Fix undefined pointer casts in SHA-512 code.
Casting an unaligned pointer to uint64_t* is undefined, even on platforms that support unaligned access. Additionally, dereferencing as uint64_t violates strict aliasing rules. Instead, use memcpys which we assume any sensible compiler can optimize. Also simplify the PULL64 business with the existing CRYPTO_bswap8. This also removes the need for the SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA logic. The generic C code now handles unaligned data and the assembly already can as well. (The only problematic platform with assembly is old ARM, but sha512-armv4.pl already handles this via an __ARM_ARCH__ check. See also OpenSSL's version of this file which always defines SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA if SHA512_ASM is defined.) Add unaligned tests to digest_test.cc, so we retain coverage of unaligned EVP_MD inputs. Change-Id: Idfd8586c64bab2a77292af2fa8eebbd193e57c7d Reviewed-on: https://boringssl-review.googlesource.com/c/34444 Commit-Queue: Adam Langley <agl@google.com> Reviewed-by: Adam Langley <agl@google.com>
This commit is contained in:
parent
72f015562c
commit
2fe0360a4e
@ -17,6 +17,7 @@
|
||||
#include <string.h>
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
@ -183,6 +184,20 @@ static void TestDigest(const TestVector *test) {
|
||||
EXPECT_EQ(EVP_MD_size(test->md.func()), digest_len);
|
||||
CompareDigest(test, digest.get(), digest_len);
|
||||
|
||||
// Test with unaligned input.
|
||||
ASSERT_TRUE(EVP_DigestInit_ex(ctx.get(), test->md.func(), NULL));
|
||||
std::vector<char> unaligned(strlen(test->input) + 1);
|
||||
char *ptr = unaligned.data();
|
||||
if ((reinterpret_cast<uintptr_t>(ptr) & 1) == 0) {
|
||||
ptr++;
|
||||
}
|
||||
OPENSSL_memcpy(ptr, test->input, strlen(test->input));
|
||||
for (size_t i = 0; i < test->repeat; i++) {
|
||||
ASSERT_TRUE(EVP_DigestUpdate(ctx.get(), ptr, strlen(test->input)));
|
||||
}
|
||||
ASSERT_TRUE(EVP_DigestFinal_ex(ctx.get(), digest.get(), &digest_len));
|
||||
CompareDigest(test, digest.get(), digest_len);
|
||||
|
||||
// Test the one-shot function.
|
||||
if (test->md.one_shot_func && test->repeat == 1) {
|
||||
uint8_t *out = test->md.one_shot_func((const uint8_t *)test->input,
|
||||
|
@ -27,15 +27,18 @@ extern "C" {
|
||||
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
|
||||
defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
|
||||
#define SHA1_ASM
|
||||
void sha1_block_data_order(uint32_t *state, const uint8_t *data, size_t num);
|
||||
void sha1_block_data_order(uint32_t *state, const uint8_t *in,
|
||||
size_t num_blocks);
|
||||
#endif
|
||||
|
||||
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
|
||||
defined(OPENSSL_AARCH64)
|
||||
#define SHA256_ASM
|
||||
#define SHA512_ASM
|
||||
void sha256_block_data_order(uint32_t *state, const uint8_t *in, size_t num);
|
||||
void sha512_block_data_order(uint64_t *state, const uint64_t *W, size_t num);
|
||||
void sha256_block_data_order(uint32_t *state, const uint8_t *in,
|
||||
size_t num_blocks);
|
||||
void sha512_block_data_order(uint64_t *state, const uint8_t *in,
|
||||
size_t num_blocks);
|
||||
#endif
|
||||
|
||||
#endif // OPENSSL_NO_ASM
|
||||
|
@ -64,22 +64,11 @@
|
||||
#include "../../internal.h"
|
||||
|
||||
|
||||
// IMPLEMENTATION NOTES.
|
||||
//
|
||||
// The 32-bit hash algorithms share a common byte-order neutral collector and
|
||||
// padding function implementations that operate on unaligned data,
|
||||
// ../md32_common.h. This SHA-512 implementation does not. Reasons
|
||||
// [in reverse order] are:
|
||||
//
|
||||
// - It's the only 64-bit hash algorithm for the moment of this writing,
|
||||
// there is no need for common collector/padding implementation [yet];
|
||||
// - By supporting only a transform function that operates on *aligned* data
|
||||
// the collector/padding function is simpler and easier to optimize.
|
||||
|
||||
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
|
||||
defined(__ARM_FEATURE_UNALIGNED)
|
||||
#define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
|
||||
#endif
|
||||
// ../digest/md32_common.h. SHA-512 is the only 64-bit hash algorithm, as of
|
||||
// this writing, so there is no need for a common collector/padding
|
||||
// implementation yet.
