Parse RSAPrivateKey with CBS.

This removes the version field from RSA and instead handles versioning
as part of parsing. (As a bonus, we now correctly limit multi-prime RSA
to version 1 keys.)

Most consumers are also converted. old_rsa_priv_{de,en}code are left
alone for now. Those hooks are passed in parameters which match the old
d2i/i2d pattern (they're only used in d2i_PrivateKey and
i2d_PrivateKey).

Include a test which, among other things, checks that public keys being
serialized as private keys are handled properly.

BUG=499653

Change-Id: Icdd5f0382c4a84f9c8867024f29756e1a306ba08
Reviewed-on: https://boringssl-review.googlesource.com/5273
Reviewed-by: Adam Langley <agl@google.com>
This commit is contained in:
David Benjamin 2015-06-27 14:56:25 -04:00 committed by Adam Langley
parent c0e245a546
commit 74f711083d
11 changed files with 383 additions and 150 deletions

View File

@ -5,6 +5,7 @@ RSA,function,103,BN_BLINDING_new
RSA,function,104,BN_BLINDING_update
RSA,function,123,RSA_add_pkcs1_prefix
RSA,function,105,RSA_check_key
RSA,function,135,RSA_marshal_private_key
RSA,function,129,RSA_marshal_public_key
RSA,function,106,RSA_new_method
RSA,function,107,RSA_padding_add_PKCS1_OAEP_mgf1
@ -16,7 +17,10 @@ RSA,function,112,RSA_padding_check_PKCS1_OAEP_mgf1
RSA,function,113,RSA_padding_check_PKCS1_type_1
RSA,function,114,RSA_padding_check_PKCS1_type_2
RSA,function,115,RSA_padding_check_none
RSA,function,136,RSA_parse_private_key
RSA,function,130,RSA_parse_public_key
RSA,function,137,RSA_private_key_from_bytes
RSA,function,138,RSA_private_key_to_bytes
RSA,function,131,RSA_public_key_from_bytes
RSA,function,132,RSA_public_key_to_bytes
RSA,function,116,RSA_recover_crt_params
@ -25,11 +29,13 @@ RSA,function,118,RSA_verify
RSA,function,119,RSA_verify_PKCS1_PSS_mgf1
RSA,function,120,decrypt
RSA,function,121,encrypt
RSA,function,139,i2d_RSAPrivateKey
RSA,function,133,i2d_RSAPublicKey
RSA,function,122,keygen
RSA,function,128,keygen_multiprime
RSA,function,134,marshal_integer
RSA,function,124,private_transform
RSA,function,140,rsa_parse_additional_prime
RSA,function,125,rsa_setup_blinding
RSA,function,126,sign_raw
RSA,function,127,verify_raw
@ -39,6 +45,7 @@ RSA,reason,101,BAD_FIXED_HEADER_DECRYPT
RSA,reason,102,BAD_PAD_BYTE_COUNT
RSA,reason,103,BAD_RSA_PARAMETERS
RSA,reason,104,BAD_SIGNATURE
RSA,reason,145,BAD_VERSION
RSA,reason,105,BLOCK_TYPE_IS_NOT_01
RSA,reason,106,BN_NOT_INITIALIZED
RSA,reason,142,CANNOT_RECOVER_MULTI_PRIME_KEY

View File

@ -322,8 +322,8 @@ static const uint8_t kExampleBadECKeyDER[] = {
};
static ScopedEVP_PKEY LoadExampleRSAKey() {
const uint8_t *derp = kExampleRSAKeyDER;
ScopedRSA rsa(d2i_RSAPrivateKey(nullptr, &derp, sizeof(kExampleRSAKeyDER)));
ScopedRSA rsa(RSA_private_key_from_bytes(kExampleRSAKeyDER,
sizeof(kExampleRSAKeyDER)));
if (!rsa) {
return nullptr;
}

