Simplify RC4 code and remove assembly.
This removes all but the generic C RC4 implementation. At this point we want to optimize for size/simplicity rather than speed. See also upstream's 3e9e810f2e047effb1056211794d2d12ec2b04e7 which removed the RC4_CHUNK code and standardized on RC4_INDEX. A since-removed comment says that it was implemented for "pre-21164a Alpha CPUs don't have byte load/store instructions" and helps with SPARC and MIPS. This also removes all the manual loop unrolling. Change-Id: I91135568483260b2e1e675f190fb00ce8f9eff3d Reviewed-on: https://boringssl-review.googlesource.com/10720 Commit-Queue: David Benjamin <davidben@google.com> Commit-Queue: Adam Langley <agl@google.com> Reviewed-by: Adam Langley <agl@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This commit is contained in:
parent
8c2d53ad99
commit
147f1c468c
@ -1,29 +1,9 @@
|
||||
include_directories(../../include)
|
||||
|
||||
if (${ARCH} STREQUAL "x86_64")
|
||||
set(
|
||||
RC4_ARCH_SOURCES
|
||||
|
||||
rc4-x86_64.${ASM_EXT}
|
||||
)
|
||||
endif()
|
||||
|
||||
if (${ARCH} STREQUAL "x86")
|
||||
set(
|
||||
RC4_ARCH_SOURCES
|
||||
|
||||
rc4-586.${ASM_EXT}
|
||||
)
|
||||
endif()
|
||||
|
||||
add_library(
|
||||
rc4
|
||||
|
||||
OBJECT
|
||||
|
||||
rc4.c
|
||||
${RC4_ARCH_SOURCES}
|
||||
)
|
||||
|
||||
perlasm(rc4-x86_64.${ASM_EXT} asm/rc4-x86_64.pl)
|
||||
perlasm(rc4-586.${ASM_EXT} asm/rc4-586.pl)
|
||||
|
@ -1,392 +0,0 @@
|
||||
#!/usr/bin/env perl
|
||||
|
||||
# ====================================================================
|
||||
# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
||||
# project. The module is, however, dual licensed under OpenSSL and
|
||||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||||
# ====================================================================
|
||||
|
||||
# At some point it became apparent that the original SSLeay RC4
|
||||
# assembler implementation performs suboptimally on latest IA-32
|
||||
# microarchitectures. After re-tuning performance has changed as
|
||||
# following:
|
||||
#
|
||||
# Pentium -10%
|
||||
# Pentium III +12%
|
||||
# AMD +50%(*)
|
||||
# P4 +250%(**)
|
||||
#
|
||||
# (*) This number is actually a trade-off:-) It's possible to
|
||||
# achieve +72%, but at the cost of -48% off PIII performance.
|
||||
# In other words code performing further 13% faster on AMD
|
||||
# would perform almost 2 times slower on Intel PIII...
|
||||
# For reference! This code delivers ~80% of rc4-amd64.pl
|
||||
# performance on the same Opteron machine.
|
||||
# (**) This number requires compressed key schedule set up by
|
||||
# RC4_set_key [see commentary below for further details].
|
||||
#
|
||||
# <appro@fy.chalmers.se>
|
||||
|
||||
# May 2011
|
||||
#
|
||||
# Optimize for Core2 and Westmere [and incidentally Opteron]. Current
|
||||
# performance in cycles per processed byte (less is better) and
|
||||
# improvement relative to previous version of this module is:
|
||||
#
|
||||
# Pentium 10.2 # original numbers
|
||||
# Pentium III 7.8(*)
|
||||
# Intel P4 7.5
|
||||
#
|
||||
# Opteron 6.1/+20% # new MMX numbers
|
||||
# Core2 5.3/+67%(**)
|
||||
# Westmere 5.1/+94%(**)
|
||||
# Sandy Bridge 5.0/+8%
|
||||
# Atom 12.6/+6%
|
||||
#
|
||||
# (*) PIII can actually deliver 6.6 cycles per byte with MMX code,
|
||||
# but this specific code performs poorly on Core2. And vice
|
||||
# versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
|
||||
# poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
|
||||
# [anymore], I chose to discard PIII-specific code path and opt
|
||||
# for original IALU-only code, which is why MMX/SSE code path
|
||||
# is guarded by SSE2 bit (see below), not MMX/SSE.
|
||||
# (**) Performance vs. block size on Core2 and Westmere had a maximum
|
||||
# at ... 64 bytes block size. And it was quite a maximum, 40-60%
|
||||
# in comparison to largest 8KB block size. Above improvement
|
||||
# coefficients are for the largest block size.
|
||||
|
||||
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
||||
push(@INC,"${dir}","${dir}../../perlasm");
|
||||
require "x86asm.pl";
|
||||
|
||||
$output=pop;
|
||||
open STDOUT,">$output";
|
||||
|
||||
&asm_init($ARGV[0],"rc4-586.pl",$x86only = $ARGV[$#ARGV] eq "386");
|
||||
|
||||
$xx="eax";
|
||||
$yy="ebx";
|
||||
$tx="ecx";
|
||||
$ty="edx";
|
||||
$inp="esi";
|
||||
$out="ebp";
|
||||
$dat="edi";
|
||||
|
||||
sub RC4_loop {
|
||||
my $i=shift;
|
||||
my $func = ($i==0)?*mov:*or;
|
||||
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&mov ($ty,&DWP(0,$dat,$yy,4));
|
||||
&mov (&DWP(0,$dat,$yy,4),$tx);
|
||||
&mov (&DWP(0,$dat,$xx,4),$ty);
|
||||
&add ($ty,$tx);
|
||||
&inc (&LB($xx));
|
||||
&and ($ty,0xff);
|
||||
&ror ($out,8) if ($i!=0);
|
||||
if ($i<3) {
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
} else {
|
||||
&mov ($tx,&wparam(3)); # reload [re-biased] out
|
||||
}
|
||||
&$func ($out,&DWP(0,$dat,$ty,4));
|
||||
}
|
||||
|
||||
if ($alt=0) {
|
||||
# >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
|
||||
# but ~40% slower on Core2 and Westmere... Attempt to add movz
|
||||
# brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
|
||||
# on Core2 with movz it's almost 20% slower than below alternative
|
||||
# code... Yes, it's a total mess...
|
||||
my @XX=($xx,$out);
|
||||
$RC4_loop_mmx = sub { # SSE actually...