|
||||
|
||||
int SHA384_Init(SHA512_CTX *sha) {
|
||||
sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
|
||||
@ -135,8 +124,8 @@ uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t *out) {
|
||||
}
|
||||
|
||||
#if !defined(SHA512_ASM)
|
||||
static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
|
||||
size_t num);
|
||||
static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
|
||||
size_t num_blocks);
|
||||
#endif
|
||||
|
||||
|
||||
@ -149,19 +138,13 @@ int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
|
||||
}
|
||||
|
||||
void SHA512_Transform(SHA512_CTX *c, const uint8_t *block) {
|
||||
#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
|
||||
if ((size_t)block % sizeof(c->u.d[0]) != 0) {
|
||||
OPENSSL_memcpy(c->u.p, block, sizeof(c->u.p));
|
||||
block = c->u.p;
|
||||
}
|
||||
#endif
|
||||
sha512_block_data_order(c->h, (uint64_t *)block, 1);
|
||||
sha512_block_data_order(c->h, block, 1);
|
||||
}
|
||||
|
||||
int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
|
||||
uint64_t l;
|
||||
uint8_t *p = c->u.p;
|
||||
const uint8_t *data = (const uint8_t *)in_data;
|
||||
const uint8_t *data = in_data;
|
||||
|
||||
if (len == 0) {
|
||||
return 1;
|
||||
@ -187,28 +170,16 @@ int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
|
||||
OPENSSL_memcpy(p + c->num, data, n), c->num = 0;
|
||||
len -= n;
|
||||
data += n;
|
||||
sha512_block_data_order(c->h, (uint64_t *)p, 1);
|
||||
sha512_block_data_order(c->h, p, 1);
|
||||
}
|
||||
}
|
||||
|
||||
if (len >= sizeof(c->u)) {
|
||||
#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
|
||||
if ((size_t)data % sizeof(c->u.d[0]) != 0) {
|
||||
while (len >= sizeof(c->u)) {
|
||||
OPENSSL_memcpy(p, data, sizeof(c->u));
|
||||
sha512_block_data_order(c->h, (uint64_t *)p, 1);
|
||||
len -= sizeof(c->u);
|
||||
data += sizeof(c->u);
|
||||
}
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
sha512_block_data_order(c->h, (uint64_t *)data, len / sizeof(c->u));
|
||||
sha512_block_data_order(c->h, data, len / sizeof(c->u));
|
||||
data += len;
|
||||
len %= sizeof(c->u);
|
||||
data -= len;
|
||||
}
|
||||
}
|
||||
|
||||
if (len != 0) {
|
||||
OPENSSL_memcpy(p, data, len);
|
||||
@ -219,7 +190,7 @@ int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
|
||||
}
|
||||
|
||||
int SHA512_Final(uint8_t *md, SHA512_CTX *sha) {
|
||||
uint8_t *p = (uint8_t *)sha->u.p;
|
||||
uint8_t *p = sha->u.p;
|
||||
size_t n = sha->num;
|
||||
|
||||
p[n] = 0x80; // There always is a room for one
|
||||
@ -227,7 +198,7 @@ int SHA512_Final(uint8_t *md, SHA512_CTX *sha) {
|
||||
if (n > (sizeof(sha->u) - 16)) {
|
||||
OPENSSL_memset(p + n, 0, sizeof(sha->u) - n);
|
||||
n = 0;
|
||||
sha512_block_data_order(sha->h, (uint64_t *)p, 1);
|
||||
sha512_block_data_order(sha->h, p, 1);
|
||||
}
|
||||
|
||||
OPENSSL_memset(p + n, 0, sizeof(sha->u) - 16 - n);
|
||||
@ -248,7 +219,7 @@ int SHA512_Final(uint8_t *md, SHA512_CTX *sha) {
|
||||
p[sizeof(sha->u) - 15] = (uint8_t)(sha->Nh >> 48);
|
||||
p[sizeof(sha->u) - 16] = (uint8_t)(sha->Nh >> 56);
|
||||
|
||||
sha512_block_data_order(sha->h, (uint64_t *)p, 1);
|
||||
sha512_block_data_order(sha->h, p, 1);
|
||||
|
||||
if (md == NULL) {
|
||||
// TODO(davidben): This NULL check is absent in other low-level hash 'final'
|
||||
@ -348,20 +319,6 @@ static const uint64_t K512[80] = {
|
||||
__asm__("rorq %1, %0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \
|
||||
ret; \
|
||||
})
|
||||
#define PULL64(x) \
|
||||
({ \
|
||||