View File

@ -114,8 +114,8 @@ struct evp_pkey_asn1_method_st {
int (*pkey_size)(const EVP_PKEY *pk);
int (*pkey_bits)(const EVP_PKEY *pk);
int (*param_decode)(EVP_PKEY *pkey, const unsigned char **pder, int derlen);
int (*param_encode)(const EVP_PKEY *pkey, unsigned char **pder);
int (*param_decode)(EVP_PKEY *pkey, const uint8_t **pder, int derlen);
int (*param_encode)(const EVP_PKEY *pkey, uint8_t **pder);
int (*param_missing)(const EVP_PKEY *pk);
int (*param_copy)(EVP_PKEY *to, const EVP_PKEY *from);
int (*param_cmp)(const EVP_PKEY *a, const EVP_PKEY *b);
@ -129,9 +129,9 @@ struct evp_pkey_asn1_method_st {
/* Legacy functions for old PEM */
int (*old_priv_decode)(EVP_PKEY *pkey, const unsigned char **pder,
int (*old_priv_decode)(EVP_PKEY *pkey, const uint8_t **pder,
int derlen);
int (*old_priv_encode)(const EVP_PKEY *pkey, unsigned char **pder);
int (*old_priv_encode)(const EVP_PKEY *pkey, uint8_t **pder);
/* Converting parameters to/from AlgorithmIdentifier (X509_ALGOR). */
int (*digest_verify_init_from_algorithm)(EVP_MD_CTX *ctx,
@ -242,23 +242,23 @@ struct evp_pkey_method_st {
int (*keygen)(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey);
int (*sign_init)(EVP_PKEY_CTX *ctx);
int (*sign)(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen,
const unsigned char *tbs, size_t tbslen);
int (*sign)(EVP_PKEY_CTX *ctx, uint8_t *sig, size_t *siglen,
const uint8_t *tbs, size_t tbslen);
int (*verify_init)(EVP_PKEY_CTX *ctx);
int (*verify)(EVP_PKEY_CTX *ctx, const unsigned char *sig, size_t siglen,
const unsigned char *tbs, size_t tbslen);
int (*verify)(EVP_PKEY_CTX *ctx, const uint8_t *sig, size_t siglen,
const uint8_t *tbs, size_t tbslen);
int (*encrypt_init)(EVP_PKEY_CTX *ctx);
int (*encrypt)(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen,
const unsigned char *in, size_t inlen);
int (*encrypt)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *outlen,
const uint8_t *in, size_t inlen);
int (*decrypt_init)(EVP_PKEY_CTX *ctx);
int (*decrypt)(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen,
const unsigned char *in, size_t inlen);
int (*decrypt)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *outlen,
const uint8_t *in, size_t inlen);
int (*derive_init)(EVP_PKEY_CTX *ctx);
int (*derive)(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen);
int (*derive)(EVP_PKEY_CTX *ctx, uint8_t *key, size_t *keylen);
int (*ctrl)(EVP_PKEY_CTX *ctx, int type, int p1, void *p2);
int (*ctrl_str)(EVP_PKEY_CTX *ctx, const char *type, const char *value);