|
||||
my $i=shift;
|
||||
my $j=$i<=0?0:$i>>1;
|
||||
my $mm=$i<=0?"mm0":"mm".($i&1);
|
||||
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&lea (@XX[1],&DWP(1,@XX[0]));
|
||||
&pxor ("mm2","mm0") if ($i==0);
|
||||
&psllq ("mm1",8) if ($i==0);
|
||||
&and (@XX[1],0xff);
|
||||
&pxor ("mm0","mm0") if ($i<=0);
|
||||
&mov ($ty,&DWP(0,$dat,$yy,4));
|
||||
&mov (&DWP(0,$dat,$yy,4),$tx);
|
||||
&pxor ("mm1","mm2") if ($i==0);
|
||||
&mov (&DWP(0,$dat,$XX[0],4),$ty);
|
||||
&add (&LB($ty),&LB($tx));
|
||||
&movd (@XX[0],"mm7") if ($i==0);
|
||||
&mov ($tx,&DWP(0,$dat,@XX[1],4));
|
||||
&pxor ("mm1","mm1") if ($i==1);
|
||||
&movq ("mm2",&QWP(0,$inp)) if ($i==1);
|
||||
&movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0);
|
||||
&pinsrw ($mm,&DWP(0,$dat,$ty,4),$j);
|
||||
|
||||
push (@XX,shift(@XX)) if ($i>=0);
|
||||
}
|
||||
} else {
|
||||
# Using pinsrw here improves performane on Intel CPUs by 2-3%, but
|
||||
# brings down AMD by 7%...
|
||||
$RC4_loop_mmx = sub {
|
||||
my $i=shift;
|
||||
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1);
|
||||
&mov ($ty,&DWP(0,$dat,$yy,4));
|
||||
&mov (&DWP(0,$dat,$yy,4),$tx);
|
||||
&mov (&DWP(0,$dat,$xx,4),$ty);
|
||||
&inc ($xx);
|
||||
&add ($ty,$tx);
|
||||
&movz ($xx,&LB($xx)); # (*)
|
||||
&movz ($ty,&LB($ty)); # (*)
|
||||
&pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0);
|
||||
&movq ("mm0",&QWP(0,$inp)) if ($i<=0);
|
||||
&movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0);
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
&movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));
|
||||
|
||||
# (*) This is the key to Core2 and Westmere performance.
|
||||
# Whithout movz out-of-order execution logic confuses
|
||||
# itself and fails to reorder loads and stores. Problem
|
||||
# appears to be fixed in Sandy Bridge...
|
||||
}
|
||||
}
|
||||
|
||||
&external_label("OPENSSL_ia32cap_P");
|
||||
|
||||
# void asm_RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
|
||||
&function_begin("asm_RC4");
|
||||
&mov ($dat,&wparam(0)); # load key schedule pointer
|
||||
&mov ($ty, &wparam(1)); # load len
|
||||
&mov ($inp,&wparam(2)); # load inp
|
||||
&mov ($out,&wparam(3)); # load out
|
||||
|
||||
&xor ($xx,$xx); # avoid partial register stalls
|
||||
&xor ($yy,$yy);
|
||||
|
||||
&cmp ($ty,0); # safety net
|
||||
&je (&label("abort"));
|
||||
|
||||
&mov (&LB($xx),&BP(0,$dat)); # load key->x
|
||||
&mov (&LB($yy),&BP(4,$dat)); # load key->y
|
||||
&add ($dat,8);
|
||||
|
||||
&lea ($tx,&DWP(0,$inp,$ty));
|
||||
&sub ($out,$inp); # re-bias out
|
||||
&mov (&wparam(1),$tx); # save input+len
|
||||
|
||||
&inc (&LB($xx));
|
||||
|
||||
# detect compressed key schedule...
|
||||
&cmp (&DWP(256,$dat),-1);
|
||||
&je (&label("RC4_CHAR"));
|
||||
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
|
||||
&and ($ty,-4); # how many 4-byte chunks?
|
||||
&jz (&label("loop1"));
|
||||
|
||||
&mov (&wparam(3),$out); # $out as accumulator in these loops
|
||||
if ($x86only) {
|
||||
&jmp (&label("go4loop4"));
|
||||
} else {
|
||||
&test ($ty,-8);
|
||||
&jz (&label("go4loop4"));
|
||||
|
||||
&picmeup($out,"OPENSSL_ia32cap_P");
|
||||
&bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX]
|
||||
&jnc (&label("go4loop4"));
|
||||
|
||||
&mov ($out,&wparam(3)) if (!$alt);
|
||||
&movd ("mm7",&wparam(3)) if ($alt);
|
||||
&and ($ty,-8);
|
||||
&lea ($ty,&DWP(-8,$inp,$ty));
|
||||
&mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8
|
||||
|
||||
&$RC4_loop_mmx(-1);
|
||||
&jmp(&label("loop_mmx_enter"));
|
||||
|
||||
&set_label("loop_mmx",16);
|
||||
&$RC4_loop_mmx(0);
|
||||
&set_label("loop_mmx_enter");
|
||||
for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
|
||||
&mov ($ty,$yy);
|
||||
&xor ($yy,$yy); # this is second key to Core2
|
||||
&mov (&LB($yy),&LB($ty)); # and Westmere performance...
|
||||
&cmp ($inp,&DWP(-4,$dat));
|
||||
&lea ($inp,&DWP(8,$inp));
|
||||
&jb (&label("loop_mmx"));
|
||||
|
||||
if ($alt) {
|
||||
&movd ($out,"mm7");
|
||||
&pxor ("mm2","mm0");
|
||||
&psllq ("mm1",8);
|
||||
&pxor ("mm1","mm2");
|
||||
&movq (&QWP(-8,$out,$inp),"mm1");
|
||||
} else {
|
||||
&psllq ("mm1",56);
|
||||
&pxor ("mm2","mm1");
|
||||
&movq (&QWP(-8,$out,$inp),"mm2");
|
||||
}
|
||||
&emms ();
|
||||
|
||||
&cmp ($inp,&wparam(1)); # compare to input+len
|
||||
&je (&label("done"));
|
||||
&jmp (&label("loop1"));
|
||||
}
|
||||
|
||||
&set_label("go4loop4",16);
|
||||
&lea ($ty,&DWP(-4,$inp,$ty));
|
||||
&mov (&wparam(2),$ty); # save input+(len/4)*4-4
|
||||
|
||||
&set_label("loop4");
|
||||
for ($i=0;$i<4;$i++) { RC4_loop($i); }
|
||||
&ror ($out,8);
|
||||
&xor ($out,&DWP(0,$inp));
|
||||
&cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4
|
||||
&mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
|
||||
&lea ($inp,&DWP(4,$inp));
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
&jb (&label("loop4"));
|
||||
|
||||
&cmp ($inp,&wparam(1)); # compare to input+len
|
||||
&je (&label("done"));
|
||||
&mov ($out,&wparam(3)); # restore $out
|
||||
|
||||
&set_label("loop1",16);
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&mov ($ty,&DWP(0,$dat,$yy,4));
|
||||
&mov (&DWP(0,$dat,$yy,4),$tx);
|
||||
&mov (&DWP(0,$dat,$xx,4),$ty);
|
||||
&add ($ty,$tx);
|
||||
&inc (&LB($xx));
|
||||
&and ($ty,0xff);
|
||||
&mov ($ty,&DWP(0,$dat,$ty,4));
|
||||
&xor (&LB($ty),&BP(0,$inp));
|
||||
&lea ($inp,&DWP(1,$inp));
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
&cmp ($inp,&wparam(1)); # compare to input+len
|
||||
&mov (&BP(-1,$out,$inp),&LB($ty));
|
||||
&jb (&label("loop1"));
|
||||
|
||||
&jmp (&label("done"));
|
||||
|
||||
# this is essentially Intel P4 specific codepath...
|
||||
&set_label("RC4_CHAR",16);
|
||||
&movz ($tx,&BP(0,$dat,$xx));