uint64_t ret = *((const uint64_t *)(&(x))); \
|
||||
__asm__("bswapq %0" : "=r"(ret) : "0"(ret)); \
|
||||
ret; \
|
||||
})
|
||||
#elif(defined(__i386) || defined(__i386__))
|
||||
#define PULL64(x) \
|
||||
({ \
|
||||
const unsigned int *p = (const unsigned int *)(&(x)); \
|
||||
unsigned int hi = p[0], lo = p[1]; \
|
||||
__asm__("bswapl %0; bswapl %1;" : "=r"(lo), "=r"(hi) : "0"(lo), "1"(hi)); \
|
||||
((uint64_t)hi) << 32 | lo; \
|
||||
})
|
||||
#elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
|
||||
#define ROTR(a, n) \
|
||||
({ \
|
||||
@ -376,47 +333,22 @@ static const uint64_t K512[80] = {
|
||||
__asm__("ror %0, %1, %2" : "=r"(ret) : "r"(a), "I"(n)); \
|
||||
ret; \
|
||||
})
|
||||
#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
|
||||
__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
#define PULL64(x) \
|
||||
({ \
|
||||
uint64_t ret; \
|
||||
__asm__("rev %0, %1" : "=r"(ret) : "r"(*((const uint64_t *)(&(x))))); \
|
||||
ret; \
|
||||
})
|
||||
#endif
|
||||
#endif
|
||||
#elif defined(_MSC_VER)
|
||||
#if defined(_WIN64) // applies to both IA-64 and AMD64
|
||||
#elif defined(_MSC_VER) && defined(_WIN64)
|
||||
#pragma intrinsic(_rotr64)
|
||||
#define ROTR(a, n) _rotr64((a), n)
|
||||
#endif
|
||||
#if defined(_M_IX86) && !defined(OPENSSL_NO_ASM)
|
||||
static uint64_t __fastcall __pull64be(const void *x) {
|
||||
_asm mov edx, [ecx + 0]
|
||||
_asm mov eax, [ecx + 4]
|
||||
_asm bswap edx
|
||||
_asm bswap eax
|
||||
}
|
||||
#define PULL64(x) __pull64be(&(x))
|
||||
#if _MSC_VER <= 1200
|
||||
#pragma inline_depth(0)
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef PULL64
|
||||
#define B(x, j) \
|
||||
(((uint64_t)(*(((const uint8_t *)(&x)) + j))) << ((7 - j) * 8))
|
||||
#define PULL64(x) \
|
||||
(B(x, 0) | B(x, 1) | B(x, 2) | B(x, 3) | B(x, 4) | B(x, 5) | B(x, 6) | \
|
||||
B(x, 7))
|
||||
#endif
|
||||
|
||||
#ifndef ROTR
|
||||
#define ROTR(x, s) (((x) >> s) | (x) << (64 - s))
|
||||
#endif
|
||||
|
||||
static inline uint64_t load_u64_be(const void *ptr) {
|
||||
uint64_t ret;
|
||||
OPENSSL_memcpy(&ret, ptr, sizeof(ret));
|
||||
return CRYPTO_bswap8(ret);
|
||||
}
|
||||
|
||||
#define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
|
||||
#define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
|
||||
#define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7))
|
||||
@ -429,7 +361,7 @@ static uint64_t __fastcall __pull64be(const void *x) {
|
||||
#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
|
||||
// This code should give better results on 32-bit CPU with less than
|
||||
// ~24 registers, both size and performance wise...
|
||||
static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
|
||||
static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
|
||||
size_t num) {
|
||||
uint64_t A, E, T;
|
||||
uint64_t X[9 + 80], *F;
|
||||
@ -447,7 +379,7 @@ static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
|
||||
F[7] = state[7];
|
||||
|
||||
for (i = 0; i < 16; i++, F--) {
|
||||
T = PULL64(W[i]);
|
||||
T = load_u64_be(in + i * 8);
|
||||
F[0] = A;
|
||||
F[4] = E;
|
||||
F[8] = T;
|
||||
@ -478,7 +410,7 @@ static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
|
||||
state[6] += F[6];
|
||||
state[7] += F[7];
|
||||
|
||||
W += 16;
|
||||
in += 16 * 8;
|
||||
}
|
||||
}
|
||||
|
||||
@ -502,7 +434,7 @@ static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
|
||||
ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \
|
||||
} while (0)
|
||||
|
||||
