|
|
|
ret->canon_enc = NULL;
|
|
|
|
ret->canon_enclen = 0;
|
|
|
|
ret->modified=1;
|
|
|
|
*val = (ASN1_VALUE *)ret;
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
memerr:
|
|
|
|
OPENSSL_PUT_ERROR(X509, x509_name_ex_new, ERR_R_MALLOC_FAILURE);
|
|
|
|
if (ret)
|
|
|
|
{
|
|
|
|
if (ret->entries)
|
|
|
|
sk_X509_NAME_ENTRY_free(ret->entries);
|
|
|
|
OPENSSL_free(ret);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void x509_name_ex_free(ASN1_VALUE **pval, const ASN1_ITEM *it)
|
|
|
|
{
|
|
|
|
X509_NAME *a;
|
|
|
|
if(!pval || !*pval)
|
|
|
|
return;
|
|
|
|
a = (X509_NAME *)*pval;
|
|
|
|
|
|
|
|
BUF_MEM_free(a->bytes);
|
|
|
|
sk_X509_NAME_ENTRY_pop_free(a->entries,X509_NAME_ENTRY_free);
|
|
|
|
if (a->canon_enc)
|
|
|
|
OPENSSL_free(a->canon_enc);
|
|
|
|
OPENSSL_free(a);
|
|
|
|
*pval = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int x509_name_ex_d2i(ASN1_VALUE **val,
|
|
|
|
const unsigned char **in, long len, const ASN1_ITEM *it,
|
|
|
|
int tag, int aclass, char opt, ASN1_TLC *ctx)
|
|
|
|
{
|
|
|
|
const unsigned char *p = *in, *q;
|
|
|
|
union { STACK_OF(STACK_OF_X509_NAME_ENTRY) *s;
|
|
|
|
ASN1_VALUE *a; } intname = {NULL};
|
|
|
|
union { X509_NAME *x; ASN1_VALUE *a; } nm = {NULL};
|
|
|
|
size_t i, j;
|
|
|
|
int ret;
|
|
|
|
STACK_OF(X509_NAME_ENTRY) *entries;
|
|
|
|
X509_NAME_ENTRY *entry;
|
|
|
|
q = p;
|
|
|
|
|
|
|
|
/* Get internal representation of Name */
|
|
|
|
ret = ASN1_item_ex_d2i(&intname.a,
|
|
|
|
&p, len, ASN1_ITEM_rptr(X509_NAME_INTERNAL),
|
|
|
|
tag, aclass, opt, ctx);
|
|
|
|
|
|
|
|
if(ret <= 0) return ret;
|
|
|
|
|
|
|
|
if(*val) x509_name_ex_free(val, NULL);
|
|
|
|
if(!x509_name_ex_new(&nm.a, NULL)) goto err;
|
|
|
|
/* We've decoded it: now cache encoding */
|
|
|
|
if(!BUF_MEM_grow(nm.x->bytes, p - q)) goto err;
|
|
|
|
memcpy(nm.x->bytes->data, q, p - q);
|
|
|
|
|
|
|
|
/* Convert internal representation to X509_NAME structure */
|
|
|
|
for(i = 0; i < sk_STACK_OF_X509_NAME_ENTRY_num(intname.s); i++) {
|
|
|
|
entries = sk_STACK_OF_X509_NAME_ENTRY_value(intname.s, i);
|
|
|
|
for(j = 0; j < sk_X509_NAME_ENTRY_num(entries); j++) {
|
|
|
|
entry = sk_X509_NAME_ENTRY_value(entries, j);
|
|
|
|
entry->set = i;
|
|
|
|
if(!sk_X509_NAME_ENTRY_push(nm.x->entries, entry))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
sk_X509_NAME_ENTRY_free(entries);
|
|
|
|
}
|
|
|
|
sk_STACK_OF_X509_NAME_ENTRY_free(intname.s);
|
|
|
|
ret = x509_name_canon(nm.x);
|
|
|
|
if (!ret)
|
|
|
|
goto err;
|
|
|
|
nm.x->modified = 0;
|
|
|
|
*val = nm.a;
|
|
|
|
*in = p;
|
|
|
|
return ret;
|
|
|
|
err:
|
|
|
|
if (nm.x != NULL)
|
|
|
|
X509_NAME_free(nm.x);
|
|
|
|
OPENSSL_PUT_ERROR(X509, x509_name_ex_d2i, ERR_R_ASN1_LIB);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int x509_name_ex_i2d(ASN1_VALUE **val, unsigned char **out, const ASN1_ITEM *it, int tag, int aclass)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
X509_NAME *a = (X509_NAME *)*val;
|
|
|
|
if(a->modified) {
|
|
|
|
ret = x509_name_encode(a);
|
|
|
|
if(ret < 0)
|
|
|
|
return ret;
|
|
|
|