|
||||
# strangely enough unrolled loop performs over 20% slower...
|
||||
&set_label("cloop1");
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&movz ($ty,&BP(0,$dat,$yy));
|
||||
&mov (&BP(0,$dat,$yy),&LB($tx));
|
||||
&mov (&BP(0,$dat,$xx),&LB($ty));
|
||||
&add (&LB($ty),&LB($tx));
|
||||
&movz ($ty,&BP(0,$dat,$ty));
|
||||
&add (&LB($xx),1);
|
||||
&xor (&LB($ty),&BP(0,$inp));
|
||||
&lea ($inp,&DWP(1,$inp));
|
||||
&movz ($tx,&BP(0,$dat,$xx));
|
||||
&cmp ($inp,&wparam(1));
|
||||
&mov (&BP(-1,$out,$inp),&LB($ty));
|
||||
&jb (&label("cloop1"));
|
||||
|
||||
&set_label("done");
|
||||
&dec (&LB($xx));
|
||||
&mov (&DWP(-4,$dat),$yy); # save key->y
|
||||
&mov (&BP(-8,$dat),&LB($xx)); # save key->x
|
||||
&set_label("abort");
|
||||
&function_end("asm_RC4");
|
||||
|
||||
########################################################################
|
||||
|
||||
$inp="esi";
|
||||
$out="edi";
|
||||
$idi="ebp";
|
||||
$ido="ecx";
|
||||
$idx="edx";
|
||||
|
||||
# void asm_RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
|
||||
&function_begin("asm_RC4_set_key");
|
||||
&mov ($out,&wparam(0)); # load key
|
||||
&mov ($idi,&wparam(1)); # load len
|
||||
&mov ($inp,&wparam(2)); # load data
|
||||
&picmeup($idx,"OPENSSL_ia32cap_P");
|
||||
|
||||
&lea ($out,&DWP(2*4,$out)); # &key->data
|
||||
&lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end
|
||||
&neg ($idi);
|
||||
&xor ("eax","eax");
|
||||
&mov (&DWP(-4,$out),$idi); # borrow key->y
|
||||
|
||||
&bt (&DWP(0,$idx),20); # check for bit#20
|
||||
&jc (&label("c1stloop"));
|
||||
|
||||
&set_label("w1stloop",16);
|
||||
&mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i;
|
||||
&add (&LB("eax"),1); # i++;
|
||||
&jnc (&label("w1stloop"));
|
||||
|
||||
&xor ($ido,$ido);
|
||||
&xor ($idx,$idx);
|
||||
|
||||
&set_label("w2ndloop",16);
|
||||
&mov ("eax",&DWP(0,$out,$ido,4));
|
||||
&add (&LB($idx),&BP(0,$inp,$idi));
|
||||
&add (&LB($idx),&LB("eax"));
|
||||
&add ($idi,1);
|
||||
&mov ("ebx",&DWP(0,$out,$idx,4));
|
||||
&jnz (&label("wnowrap"));
|
||||
&mov ($idi,&DWP(-4,$out));
|
||||
&set_label("wnowrap");
|
||||
&mov (&DWP(0,$out,$idx,4),"eax");
|
||||
&mov (&DWP(0,$out,$ido,4),"ebx");
|
||||
&add (&LB($ido),1);
|
||||
&jnc (&label("w2ndloop"));
|
||||
&jmp (&label("exit"));
|
||||
|
||||
# Unlike all other x86 [and x86_64] implementations, Intel P4 core
|
||||
# [including EM64T] was found to perform poorly with above "32-bit" key
|
||||
# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
|
||||
# assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
|
||||
# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
|
||||
# schedule for x86[_64], because non-P4 implementations suffer from
|
||||
# significant performance losses then, e.g. PIII exhibits >2x
|
||||
# deterioration, and so does Opteron. In order to assure optimal
|
||||
# all-round performance, we detect P4 at run-time and set up compressed
|
||||
# key schedule, which is recognized by RC4 procedure.
|
||||
|
||||
&set_label("c1stloop",16);
|
||||
&mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i;
|
||||
&add (&LB("eax"),1); # i++;
|
||||
&jnc (&label("c1stloop"));
|
||||
|
||||
&xor ($ido,$ido);
|
||||
&xor ($idx,$idx);
|
||||
&xor ("ebx","ebx");
|
||||
|
||||
&set_label("c2ndloop",16);
|
||||
&mov (&LB("eax"),&BP(0,$out,$ido));
|
||||
&add (&LB($idx),&BP(0,$inp,$idi));
|
||||
&add (&LB($idx),&LB("eax"));
|
||||
&add ($idi,1);
|
||||
&mov (&LB("ebx"),&BP(0,$out,$idx));
|
||||
&jnz (&label("cnowrap"));
|
||||
&mov ($idi,&DWP(-4,$out));
|
||||
&set_label("cnowrap");
|
||||
&mov (&BP(0,$out,$idx),&LB("eax"));
|
||||
&mov (&BP(0,$out,$ido),&LB("ebx"));
|
||||
&add (&LB($ido),1);
|
||||
&jnc (&label("c2ndloop"));
|
||||
|
||||
&mov (&DWP(256,$out),-1); # mark schedule as compressed
|
||||
|
||||
&set_label("exit");
|
||||
&xor ("eax","eax");
|
||||
&mov (&DWP(-8,$out),"eax"); # key->x=0;
|
||||
&mov (&DWP(-4,$out),"eax"); # key->y=0;
|
||||
&function_end("asm_RC4_set_key");
|
||||
|
||||
&asm_finish();
|
||||
|
||||
close STDOUT;