View File

@ -107,20 +107,16 @@ static int rsa_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b) {
}
static int rsa_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey) {
uint8_t *rk = NULL;
int rklen;
rklen = i2d_RSAPrivateKey(pkey->pkey.rsa, &rk);
if (rklen <= 0) {
OPENSSL_PUT_ERROR(EVP, rsa_priv_encode, ERR_R_MALLOC_FAILURE);
uint8_t *encoded;
size_t encoded_len;
if (!RSA_private_key_to_bytes(&encoded, &encoded_len, pkey->pkey.rsa)) {
return 0;
}
/* TODO(fork): const correctness in next line. */
if (!PKCS8_pkey_set0(p8, (ASN1_OBJECT *)OBJ_nid2obj(NID_rsaEncryption), 0,
V_ASN1_NULL, NULL, rk, rklen)) {
OPENSSL_free(rk);
V_ASN1_NULL, NULL, encoded, encoded_len)) {
OPENSSL_free(encoded);
OPENSSL_PUT_ERROR(EVP, rsa_priv_encode, ERR_R_MALLOC_FAILURE);
return 0;
}
@ -131,14 +127,12 @@ static int rsa_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey) {
static int rsa_priv_decode(EVP_PKEY *pkey, PKCS8_PRIV_KEY_INFO *p8) {
const uint8_t *p;
int pklen;
RSA *rsa;
if (!PKCS8_pkey_get0(NULL, &p, &pklen, NULL, p8)) {
OPENSSL_PUT_ERROR(EVP, rsa_priv_decode, ERR_R_MALLOC_FAILURE);
return 0;
}
rsa = d2i_RSAPrivateKey(NULL, &p, pklen);
RSA *rsa = RSA_private_key_from_bytes(p, pklen);
if (rsa == NULL) {
OPENSSL_PUT_ERROR(EVP, rsa_priv_decode, ERR_R_RSA_LIB);
return 0;
@ -227,8 +221,7 @@ static int do_rsa_print(BIO *out, const RSA *rsa, int off,
}
if (include_private && rsa->d) {
if (BIO_printf(out, "Private-Key: (%d bit)\nversion: %ld\n", mod_len,
rsa->version) <= 0) {
if (BIO_printf(out, "Private-Key: (%d bit)\n", mod_len) <= 0) {
goto err;
}
str = "modulus:";
@ -442,7 +435,7 @@ static int rsa_sig_print(BIO *bp, const X509_ALGOR *sigalg,
return 1;
}
static int old_rsa_priv_decode(EVP_PKEY *pkey, const unsigned char **pder,
static int old_rsa_priv_decode(EVP_PKEY *pkey, const uint8_t **pder,
int derlen) {
RSA *rsa = d2i_RSAPrivateKey(NULL, pder, derlen);
if (rsa == NULL) {
@ -453,7 +446,7 @@ static int old_rsa_priv_decode(EVP_PKEY *pkey, const unsigned char **pder,
return 1;
}
static int old_rsa_priv_encode(const EVP_PKEY *pkey, unsigned char **pder) {
static int old_rsa_priv_encode(const EVP_PKEY *pkey, uint8_t **pder) {
return i2d_RSAPrivateKey(pkey->pkey.rsa, pder);
}