ret = x509_name_canon(a);
|
|
|
|
if(ret < 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
ret = a->bytes->length;
|
|
|
|
if(out != NULL) {
|
|
|
|
memcpy(*out,a->bytes->data,ret);
|
|
|
|
*out+=ret;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void local_sk_X509_NAME_ENTRY_free(STACK_OF(X509_NAME_ENTRY) *ne)
|
|
|
|
{
|
|
|
|
sk_X509_NAME_ENTRY_free(ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void local_sk_X509_NAME_ENTRY_pop_free(STACK_OF(X509_NAME_ENTRY) *ne)
|
|
|
|
{
|
|
|
|
sk_X509_NAME_ENTRY_pop_free(ne, X509_NAME_ENTRY_free);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int x509_name_encode(X509_NAME *a)
|
|
|
|
{
|
|
|
|
union { STACK_OF(STACK_OF_X509_NAME_ENTRY) *s;
|
|
|
|
ASN1_VALUE *a; } intname = {NULL};
|
|
|
|
int len;
|
|
|
|
unsigned char *p;
|
|
|
|
STACK_OF(X509_NAME_ENTRY) *entries = NULL;
|
|
|
|
X509_NAME_ENTRY *entry;
|
|
|
|
int set = -1;
|
|
|
|
size_t i;
|
|
|
|
intname.s = sk_STACK_OF_X509_NAME_ENTRY_new_null();
|
|
|
|
if(!intname.s) goto memerr;
|
|
|
|
for(i = 0; i < sk_X509_NAME_ENTRY_num(a->entries); i++) {
|
|
|
|
entry = sk_X509_NAME_ENTRY_value(a->entries, i);
|
|
|
|
if(entry->set != set) {
|
|
|
|
entries = sk_X509_NAME_ENTRY_new_null();
|
|
|
|
if(!entries) goto memerr;
|
|
|
|
if(!sk_STACK_OF_X509_NAME_ENTRY_push(intname.s,
|
|
|
|
entries))
|
|
|
|
goto memerr;
|
|
|
|
set = entry->set;
|
|
|
|
}
|
|
|
|
if(!sk_X509_NAME_ENTRY_push(entries, entry)) goto memerr;
|
|
|
|
}
|
|
|
|
len = ASN1_item_ex_i2d(&intname.a, NULL,
|
|
|
|
ASN1_ITEM_rptr(X509_NAME_INTERNAL), -1, -1);
|
|
|
|
if (!BUF_MEM_grow(a->bytes,len)) goto memerr;
|
|
|
|
p=(unsigned char *)a->bytes->data;
|
|
|
|
ASN1_item_ex_i2d(&intname.a,
|
|
|
|
&p, ASN1_ITEM_rptr(X509_NAME_INTERNAL), -1, -1);
|
|
|
|
sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname.s,
|
|
|
|
local_sk_X509_NAME_ENTRY_free);
|
|
|
|
a->modified = 0;
|
|
|
|
return len;
|
|
|
|
memerr:
|
|
|
|
sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname.s,
|
|
|
|
local_sk_X509_NAME_ENTRY_free);
|
|
|
|
OPENSSL_PUT_ERROR(X509, x509_name_encode, ERR_R_MALLOC_FAILURE);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int x509_name_ex_print(BIO *out, ASN1_VALUE **pval,
|
|
|
|
int indent,
|
|
|
|
const char *fname,
|
|
|
|
const ASN1_PCTX *pctx)
|
|
|
|
{
|
|
|
|
if (X509_NAME_print_ex(out, (X509_NAME *)*pval,
|
|
|
|
indent, pctx->nm_flags) <= 0)
|
|
|
|
return 0;
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This function generates the canonical encoding of the Name structure.
|
|
|
|
* In it all strings are converted to UTF8, leading, trailing and
|
|
|
|
* multiple spaces collapsed, converted to lower case and the leading
|
|
|
|
* SEQUENCE header removed.
|
|
|
|
*
|
|
|
|
* In future we could also normalize the UTF8 too.
|
|
|
|
*
|
|
|
|
* By doing this comparison of Name structures can be rapidly
|
|
|
|
* perfomed by just using memcmp() of the canonical encoding.
|
|
|
|
* By omitting the leading SEQUENCE name constraints of type
|
|
|
|
* dirName can also be checked with a simple memcmp().