|
@ -1,653 +0,0 @@
|
||||
#!/usr/bin/env perl
|
||||
#
|
||||
# ====================================================================
|
||||
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
||||
# project. The module is, however, dual licensed under OpenSSL and
|
||||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||||
# ====================================================================
|
||||
#
|
||||
# July 2004
|
||||
#
|
||||
# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
|
||||
# "hand-coded assembler"] doesn't stand for the whole improvement
|
||||
# coefficient. It turned out that eliminating RC4_CHAR from config
|
||||
# line results in ~40% improvement (yes, even for C implementation).
|
||||
# Presumably it has everything to do with AMD cache architecture and
|
||||
# RAW or whatever penalties. Once again! The module *requires* config
|
||||
# line *without* RC4_CHAR! As for coding "secret," I bet on partial
|
||||
# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
|
||||
# I simply 'inc %r8b'. Even though optimization manual discourages
|
||||
# to operate on partial registers, it turned out to be the best bet.
|
||||
# At least for AMD... How IA32E would perform remains to be seen...
|
||||
|
||||
# November 2004
|
||||
#
|
||||
# As was shown by Marc Bevand reordering of couple of load operations
|
||||
# results in even higher performance gain of 3.3x:-) At least on
|
||||
# Opteron... For reference, 1x in this case is RC4_CHAR C-code
|
||||
# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
|
||||
# Latter means that if you want to *estimate* what to expect from
|
||||
# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
|
||||
|
||||
# November 2004
|
||||
#
|
||||
# Intel P4 EM64T core was found to run the AMD64 code really slow...
|
||||
# The only way to achieve comparable performance on P4 was to keep
|
||||
# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
|
||||
# compose blended code, which would perform even within 30% marginal
|
||||
# on either AMD and Intel platforms, I implement both cases. See
|
||||
# rc4_skey.c for further details...
|
||||
|
||||
# April 2005
|
||||
#
|
||||
# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
|
||||
# those with add/sub results in 50% performance improvement of folded
|
||||
# loop...
|
||||
|
||||
# May 2005
|
||||
#
|
||||
# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
|
||||
# performance by >30% [unlike P4 32-bit case that is]. But this is
|
||||
# provided that loads are reordered even more aggressively! Both code
|
||||
# pathes, AMD64 and EM64T, reorder loads in essentially same manner
|
||||
# as my IA-64 implementation. On Opteron this resulted in modest 5%
|
||||
# improvement [I had to test it], while final Intel P4 performance
|
||||
# achieves respectful 432MBps on 2.8GHz processor now. For reference.
|
||||
# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
|
||||
# RC4_INT code-path. While if executed on Opteron, it's only 25%
|
||||
# slower than the RC4_INT one [meaning that if CPU µ-arch detection
|
||||
# is not implemented, then this final RC4_CHAR code-path should be
|
||||
# preferred, as it provides better *all-round* performance].
|
||||
|
||||
# March 2007
|
||||
#
|
||||
# Intel Core2 was observed to perform poorly on both code paths:-( It
|
||||
# apparently suffers from some kind of partial register stall, which
|
||||
# occurs in 64-bit mode only [as virtually identical 32-bit loop was
|
||||
# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
|
||||
# cloop1 boosts its performance by 80%! This loop appears to be optimal
|
||||
# fit for Core2 and therefore the code was modified to skip cloop8 on
|
||||
# this CPU.
|
||||
|
||||
# May 2010
|
||||
#
|
||||
# Intel Westmere was observed to perform suboptimally. Adding yet
|
||||
# another movzb to cloop1 improved performance by almost 50%! Core2
|
||||
# performance is improved too, but nominally...
|
||||
|
||||
# May 2011
|
||||
#
|
||||
# The only code path that was not modified is P4-specific one. Non-P4
|
||||
# Intel code path optimization is heavily based on submission by Maxim
|
||||
# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
|
||||
# some of the ideas even in attempt to optmize the original RC4_INT
|
||||
# code path... Current performance in cycles per processed byte (less
|
||||
# is better) and improvement coefficients relative to previous
|
||||
# version of this module are:
|
||||
#
|
||||
# Opteron 5.3/+0%(*)
|
||||
# P4 6.5
|
||||
# Core2 6.2/+15%(**)
|
||||
# Westmere 4.2/+60%
|
||||
# Sandy Bridge 4.2/+120%
|
||||
# Atom 9.3/+80%
|
||||
#
|
||||
# (*) But corresponding loop has less instructions, which should have
|
||||
# positive effect on upcoming Bulldozer, which has one less ALU.
|
||||
# For reference, Intel code runs at 6.8 cpb rate on Opteron.
|
||||
# (**) Note that Core2 result is ~15% lower than corresponding result
|
||||
# for 32-bit code, meaning that it's possible to improve it,
|
||||
# but more than likely at the cost of the others (see rc4-586.pl
|
||||
# to get the idea)...
|
||||
|
||||
$flavour = shift;
|
||||
$output = shift;
|
||||
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
|
||||
|
||||
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
|
||||
|
||||
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
||||
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
|
||||
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
|
||||
die "can't locate x86_64-xlate.pl";
|
||||
|
||||
open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
|
||||
*STDOUT=*OUT;
|
||||
|
||||
$dat="%rdi"; # arg1
|
||||
$len="%rsi"; # arg2
|
||||
$inp="%rdx"; # arg3
|
||||
$out="%rcx"; # arg4
|
||||
|
||||
{
|
||||
$code=<<___;
|
||||
.text
|
||||
.extern OPENSSL_ia32cap_P
|
||||
|
||||
.globl asm_RC4
|
||||
.type asm_RC4,\@function,4
|
||||
.align 16
|
||||
asm_RC4:
|
||||
or $len,$len
|
||||
jne .Lentry
|
||||
ret
|
||||
.Lentry:
|
||||
push %rbx
|
||||
push %r12
|
||||
push %r13
|
||||
.Lprologue:
|
||||
mov $len,%r11
|
||||
mov $inp,%r12
|
||||
mov $out,%r13
|
||||
___
|
||||
my $len="%r11"; # reassign input arguments
|
||||
my $inp="%r12";
|
||||
my $out="%r13";
|
||||
|
||||
my @XX=("%r10","%rsi");
|
||||
my @TX=("%rax","%rbx");
|
||||
my $YY="%rcx";
|
||||
my $TY="%rdx";
|
||||
|
||||
$code.=<<___;
|
||||
xor $XX[0],$XX[0]
|
||||
xor $YY,$YY
|
||||
|
||||
lea 8($dat),$dat
|
||||
mov -8($dat),$XX[0]#b
|
||||
mov -4($dat),$YY#b
|
||||
cmpl \$-1,256($dat)
|
||||
je .LRC4_CHAR
|
||||
mov OPENSSL_ia32cap_P(%rip),%r8d
|
||||
xor $TX[1],$TX[1]
|
||||
inc $XX[0]#b
|
||||
sub $XX[0],$TX[1]
|
||||
sub $inp,$out
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
test \$-16,$len
|
||||
jz .Lloop1
|
||||
bt \$30,%r8d # Intel CPU?