View File

@ -142,6 +142,195 @@ int RSA_public_key_to_bytes(uint8_t **out_bytes, size_t *out_len,
return 1;
}
/* kVersionTwoPrime and kVersionMulti are the supported values of the version
* field of an RSAPrivateKey structure (RFC 3447). */
static const uint64_t kVersionTwoPrime = 0;
static const uint64_t kVersionMulti = 1;
/* rsa_parse_additional_prime parses a DER-encoded OtherPrimeInfo from |cbs| and
* advances |cbs|. It returns a newly-allocated |RSA_additional_prime| on
* success or NULL on error. The |r| and |method_mod| fields of the result are
* set to NULL. */
static RSA_additional_prime *rsa_parse_additional_prime(CBS *cbs) {
RSA_additional_prime *ret = OPENSSL_malloc(sizeof(RSA_additional_prime));
if (ret == NULL) {
OPENSSL_PUT_ERROR(RSA, rsa_parse_additional_prime, ERR_R_MALLOC_FAILURE);
return 0;
}
memset(ret, 0, sizeof(RSA_additional_prime));
CBS child;
if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
!parse_integer(&child, &ret->prime) ||
!parse_integer(&child, &ret->exp) ||
!parse_integer(&child, &ret->coeff) ||
CBS_len(&child) != 0) {
OPENSSL_PUT_ERROR(RSA, rsa_parse_additional_prime, RSA_R_BAD_ENCODING);
RSA_additional_prime_free(ret);
return NULL;
}
return ret;
}
RSA *RSA_parse_private_key(CBS *cbs) {
BN_CTX *ctx = NULL;
BIGNUM *product_of_primes_so_far = NULL;
RSA *ret = RSA_new();
if (ret == NULL) {
return NULL;
}
CBS child;
uint64_t version;
if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1_uint64(&child, &version) ||
(version != kVersionTwoPrime && version != kVersionMulti) ||
!parse_integer(&child, &ret->n) ||
!parse_integer(&child, &ret->e) ||
!parse_integer(&child, &ret->d) ||
!parse_integer(&child, &ret->p) ||
!parse_integer(&child, &ret->q) ||
!parse_integer(&child, &ret->dmp1) ||
!parse_integer(&child, &ret->dmq1) ||
!parse_integer(&child, &ret->iqmp)) {
OPENSSL_PUT_ERROR(RSA, RSA_parse_private_key, RSA_R_BAD_VERSION);
goto err;
}
/* Multi-prime RSA requires a newer version. */
if (version == kVersionMulti &&
CBS_peek_asn1_tag(&child, CBS_ASN1_SEQUENCE)) {
CBS other_prime_infos;
if (!CBS_get_asn1(&child, &other_prime_infos, CBS_ASN1_SEQUENCE) ||
CBS_len(&other_prime_infos) == 0) {
OPENSSL_PUT_ERROR(RSA, RSA_parse_private_key, RSA_R_BAD_ENCODING);
goto err;
}
ret->additional_primes = sk_RSA_additional_prime_new_null();
if (ret->additional_primes == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_parse_private_key, ERR_R_MALLOC_FAILURE);
goto err;
}
ctx = BN_CTX_new();
product_of_primes_so_far = BN_new();
if (ctx == NULL ||
product_of_primes_so_far == NULL ||
!BN_mul(product_of_primes_so_far, ret->p, ret->q, ctx)) {
goto err;
}
while (CBS_len(&other_prime_infos) > 0) {
RSA_additional_prime *ap = rsa_parse_additional_prime(&other_prime_infos);
if (ap == NULL) {
goto err;
}
if (!sk_RSA_additional_prime_push(ret->additional_primes, ap)) {
OPENSSL_PUT_ERROR(RSA, RSA_parse_private_key, ERR_R_MALLOC_FAILURE);
RSA_additional_prime_free(ap);
goto err;
}
ap->r = BN_dup(product_of_primes_so_far);
if (ap->r == NULL ||
!BN_mul(product_of_primes_so_far, product_of_primes_so_far,
ap->prime, ctx)) {
goto err;
}
}
}
if (CBS_len(&child) != 0) {
OPENSSL_PUT_ERROR(RSA, RSA_parse_private_key, RSA_R_BAD_ENCODING);
goto err;
}
BN_CTX_free(ctx);
BN_free(product_of_primes_so_far);
return ret;
err:
BN_CTX_free(ctx);
BN_free(product_of_primes_so_far);
RSA_free(ret);
return NULL;
}
RSA *RSA_private_key_from_bytes(const uint8_t *in, size_t in_len) {
CBS cbs;
CBS_init(&cbs, in, in_len);
RSA *ret = RSA_parse_private_key(&cbs);
if (ret == NULL || CBS_len(&cbs) != 0) {
OPENSSL_PUT_ERROR(RSA, RSA_private_key_from_bytes, RSA_R_BAD_ENCODING);
RSA_free(ret);
return NULL;
}
return ret;
}
int RSA_marshal_private_key(CBB *cbb, const RSA *rsa) {
const int is_multiprime =
sk_RSA_additional_prime_num(rsa->additional_primes) > 0;
CBB child;
if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1_uint64(&child,
is_multiprime ? kVersionMulti : kVersionTwoPrime) ||
!marshal_integer(&child, rsa->n) ||
!marshal_integer(&child, rsa->e) ||
!marshal_integer(&child, rsa->d) ||
!marshal_integer(&child, rsa->p) ||
!marshal_integer(&child, rsa->q) ||
!marshal_integer(&child, rsa->dmp1) ||
!marshal_integer(&child, rsa->dmq1) ||
!marshal_integer(&child, rsa->iqmp)) {
OPENSSL_PUT_ERROR(RSA, RSA_marshal_private_key, RSA_R_ENCODE_ERROR);
return 0;
}
if (is_multiprime) {
CBB other_prime_infos;
if (!CBB_add_asn1(&child, &other_prime_infos, CBS_ASN1_SEQUENCE)) {