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int x509_name_canon(X509_NAME *a)
|
|
|
|
{
|
|
|
|
unsigned char *p;
|
|
|
|
STACK_OF(STACK_OF_X509_NAME_ENTRY) *intname = NULL;
|
|
|
|
STACK_OF(X509_NAME_ENTRY) *entries = NULL;
|
|
|
|
X509_NAME_ENTRY *entry, *tmpentry = NULL;
|
|
|
|
int set = -1, ret = 0;
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
if (a->canon_enc)
|
|
|
|
{
|
|
|
|
OPENSSL_free(a->canon_enc);
|
|
|
|
a->canon_enc = NULL;
|
|
|
|
}
|
|
|
|
/* Special case: empty X509_NAME => null encoding */
|
|
|
|
if (sk_X509_NAME_ENTRY_num(a->entries) == 0)
|
|
|
|
{
|
|
|
|
a->canon_enclen = 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
intname = sk_STACK_OF_X509_NAME_ENTRY_new_null();
|
|
|
|
if(!intname)
|
|
|
|
goto err;
|
|
|
|
for(i = 0; i < sk_X509_NAME_ENTRY_num(a->entries); i++)
|
|
|
|
{
|
|
|
|
entry = sk_X509_NAME_ENTRY_value(a->entries, i);
|
|
|
|
if(entry->set != set)
|
|
|
|
{
|
|
|
|
entries = sk_X509_NAME_ENTRY_new_null();
|
|
|
|
if(!entries)
|
|
|
|
goto err;
|
|
|
|
if(!sk_STACK_OF_X509_NAME_ENTRY_push(intname, entries))
|
2014-11-18 01:26:55 +00:00
|
|
|
{
|
|
|
|
sk_X509_NAME_ENTRY_free(entries);
|
2014-06-20 20:00:00 +01:00
|
|
|
goto err;
|
2014-11-18 01:26:55 +00:00
|
|
|
}
|
2014-06-20 20:00:00 +01:00
|
|
|
set = entry->set;
|
|
|
|
}
|
|
|
|
tmpentry = X509_NAME_ENTRY_new();
|
2014-11-18 01:26:55 +00:00
|
|
|
if (tmpentry == NULL)
|
|
|
|
goto err;
|
2014-06-20 20:00:00 +01:00
|
|
|
tmpentry->object = OBJ_dup(entry->object);
|
|
|
|
if (!asn1_string_canon(tmpentry->value, entry->value))
|
|
|
|
goto err;
|
|
|
|
if(!sk_X509_NAME_ENTRY_push(entries, tmpentry))
|
|
|
|
goto err;
|
|
|
|
tmpentry = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Finally generate encoding */
|
|
|
|
|
|
|
|
a->canon_enclen = i2d_name_canon(intname, NULL);
|
|
|
|
|
|
|
|
p = OPENSSL_malloc(a->canon_enclen);
|
|
|
|
|
|
|
|
if (!p)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
a->canon_enc = p;
|
|
|
|
|
|
|
|
i2d_name_canon(intname, &p);
|
|
|
|
|
|
|
|
ret = 1;
|
|
|
|
|
|
|
|
err:
|
|
|
|
|
|
|
|
if (tmpentry)
|
|
|
|
X509_NAME_ENTRY_free(tmpentry);
|
|
|
|
if (intname)
|
|
|
|
sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname,
|
|
|
|
local_sk_X509_NAME_ENTRY_pop_free);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Bitmap of all the types of string that will be canonicalized. */
|
|
|
|
|
|
|
|
#define ASN1_MASK_CANON \
|
|
|
|
(B_ASN1_UTF8STRING | B_ASN1_BMPSTRING | B_ASN1_UNIVERSALSTRING \
|
|
|
|
| B_ASN1_PRINTABLESTRING | B_ASN1_T61STRING | B_ASN1_IA5STRING \
|
|
|
|
| B_ASN1_VISIBLESTRING)
|
|
|
|
|
|
|
|
|
|
|
|
static int asn1_string_canon(ASN1_STRING *out, ASN1_STRING *in)
|
|
|
|
{
|
|
|
|
unsigned char *to, *from;
|
|
|
|
int len, i;
|
|
|
|
|
|
|
|
/* If type not in bitmask just copy string across */
|
|
|
|
if (!(ASN1_tag2bit(in->type) & ASN1_MASK_CANON))
|
|
|
|
{
|
|
|
|
if (!ASN1_STRING_copy(out, in))
|
|
|
|
return 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
out->type = V_ASN1_UTF8STRING;
|
|
|
|
out->length = ASN1_STRING_to_UTF8(&out->data, in);
|
|
|
|
if (out->length == -1)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
to = out->data;
|
|
|
|
from = to;
|
|
|
|
|
|
|
|
len = out->length;
|
|
|
|
|
|
|
|
/* Convert string in place to canonical form.