|
||||
jc .Lintel
|
||||
and \$7,$TX[1]
|
||||
lea 1($XX[0]),$XX[1]
|
||||
jz .Loop8
|
||||
sub $TX[1],$len
|
||||
.Loop8_warmup:
|
||||
add $TX[0]#b,$YY#b
|
||||
movl ($dat,$YY,4),$TY#d
|
||||
movl $TX[0]#d,($dat,$YY,4)
|
||||
movl $TY#d,($dat,$XX[0],4)
|
||||
add $TY#b,$TX[0]#b
|
||||
inc $XX[0]#b
|
||||
movl ($dat,$TX[0],4),$TY#d
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
xorb ($inp),$TY#b
|
||||
movb $TY#b,($out,$inp)
|
||||
lea 1($inp),$inp
|
||||
dec $TX[1]
|
||||
jnz .Loop8_warmup
|
||||
|
||||
lea 1($XX[0]),$XX[1]
|
||||
jmp .Loop8
|
||||
.align 16
|
||||
.Loop8:
|
||||
___
|
||||
for ($i=0;$i<8;$i++) {
|
||||
$code.=<<___ if ($i==7);
|
||||
add \$8,$XX[1]#b
|
||||
___
|
||||
$code.=<<___;
|
||||
add $TX[0]#b,$YY#b
|
||||
movl ($dat,$YY,4),$TY#d
|
||||
movl $TX[0]#d,($dat,$YY,4)
|
||||
movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
|
||||
ror \$8,%r8 # ror is redundant when $i=0
|
||||
movl $TY#d,4*$i($dat,$XX[0],4)
|
||||
add $TX[0]#b,$TY#b
|
||||
movb ($dat,$TY,4),%r8b
|
||||
___
|
||||
push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
|
||||
}
|
||||
$code.=<<___;
|
||||
add \$8,$XX[0]#b
|
||||
ror \$8,%r8
|
||||
sub \$8,$len
|
||||
|
||||
xor ($inp),%r8
|
||||
mov %r8,($out,$inp)
|
||||
lea 8($inp),$inp
|
||||
|
||||
test \$-8,$len
|
||||
jnz .Loop8
|
||||
cmp \$0,$len
|
||||
jne .Lloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.Lintel:
|
||||
test \$-32,$len
|
||||
jz .Lloop1
|
||||
and \$15,$TX[1]
|
||||
jz .Loop16_is_hot
|
||||
sub $TX[1],$len
|
||||
.Loop16_warmup:
|
||||
add $TX[0]#b,$YY#b
|
||||
movl ($dat,$YY,4),$TY#d
|
||||
movl $TX[0]#d,($dat,$YY,4)
|
||||
movl $TY#d,($dat,$XX[0],4)
|
||||
add $TY#b,$TX[0]#b
|
||||
inc $XX[0]#b
|
||||
movl ($dat,$TX[0],4),$TY#d
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
xorb ($inp),$TY#b
|
||||
movb $TY#b,($out,$inp)
|
||||
lea 1($inp),$inp
|
||||
dec $TX[1]
|
||||
jnz .Loop16_warmup
|
||||
|
||||
mov $YY,$TX[1]
|
||||
xor $YY,$YY
|
||||
mov $TX[1]#b,$YY#b
|
||||
|
||||
.Loop16_is_hot:
|
||||
lea ($dat,$XX[0],4),$XX[1]
|
||||
___
|
||||
sub RC4_loop {
|
||||
my $i=shift;
|
||||
my $j=$i<0?0:$i;
|
||||
my $xmm="%xmm".($j&1);
|
||||
|
||||
$code.=" add \$16,$XX[0]#b\n" if ($i==15);
|
||||
$code.=" movdqu ($inp),%xmm2\n" if ($i==15);
|
||||
$code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
|
||||
$code.=" movl ($dat,$YY,4),$TY#d\n";
|
||||
$code.=" pxor %xmm0,%xmm2\n" if ($i==0);
|
||||
$code.=" psllq \$8,%xmm1\n" if ($i==0);
|
||||
$code.=" pxor $xmm,$xmm\n" if ($i<=1);
|
||||
$code.=" movl $TX[0]#d,($dat,$YY,4)\n";
|
||||
$code.=" add $TY#b,$TX[0]#b\n";
|
||||
$code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
|
||||
$code.=" movz $TX[0]#b,$TX[0]#d\n";
|
||||
$code.=" movl $TY#d,4*$j($XX[1])\n";
|
||||
$code.=" pxor %xmm1,%xmm2\n" if ($i==0);
|
||||
$code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
|
||||
$code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
|
||||
$code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
|
||||
$code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
|
||||
$code.=" lea 16($inp),$inp\n" if ($i==0);
|
||||
$code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
|
||||
}
|
||||
RC4_loop(-1);
|
||||
$code.=<<___;
|
||||
jmp .Loop16_enter
|
||||
.align 16
|
||||
.Loop16:
|
||||
___
|
||||
|
||||
for ($i=0;$i<16;$i++) {
|
||||
$code.=".Loop16_enter:\n" if ($i==1);
|
||||
RC4_loop($i);
|
||||
push(@TX,shift(@TX)); # "rotate" registers
|
||||
}
|
||||
$code.=<<___;
|
||||
mov $YY,$TX[1]
|
||||
xor $YY,$YY # keyword to partial register
|
||||
sub \$16,$len
|
||||
mov $TX[1]#b,$YY#b
|
||||
test \$-16,$len
|
||||
jnz .Loop16
|
||||
|
||||
psllq \$8,%xmm1
|
||||
pxor %xmm0,%xmm2
|
||||
pxor %xmm1,%xmm2
|
||||
movdqu %xmm2,($out,$inp)
|
||||
lea 16($inp),$inp
|
||||
|
||||
cmp \$0,$len
|
||||
jne .Lloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.Lloop1:
|
||||
add $TX[0]#b,$YY#b
|
||||
movl ($dat,$YY,4),$TY#d
|
||||
movl $TX[0]#d,($dat,$YY,4)
|
||||
movl $TY#d,($dat,$XX[0],4)
|
||||
add $TY#b,$TX[0]#b
|
||||
inc $XX[0]#b
|
||||
movl ($dat,$TX[0],4),$TY#d
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
xorb ($inp),$TY#b
|
||||
movb $TY#b,($out,$inp)
|
||||
lea 1($inp),$inp
|
||||
dec $len
|
||||
jnz .Lloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.LRC4_CHAR:
|
||||
add \$1,$XX[0]#b
|
||||
movzb ($dat,$XX[0]),$TX[0]#d
|
||||
test \$-8,$len
|
||||
jz .Lcloop1
|
||||
jmp .Lcloop8
|
||||
.align 16
|
||||
.Lcloop8:
|
||||
mov ($inp),%r8d
|
||||
mov 4($inp),%r9d
|
||||
___
|
||||
# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
|
||||
for ($i=0;$i<4;$i++) {
|
||||
$code.=<<___;
|
||||
add $TX[0]#b,$YY#b
|
||||
lea 1($XX[0]),$XX[1]
|
||||
movzb ($dat,$YY),$TY#d
|
||||
movzb $XX[1]#b,$XX[1]#d
|
||||
movzb ($dat,$XX[1]),$TX[1]#d
|
||||
movb $TX[0]#b,($dat,$YY)
|
||||
cmp $XX[1],$YY
|
||||
movb $TY#b,($dat,$XX[0])
|
||||
jne .Lcmov$i # Intel cmov is sloooow...
|
||||
mov $TX[0],$TX[1]
|
||||
.Lcmov$i:
|
||||
add $TX[0]#b,$TY#b
|
||||
xor ($dat,$TY),%r8b
|
||||
ror \$8,%r8d
|
||||
___
|
||||
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
|
||||
}
|
||||
for ($i=4;$i<8;$i++) {
|
||||
$code.=<<___;
|
||||
add $TX[0]#b,$YY#b
|
||||
lea 1($XX[0]),$XX[1]
|
||||
movzb ($dat,$YY),$TY#d
|
||||
movzb $XX[1]#b,$XX[1]#d
|
||||
movzb ($dat,$XX[1]),$TX[1]#d
|
||||
movb $TX[0]#b,($dat,$YY)
|
||||
cmp $XX[1],$YY
|
||||
movb $TY#b,($dat,$XX[0])
|
||||
jne .Lcmov$i # Intel cmov is sloooow...