OPENSSL_PUT_ERROR(RSA, RSA_marshal_private_key, RSA_R_ENCODE_ERROR);
return 0;
}
size_t i;
for (i = 0; i < sk_RSA_additional_prime_num(rsa->additional_primes); i++) {
RSA_additional_prime *ap =
sk_RSA_additional_prime_value(rsa->additional_primes, i);
CBB other_prime_info;
if (!CBB_add_asn1(&other_prime_infos, &other_prime_info,
CBS_ASN1_SEQUENCE) ||
!marshal_integer(&other_prime_info, ap->prime) ||
!marshal_integer(&other_prime_info, ap->exp) ||
!marshal_integer(&other_prime_info, ap->coeff)) {
OPENSSL_PUT_ERROR(RSA, RSA_marshal_private_key, RSA_R_ENCODE_ERROR);
return 0;
}
}
}
if (!CBB_flush(cbb)) {
OPENSSL_PUT_ERROR(RSA, RSA_marshal_private_key, RSA_R_ENCODE_ERROR);
return 0;
}
return 1;
}
int RSA_private_key_to_bytes(uint8_t **out_bytes, size_t *out_len,
const RSA *rsa) {
CBB cbb;
CBB_zero(&cbb);
if (!CBB_init(&cbb, 0) ||
!RSA_marshal_private_key(&cbb, rsa) ||
!CBB_finish(&cbb, out_bytes, out_len)) {
OPENSSL_PUT_ERROR(RSA, RSA_private_key_to_bytes, RSA_R_ENCODE_ERROR);
CBB_cleanup(&cbb);
return 0;
}
return 1;
}
RSA *d2i_RSAPublicKey(RSA **out, const uint8_t **inp, long len) {
if (len < 0) {
return NULL;
@ -184,75 +373,47 @@ int i2d_RSAPublicKey(const RSA *in, uint8_t **outp) {
return (int)der_len;
}
/* Override the default free and new methods */
static int rsa_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
void *exarg) {
RSA *rsa = (RSA *)*pval;
BN_CTX *ctx = NULL;
BIGNUM *product_of_primes_so_far = NULL;
int ret = 0;
if (operation == ASN1_OP_NEW_PRE) {
*pval = (ASN1_VALUE *)RSA_new();
if (*pval) {
return 2;
}
return 0;
} else if (operation == ASN1_OP_FREE_PRE) {
RSA_free(rsa);
*pval = NULL;
return 2;
} else if (operation == ASN1_OP_D2I_POST) {
if (rsa->additional_primes != NULL) {
ctx = BN_CTX_new();
product_of_primes_so_far = BN_new();
if (ctx == NULL ||
product_of_primes_so_far == NULL ||
!BN_mul(product_of_primes_so_far, rsa->p, rsa->q, ctx)) {
goto err;
}
size_t i;
for (i = 0; i < sk_RSA_additional_prime_num(rsa->additional_primes); i++) {
RSA_additional_prime *ap =
sk_RSA_additional_prime_value(rsa->additional_primes, i);
ap->r = BN_dup(product_of_primes_so_far);
if (ap->r == NULL ||
!BN_mul(product_of_primes_so_far, product_of_primes_so_far,
ap->prime, ctx)) {
goto err;
}
}
}
ret = 2;
} else {
return 1;
RSA *d2i_RSAPrivateKey(RSA **out, const uint8_t **inp, long len) {
if (len < 0) {
return NULL;
}
err:
BN_CTX_free(ctx);
BN_free(product_of_primes_so_far);
CBS cbs;
CBS_init(&cbs, *inp, (size_t)len);
RSA *ret = RSA_parse_private_key(&cbs);
if (ret == NULL) {
return NULL;
}
if (out != NULL) {
RSA_free(*out);
*out = ret;
}
*inp += (size_t)len - CBS_len(&cbs);
return ret;
}
ASN1_SEQUENCE(RSA_additional_prime) = {
ASN1_SIMPLE(RSA_additional_prime, prime, BIGNUM),
ASN1_SIMPLE(RSA_additional_prime, exp, BIGNUM),
ASN1_SIMPLE(RSA_additional_prime, coeff, BIGNUM),
} ASN1_SEQUENCE_END(RSA_additional_prime);
ASN1_SEQUENCE_cb(RSAPrivateKey, rsa_cb) = {
ASN1_SIMPLE(RSA, version, LONG),
ASN1_SIMPLE(RSA, n, BIGNUM),
ASN1_SIMPLE(RSA, e, BIGNUM),
ASN1_SIMPLE(RSA, d, BIGNUM),
ASN1_SIMPLE(RSA, p, BIGNUM),
ASN1_SIMPLE(RSA, q, BIGNUM),
ASN1_SIMPLE(RSA, dmp1, BIGNUM),
ASN1_SIMPLE(RSA, dmq1, BIGNUM),
ASN1_SIMPLE(RSA, iqmp, BIGNUM),
ASN1_SEQUENCE_OF_OPT(RSA, additional_primes, RSA_additional_prime),
} ASN1_SEQUENCE_END_cb(RSA, RSAPrivateKey);
int i2d_RSAPrivateKey(const RSA *in, uint8_t **outp) {
uint8_t *der;
size_t der_len;
if (!RSA_private_key_to_bytes(&der, &der_len, in)) {
return -1;
}
if (der_len > INT_MAX) {
OPENSSL_PUT_ERROR(RSA, i2d_RSAPrivateKey, ERR_R_OVERFLOW);
OPENSSL_free(der);
return -1;
}
if (outp != NULL) {
if (*outp == NULL) {
*outp = der;
der = NULL;
} else {
memcpy(*outp, der, der_len);
*outp += der_len;
}
}
OPENSSL_free(der);
return (int)der_len;
}
ASN1_SEQUENCE(RSA_PSS_PARAMS) = {
ASN1_EXP_OPT(RSA_PSS_PARAMS, hashAlgorithm, X509_ALGOR,0),
@ -271,8 +432,6 @@ ASN1_SEQUENCE(RSA_OAEP_PARAMS) = {
IMPLEMENT_ASN1_FUNCTIONS(RSA_OAEP_PARAMS);
IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(RSA, RSAPrivateKey, RSAPrivateKey);
RSA *RSAPublicKey_dup(const RSA *rsa) {
uint8_t *der;
size_t der_len;
@ -285,5 +444,12 @@ RSA *RSAPublicKey_dup(const RSA *rsa) {
}
RSA *RSAPrivateKey_dup(const RSA *rsa) {
return ASN1_item_dup(ASN1_ITEM_rptr(RSAPrivateKey), (RSA *) rsa);
uint8_t *der;
size_t der_len;
if (!RSA_private_key_to_bytes(&der, &der_len, rsa)) {
return NULL;
}
RSA *ret = RSA_private_key_from_bytes(der, der_len);
OPENSSL_free(der);
return ret;
}