|
|
|
|
* Ultimately we may need to handle a wider range of characters
|
|
|
|
* but for now ignore anything with MSB set and rely on the
|
|
|
|
* isspace() and tolower() functions.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Ignore leading spaces */
|
|
|
|
while((len > 0) && !(*from & 0x80) && isspace(*from))
|
|
|
|
{
|
|
|
|
from++;
|
|
|
|
len--;
|
|
|
|
}
|
|
|
|
|
|
|
|
to = from + len - 1;
|
|
|
|
|
|
|
|
/* Ignore trailing spaces */
|
|
|
|
while ((len > 0) && !(*to & 0x80) && isspace(*to))
|
|
|
|
{
|
|
|
|
to--;
|
|
|
|
len--;
|
|
|
|
}
|
|
|
|
|
|
|
|
to = out->data;
|
|
|
|
|
|
|
|
i = 0;
|
|
|
|
while(i < len)
|
|
|
|
{
|
|
|
|
/* If MSB set just copy across */
|
|
|
|
if (*from & 0x80)
|
|
|
|
{
|
|
|
|
*to++ = *from++;
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
/* Collapse multiple spaces */
|
|
|
|
else if (isspace(*from))
|
|
|
|
{
|
|
|
|
/* Copy one space across */
|
|
|
|
*to++ = ' ';
|
|
|
|
/* Ignore subsequent spaces. Note: don't need to
|
|
|
|
* check len here because we know the last
|
|
|
|
* character is a non-space so we can't overflow.
|
|
|
|
*/
|
|
|
|
do
|
|
|
|
{
|
|
|
|
from++;
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
while(!(*from & 0x80) && isspace(*from));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
*to++ = tolower(*from);
|
|
|
|
from++;
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
out->length = to - out->data;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static int i2d_name_canon(STACK_OF(STACK_OF_X509_NAME_ENTRY) *_intname,
|
|
|
|
unsigned char **in)
|
|
|
|
{
|
|
|
|
int len, ltmp;
|
|
|
|
size_t i;
|
|
|
|
ASN1_VALUE *v;
|
|
|
|
STACK_OF(ASN1_VALUE) *intname = (STACK_OF(ASN1_VALUE) *)_intname;
|
|
|
|
|
|
|
|
len = 0;
|
|
|
|
for (i = 0; i < sk_ASN1_VALUE_num(intname); i++)
|
|
|
|
{
|
|
|
|
v = sk_ASN1_VALUE_value(intname, i);
|
|
|
|
ltmp = ASN1_item_ex_i2d(&v, in,
|
|
|
|
ASN1_ITEM_rptr(X509_NAME_ENTRIES), -1, -1);
|
|
|
|
if (ltmp < 0)
|
|
|
|
return ltmp;
|
|
|
|
len += ltmp;
|
|
|
|
}
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
|
|
|
int X509_NAME_set(X509_NAME **xn, X509_NAME *name)
|
|
|
|
{
|
|
|
|
X509_NAME *in;
|
|
|
|
|
|
|
|
if (!xn || !name) return(0);
|
|
|
|
|
|
|
|
if (*xn != name)
|
|
|
|
{
|
|
|
|
in=X509_NAME_dup(name);
|
|
|
|
if (in != NULL)
|
|
|
|
{
|
|
|
|
X509_NAME_free(*xn);
|
|
|
|
*xn=in;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return(*xn != NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
IMPLEMENT_ASN1_SET_OF(X509_NAME_ENTRY)
|