|
||||
mov $TX[0],$TX[1]
|
||||
.Lcmov$i:
|
||||
add $TX[0]#b,$TY#b
|
||||
xor ($dat,$TY),%r9b
|
||||
ror \$8,%r9d
|
||||
___
|
||||
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
|
||||
}
|
||||
$code.=<<___;
|
||||
lea -8($len),$len
|
||||
mov %r8d,($out)
|
||||
lea 8($inp),$inp
|
||||
mov %r9d,4($out)
|
||||
lea 8($out),$out
|
||||
|
||||
test \$-8,$len
|
||||
jnz .Lcloop8
|
||||
cmp \$0,$len
|
||||
jne .Lcloop1
|
||||
jmp .Lexit
|
||||
___
|
||||
$code.=<<___;
|
||||
.align 16
|
||||
.Lcloop1:
|
||||
add $TX[0]#b,$YY#b
|
||||
movzb $YY#b,$YY#d
|
||||
movzb ($dat,$YY),$TY#d
|
||||
movb $TX[0]#b,($dat,$YY)
|
||||
movb $TY#b,($dat,$XX[0])
|
||||
add $TX[0]#b,$TY#b
|
||||
add \$1,$XX[0]#b
|
||||
movzb $TY#b,$TY#d
|
||||
movzb $XX[0]#b,$XX[0]#d
|
||||
movzb ($dat,$TY),$TY#d
|
||||
movzb ($dat,$XX[0]),$TX[0]#d
|
||||
xorb ($inp),$TY#b
|
||||
lea 1($inp),$inp
|
||||
movb $TY#b,($out)
|
||||
lea 1($out),$out
|
||||
sub \$1,$len
|
||||
jnz .Lcloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.Lexit:
|
||||
sub \$1,$XX[0]#b
|
||||
movl $XX[0]#d,-8($dat)
|
||||
movl $YY#d,-4($dat)
|
||||
|
||||
mov (%rsp),%r13
|
||||
mov 8(%rsp),%r12
|
||||
mov 16(%rsp),%rbx
|
||||
add \$24,%rsp
|
||||
.Lepilogue:
|
||||
ret
|
||||
.size asm_RC4,.-asm_RC4
|
||||
___
|
||||
}
|
||||
|
||||
$idx="%r8";
|
||||
$ido="%r9";
|
||||
|
||||
$code.=<<___;
|
||||
.globl asm_RC4_set_key
|
||||
.type asm_RC4_set_key,\@function,3
|
||||
.align 16
|
||||
asm_RC4_set_key:
|
||||
lea 8($dat),$dat
|
||||
lea ($inp,$len),$inp
|
||||
neg $len
|
||||
mov $len,%rcx
|
||||
xor %eax,%eax
|
||||
xor $ido,$ido
|
||||
xor %r10,%r10
|
||||
xor %r11,%r11
|
||||
|
||||
mov OPENSSL_ia32cap_P(%rip),$idx#d
|
||||
bt \$20,$idx#d # RC4_CHAR?
|
||||
jc .Lc1stloop
|
||||
jmp .Lw1stloop
|
||||
|
||||
.align 16
|
||||
.Lw1stloop:
|
||||
mov %eax,($dat,%rax,4)
|
||||
add \$1,%al
|
||||
jnc .Lw1stloop
|
||||
|
||||
xor $ido,$ido
|
||||
xor $idx,$idx
|
||||
.align 16
|
||||
.Lw2ndloop:
|
||||
mov ($dat,$ido,4),%r10d
|
||||
add ($inp,$len,1),$idx#b
|
||||
add %r10b,$idx#b
|
||||
add \$1,$len
|
||||
mov ($dat,$idx,4),%r11d
|
||||
cmovz %rcx,$len
|
||||
mov %r10d,($dat,$idx,4)
|
||||
mov %r11d,($dat,$ido,4)
|
||||
add \$1,$ido#b
|
||||
jnc .Lw2ndloop
|
||||
jmp .Lexit_key
|
||||
|
||||
.align 16
|
||||
.Lc1stloop:
|
||||
mov %al,($dat,%rax)
|
||||
add \$1,%al
|
||||
jnc .Lc1stloop
|
||||
|
||||
xor $ido,$ido
|
||||
xor $idx,$idx
|
||||
.align 16
|
||||
.Lc2ndloop:
|
||||
mov ($dat,$ido),%r10b
|
||||
add ($inp,$len),$idx#b
|
||||
add %r10b,$idx#b
|
||||
add \$1,$len
|
||||
mov ($dat,$idx),%r11b
|
||||
jnz .Lcnowrap
|
||||
mov %rcx,$len
|
||||
.Lcnowrap:
|
||||
mov %r10b,($dat,$idx)
|
||||
mov %r11b,($dat,$ido)
|
||||
add \$1,$ido#b
|
||||
jnc .Lc2ndloop
|
||||
movl \$-1,256($dat)
|
||||
|
||||
.align 16
|
||||
.Lexit_key:
|
||||
xor %eax,%eax
|
||||
mov %eax,-8($dat)
|
||||
mov %eax,-4($dat)
|
||||
ret
|
||||
.size asm_RC4_set_key,.-asm_RC4_set_key
|
||||
___
|
||||
|
||||
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
|
||||
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
|
||||
if ($win64) {
|
||||
$rec="%rcx";
|
||||
$frame="%rdx";
|
||||
$context="%r8";
|
||||
$disp="%r9";
|
||||
|
||||
$code.=<<___;
|
||||
.extern __imp_RtlVirtualUnwind
|
||||
.type stream_se_handler,\@abi-omnipotent
|
||||
.align 16
|
||||
stream_se_handler:
|
||||
push %rsi
|
||||
push %rdi
|
||||
push %rbx
|
||||
push %rbp
|
||||
push %r12
|
||||
push %r13
|
||||
push %r14
|
||||
push %r15
|
||||
pushfq
|
||||
sub \$64,%rsp
|
||||
|
||||
mov 120($context),%rax # pull context->Rax
|
||||
mov 248($context),%rbx # pull context->Rip
|
||||
|
||||
lea .Lprologue(%rip),%r10
|
||||
cmp %r10,%rbx # context->Rip<prologue label
|
||||
jb .Lin_prologue
|
||||
|
||||
mov 152($context),%rax # pull context->Rsp
|
||||
|
||||
lea .Lepilogue(%rip),%r10
|
||||
cmp %r10,%rbx # context->Rip>=epilogue label
|
||||
jae .Lin_prologue
|
||||
|
||||
lea 24(%rax),%rax
|
||||
|
||||
mov -8(%rax),%rbx
|
||||
mov -16(%rax),%r12
|
||||
mov -24(%rax),%r13
|
||||
mov %rbx,144($context) # restore context->Rbx
|
||||
mov %r12,216($context) # restore context->R12
|
||||
mov %r13,224($context) # restore context->R13
|
||||
|
||||
.Lin_prologue:
|
||||
mov 8(%rax),%rdi
|
||||
mov 16(%rax),%rsi
|
||||
mov %rax,152($context) # restore context->Rsp
|
||||
mov %rsi,168($context) # restore context->Rsi
|
||||
mov %rdi,176($context) # restore context->Rdi
|
||||
|
||||