static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
|
||||
static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
|
||||
size_t num) {
|
||||
uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
|
||||
uint64_t X[16];
|
||||
@ -519,37 +451,37 @@ static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
|
||||
g = state[6];
|
||||
h = state[7];
|
||||
|
||||
T1 = X[0] = PULL64(W[0]);
|
||||
T1 = X[0] = load_u64_be(in);
|
||||
ROUND_00_15(0, a, b, c, d, e, f, g, h);
|
||||
T1 = X[1] = PULL64(W[1]);
|
||||
T1 = X[1] = load_u64_be(in + 8);
|
||||
ROUND_00_15(1, h, a, b, c, d, e, f, g);
|
||||
T1 = X[2] = PULL64(W[2]);
|
||||
T1 = X[2] = load_u64_be(in + 2 * 8);
|
||||
ROUND_00_15(2, g, h, a, b, c, d, e, f);
|
||||
T1 = X[3] = PULL64(W[3]);
|
||||
T1 = X[3] = load_u64_be(in + 3 * 8);
|
||||
ROUND_00_15(3, f, g, h, a, b, c, d, e);
|
||||
T1 = X[4] = PULL64(W[4]);
|
||||
T1 = X[4] = load_u64_be(in + 4 * 8);
|
||||
ROUND_00_15(4, e, f, g, h, a, b, c, d);
|
||||
T1 = X[5] = PULL64(W[5]);
|
||||
T1 = X[5] = load_u64_be(in + 5 * 8);
|
||||
ROUND_00_15(5, d, e, f, g, h, a, b, c);
|
||||
T1 = X[6] = PULL64(W[6]);
|
||||
T1 = X[6] = load_u64_be(in + 6 * 8);
|
||||
ROUND_00_15(6, c, d, e, f, g, h, a, b);
|
||||
T1 = X[7] = PULL64(W[7]);
|
||||
T1 = X[7] = load_u64_be(in + 7 * 8);
|
||||
ROUND_00_15(7, b, c, d, e, f, g, h, a);
|
||||
T1 = X[8] = PULL64(W[8]);
|
||||
T1 = X[8] = load_u64_be(in + 8 * 8);
|
||||
ROUND_00_15(8, a, b, c, d, e, f, g, h);
|
||||
T1 = X[9] = PULL64(W[9]);
|
||||
T1 = X[9] = load_u64_be(in + 9 * 8);
|
||||
ROUND_00_15(9, h, a, b, c, d, e, f, g);
|
||||
T1 = X[10] = PULL64(W[10]);
|
||||
T1 = X[10] = load_u64_be(in + 10 * 8);
|
||||
ROUND_00_15(10, g, h, a, b, c, d, e, f);
|
||||
T1 = X[11] = PULL64(W[11]);
|
||||
T1 = X[11] = load_u64_be(in + 11 * 8);
|
||||
ROUND_00_15(11, f, g, h, a, b, c, d, e);
|
||||
T1 = X[12] = PULL64(W[12]);
|
||||
T1 = X[12] = load_u64_be(in + 12 * 8);
|
||||
ROUND_00_15(12, e, f, g, h, a, b, c, d);
|
||||
T1 = X[13] = PULL64(W[13]);
|
||||
T1 = X[13] = load_u64_be(in + 13 * 8);
|
||||
ROUND_00_15(13, d, e, f, g, h, a, b, c);
|
||||
T1 = X[14] = PULL64(W[14]);
|
||||
T1 = X[14] = load_u64_be(in + 14 * 8);
|
||||
ROUND_00_15(14, c, d, e, f, g, h, a, b);
|
||||
T1 = X[15] = PULL64(W[15]);
|
||||
T1 = X[15] = load_u64_be(in + 15 * 8);
|
||||
ROUND_00_15(15, b, c, d, e, f, g, h, a);
|
||||
|
||||
for (i = 16; i < 80; i += 16) {
|
||||
@ -580,7 +512,7 @@ static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
|
||||
state[6] += g;
|
||||
state[7] += h;
|
||||
|
||||
W += 16;
|
||||
in += 16 * 8;
|
||||
}
|
||||
}
|
||||
|
||||
@ -589,8 +521,6 @@ static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
|
||||
#endif // !SHA512_ASM
|
||||
|
||||
#undef ROTR
|
||||
#undef PULL64
|
||||
#undef B
|
||||
#undef Sigma0
|
||||
#undef Sigma1
|
||||
#undef sigma0
|
||||
@ -599,5 +529,3 @@ static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
|
||||
#undef Maj
|
||||
#undef ROUND_00_15
|
||||
#undef ROUND_16_80
|
||||
#undef HOST_c2l
|
||||
#undef HOST_l2c
|
||||
|
@ -51,7 +51,7 @@ TEST(SHATest, SHA512ABI) {
|
||||
SHA512_CTX ctx;
|
||||
SHA512_Init(&ctx);
|
||||
|
||||
static const uint64_t kBuf[SHA512_CBLOCK / sizeof(uint64_t) * 4] = {0};
|
||||
static const uint8_t kBuf[SHA512_CBLOCK * 4] = {0};
|
||||
CHECK_ABI(sha512_block_data_order, ctx.h, kBuf, 1);
|
||||
CHECK_ABI(sha512_block_data_order, ctx.h, kBuf, 2);
|
||||
CHECK_ABI(sha512_block_data_order, ctx.h, kBuf, 3);
|
||||
|
Loading…
Reference in New Issue
Block a user