jmp .Lcommon_seh_exit
|
||||
.size stream_se_handler,.-stream_se_handler
|
||||
|
||||
.type key_se_handler,\@abi-omnipotent
|
||||
.align 16
|
||||
key_se_handler:
|
||||
push %rsi
|
||||
push %rdi
|
||||
push %rbx
|
||||
push %rbp
|
||||
push %r12
|
||||
push %r13
|
||||
push %r14
|
||||
push %r15
|
||||
pushfq
|
||||
sub \$64,%rsp
|
||||
|
||||
mov 152($context),%rax # pull context->Rsp
|
||||
mov 8(%rax),%rdi
|
||||
mov 16(%rax),%rsi
|
||||
mov %rsi,168($context) # restore context->Rsi
|
||||
mov %rdi,176($context) # restore context->Rdi
|
||||
|
||||
.Lcommon_seh_exit:
|
||||
|
||||
mov 40($disp),%rdi # disp->ContextRecord
|
||||
mov $context,%rsi # context
|
||||
mov \$154,%ecx # sizeof(CONTEXT)
|
||||
.long 0xa548f3fc # cld; rep movsq
|
||||
|
||||
mov $disp,%rsi
|
||||
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
|
||||
mov 8(%rsi),%rdx # arg2, disp->ImageBase
|
||||
mov 0(%rsi),%r8 # arg3, disp->ControlPc
|
||||
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
|
||||
mov 40(%rsi),%r10 # disp->ContextRecord
|
||||
lea 56(%rsi),%r11 # &disp->HandlerData
|
||||
lea 24(%rsi),%r12 # &disp->EstablisherFrame
|
||||
mov %r10,32(%rsp) # arg5
|
||||
mov %r11,40(%rsp) # arg6
|
||||
mov %r12,48(%rsp) # arg7
|
||||
mov %rcx,56(%rsp) # arg8, (NULL)
|
||||
call *__imp_RtlVirtualUnwind(%rip)
|
||||
|
||||
mov \$1,%eax # ExceptionContinueSearch
|
||||
add \$64,%rsp
|
||||
popfq
|
||||
pop %r15
|
||||
pop %r14
|
||||
pop %r13
|
||||
pop %r12
|
||||
pop %rbp
|
||||
pop %rbx
|
||||
pop %rdi
|
||||
pop %rsi
|
||||
ret
|
||||
.size key_se_handler,.-key_se_handler
|
||||
|
||||
.section .pdata
|
||||
.align 4
|
||||
.rva .LSEH_begin_asm_RC4
|
||||
.rva .LSEH_end_asm_RC4
|
||||
.rva .LSEH_info_asm_RC4
|
||||
|
||||
.rva .LSEH_begin_asm_RC4_set_key
|
||||
.rva .LSEH_end_asm_RC4_set_key
|
||||
.rva .LSEH_info_asm_RC4_set_key
|
||||
|
||||
.section .xdata
|
||||
.align 8
|
||||
.LSEH_info_asm_RC4:
|
||||
.byte 9,0,0,0
|
||||
.rva stream_se_handler
|
||||
.LSEH_info_asm_RC4_set_key:
|
||||
.byte 9,0,0,0
|
||||
.rva key_se_handler
|
||||
___
|
||||
}
|
||||
|
||||
sub reg_part {
|
||||
my ($reg,$conv)=@_;
|
||||
if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
|
||||
elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
|
||||
elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
|
||||
elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
|
||||
return $reg;
|
||||
}
|
||||
|
||||
$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
|
||||
$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
||||
|
||||
print $code;
|
||||
|
||||
close STDOUT;
|
231
crypto/rc4/rc4.c
231
crypto/rc4/rc4.c
@ -56,228 +56,43 @@
|
||||
|
||||
#include <openssl/rc4.h>
|
||||
|
||||
#if defined(OPENSSL_NO_ASM) || \
|
||||
(!defined(OPENSSL_X86_64) && !defined(OPENSSL_X86))
|
||||
|
||||
#if defined(OPENSSL_64_BIT)
|
||||
#define RC4_CHUNK uint64_t
|
||||
#elif defined(OPENSSL_32_BIT)
|
||||
#define RC4_CHUNK uint32_t
|
||||
#else
|
||||
#error "Unknown word size"
|
||||
#endif
|
||||
|
||||
|
||||
/* RC4 as implemented from a posting from
|
||||
* Newsgroups: sci.crypt
|
||||
* From: sterndark@netcom.com (David Sterndark)
|
||||
* Subject: RC4 Algorithm revealed.
|
||||
* Message-ID: <sternCvKL4B.Hyy@netcom.com>
|
||||
* Date: Wed, 14 Sep 1994 06:35:31 GMT */
|
||||
|
||||
void RC4(RC4_KEY *key, size_t len, const uint8_t *in, uint8_t *out) {
|
||||
uint32_t *d;
|
||||
uint32_t x, y, tx, ty;
|
||||
size_t i;
|
||||
uint32_t x = key->x;
|
||||
uint32_t y = key->y;
|
||||
uint32_t *d = key->data;
|
||||
|
||||
x = key->x;
|
||||
y = key->y;
|
||||
d = key->data;
|
||||
|
||||
#define RC4_STEP \
|
||||
(x = (x + 1) & 0xff, tx = d[x], y = (tx + y) & 0xff, ty = d[y], d[y] = tx, \
|
||||
d[x] = ty, (RC4_CHUNK)d[(tx + ty) & 0xff])
|
||||
|
||||
if ((((size_t)in & (sizeof(RC4_CHUNK) - 1)) |
|
||||
((size_t)out & (sizeof(RC4_CHUNK) - 1))) == 0) {
|
||||
RC4_CHUNK ichunk, otp;
|
||||
const union {
|
||||
long one;
|
||||
char little;
|
||||
} is_endian = {1};
|
||||
|
||||
/* I reckon we can afford to implement both endian
|
||||
* cases and to decide which way to take at run-time
|
||||
* because the machine code appears to be very compact
|
||||
* and redundant 1-2KB is perfectly tolerable (i.e.
|
||||
* in case the compiler fails to eliminate it:-). By
|
||||
* suggestion from Terrel Larson <terr@terralogic.net>
|
||||
* who also stands for the is_endian union:-)
|
||||
*
|
||||
* Special notes.
|
||||
*
|
||||
* - is_endian is declared automatic as doing otherwise
|
||||
* (declaring static) prevents gcc from eliminating
|
||||
* the redundant code;
|
||||
* - compilers (those I've tried) don't seem to have
|
||||
* problems eliminating either the operators guarded
|
||||
* by "if (sizeof(RC4_CHUNK)==8)" or the condition
|
||||
* expressions themselves so I've got 'em to replace
|
||||
* corresponding #ifdefs from the previous version;
|
||||
* - I chose to let the redundant switch cases when
|
||||
* sizeof(RC4_CHUNK)!=8 be (were also #ifdefed
|
||||
* before);
|
||||
* - in case you wonder "&(sizeof(RC4_CHUNK)*8-1)" in
|
||||
* [LB]ESHFT guards against "shift is out of range"
|
||||
* warnings when sizeof(RC4_CHUNK)!=8
|
||||
*
|
||||
* <appro@fy.chalmers.se> */
|
||||
if (!is_endian.little) { /* BIG-ENDIAN CASE */
|
||||
#define BESHFT(c) \
|
||||
(((sizeof(RC4_CHUNK) - (c) - 1) * 8) & (sizeof(RC4_CHUNK) * 8 - 1))
|
||||
for (; len & (0 - sizeof(RC4_CHUNK)); len -= sizeof(RC4_CHUNK)) {
|
||||
ichunk = *(RC4_CHUNK *)in;
|
||||
otp = RC4_STEP << BESHFT(0);
|
||||
otp |= RC4_STEP << BESHFT(1);
|
||||
otp |= RC4_STEP << BESHFT(2);
|
||||
otp |= RC4_STEP << BESHFT(3);
|
||||
#if defined(OPENSSL_64_BIT)
|
||||
otp |= RC4_STEP << BESHFT(4);
|
||||
otp |= RC4_STEP << BESHFT(5);
|
||||
otp |= RC4_STEP << BESHFT(6);
|
||||
otp |= RC4_STEP << BESHFT(7);
|
||||
#endif
|
||||
*(RC4_CHUNK *)out = otp ^ ichunk;
|
||||
in += sizeof(RC4_CHUNK);
|
||||
out += sizeof(RC4_CHUNK);
|
||||
}
|
||||
} else { /* LITTLE-ENDIAN CASE */
|
||||
#define LESHFT(c) (((c) * 8) & (sizeof(RC4_CHUNK) * 8 - 1))
|
||||
for (; len & (0 - sizeof(RC4_CHUNK)); len -= sizeof(RC4_CHUNK)) {
|
||||
ichunk = *(RC4_CHUNK *)in;
|
||||
otp = RC4_STEP;
|
||||
otp |= RC4_STEP << 8;
|
||||
otp |= RC4_STEP << 16;
|
||||
otp |= RC4_STEP << 24;
|
||||
#if defined(OPENSSL_64_BIT)
|
||||
otp |= RC4_STEP << LESHFT(4);
|
||||
otp |= RC4_STEP << LESHFT(5);
|
||||
otp |= RC4_STEP << LESHFT(6);
|
||||
otp |= RC4_STEP << LESHFT(7);
|
||||
#endif
|
||||
*(RC4_CHUNK *)out = otp ^ ichunk;
|
||||
in += sizeof(RC4_CHUNK);
|
||||
out += sizeof(RC4_CHUNK);
|
||||
}
|
||||
}
|
||||
for (size_t i = 0; i < len; i++) {
|
||||
x = (x + 1) & 0xff;
|
||||
uint32_t tx = d[x];
|
||||
y = (tx + y) & 0xff;
|
||||
uint32_t ty = d[y];
|
||||
d[x] = ty;
|
||||
d[y] = tx;
|
||||
out[i] = d[(tx + ty) & 0xff] ^ in[i];
|
||||
}
|
||||
#define LOOP(in, out) \
|
||||
x = ((x + 1) & 0xff); \
|
||||
tx = d[x]; \
|
||||
y = (tx + y) & 0xff; \
|
||||
d[x] = ty = d[y]; \
|
||||
d[y] = tx; \
|
||||
(out) = d[(tx + ty) & 0xff] ^ (in);
|
||||
|
||||
#ifndef RC4_INDEX
|
||||
#define RC4_LOOP(a, b, i) LOOP(*((a)++), *((b)++))
|
||||
#else
|
||||
#define RC4_LOOP(a, b, i) LOOP(a[i], b[i])
|
||||
#endif
|
||||
|
||||
i = len >> 3;
|
||||
if (i) {
|
||||
for (;;) {
|
||||
RC4_LOOP(in, out, 0);
|
||||
RC4_LOOP(in, out, 1);
|
||||
RC4_LOOP(in, out, 2);
|
||||
RC4_LOOP(in, out, 3);
|
||||
RC4_LOOP(in, out, 4);
|
||||
RC4_LOOP(in, out, 5);
|
||||
RC4_LOOP(in, out, 6);
|
||||
RC4_LOOP(in, out, 7);
|
||||
#ifdef RC4_INDEX
|
||||
in += 8;
|
||||
out += 8;
|
||||
#endif
|
||||
if (--i == 0) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
i = len & 0x07;
|
||||
if (i) {
|
||||
for (;;) {
|
||||
RC4_LOOP(in, out, 0);
|
||||
if (--i == 0) {
|
||||
break;
|
||||
}
|
||||
RC4_LOOP(in, out, 1);
|
||||
if (--i == 0) {
|
||||
break;
|
||||
}
|
||||
RC4_LOOP(in, out, 2);
|
||||
if (--i == 0) {
|
||||
break;
|
||||
}
|
||||
RC4_LOOP(in, out, 3);
|
||||
if (--i == 0) {
|
||||
break;
|
||||
}
|
||||
RC4_LOOP(in, out, 4);
|
||||
if (--i == 0) {
|
||||
break;
|
||||
}
|
||||
RC4_LOOP(in, out, 5);
|
||||
if (--i == 0) {
|
||||
break;
|
||||
}
|
||||
RC4_LOOP(in, out, 6);
|
||||
if (--i == 0) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
key->x = x;
|
||||
key->y = y;
|
||||
}
|
||||
|
||||
void RC4_set_key(RC4_KEY *rc4key, unsigned len, const uint8_t *key) {
|
||||
uint32_t tmp;
|
||||
unsigned i, id1, id2;
|
||||
uint32_t *d;
|
||||
|
||||
d = &rc4key->data[0];
|
||||
uint32_t *d = &rc4key->data[0];
|
||||
rc4key->x = 0;
|
||||
rc4key->y = 0;
|
||||
id1 = id2 = 0;
|
||||
|
||||
#define SK_LOOP(d, n) \
|
||||
{ \
|
||||
tmp = d[(n)]; \
|
||||
id2 = (key[id1] + tmp + id2) & 0xff; \
|
||||
if (++id1 == len) \
|
||||
id1 = 0; \
|
||||
d[(n)] = d[id2]; \
|
||||
d[id2] = tmp; \
|
||||
}
|
||||
|
||||
for (i = 0; i < 256; i++) {
|
||||
for (unsigned i = 0; i < 256; i++) {
|
||||
d[i] = i;
|
||||
}
|
||||
for (i = 0; i < 256; i += 4) {
|
||||
SK_LOOP(d, i + 0);
|
||||
SK_LOOP(d, i + 1);
|
||||
SK_LOOP(d, i + 2);
|
||||
SK_LOOP(d, i + 3);
|
||||
|
||||
unsigned id1 = 0, id2 = 0;
|
||||
for (unsigned i = 0; i < 256; i++) {
|
||||
uint32_t tmp = d[i];
|
||||
id2 = (key[id1] + tmp + id2) & 0xff;
|
||||
if (++id1 == len) {
|
||||
id1 = 0;
|
||||
}
|
||||
d[i] = d[id2];
|
||||
d[id2] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* In this case several functions are provided by asm code. However, one cannot
|
||||
* control asm symbol visibility with command line flags and such so they are
|
||||
* always hidden and wrapped by these C functions, which can be so
|
||||
* controlled. */
|
||||
|
||||
void asm_RC4(RC4_KEY *key, size_t len, const uint8_t *in, uint8_t *out);
|
||||
void RC4(RC4_KEY *key, size_t len, const uint8_t *in, uint8_t *out) {
|
||||
asm_RC4(key, len, in, out);
|
||||
}
|
||||
|
||||
void asm_RC4_set_key(RC4_KEY *rc4key, unsigned len, const uint8_t *key);
|
||||
void RC4_set_key(RC4_KEY *rc4key, unsigned len, const uint8_t *key) {
|
||||
asm_RC4_set_key(rc4key, len, key);
|
||||
}
|
||||
|
||||
#endif /* OPENSSL_NO_ASM || (!OPENSSL_X86_64 && !OPENSSL_X86) */
|
||||
|
Loading…
Reference in New Issue
Block a user