View File

@ -742,6 +742,57 @@ static bool TestRecoverCRTParams() {
return true;
}
static bool TestASN1() {
// Test that private keys may be decoded.
ScopedRSA rsa(RSA_private_key_from_bytes(kKey1, sizeof(kKey1) - 1));
if (!rsa) {
return false;
}
// Test that the serialization round-trips.
uint8_t *der;
size_t der_len;
if (!RSA_private_key_to_bytes(&der, &der_len, rsa.get())) {
return false;
}
ScopedOpenSSLBytes delete_der(der);
if (der_len != sizeof(kKey1) - 1 || memcmp(der, kKey1, der_len) != 0) {
return false;
}
// Test that serializing public keys works.
if (!RSA_public_key_to_bytes(&der, &der_len, rsa.get())) {
return false;
}
delete_der.reset(der);
// Public keys may be parsed back out.
rsa.reset(RSA_public_key_from_bytes(der, der_len));
if (!rsa || rsa->p != NULL || rsa->q != NULL) {
return false;
}
// Serializing the result round-trips.
uint8_t *der2;
size_t der2_len;
if (!RSA_public_key_to_bytes(&der2, &der2_len, rsa.get())) {
return false;
}
ScopedOpenSSLBytes delete_der2(der2);
if (der_len != der2_len || memcmp(der, der2, der_len) != 0) {
return false;
}
// Public keys cannot be serialized as private keys.
if (RSA_private_key_to_bytes(&der, &der_len, rsa.get())) {
OPENSSL_free(der);
return false;
}
ERR_clear_error();
return true;
}
int main(int argc, char *argv[]) {
CRYPTO_library_init();
@ -763,7 +814,8 @@ int main(int argc, char *argv[]) {
!TestMultiPrimeKey(6, kSixPrimeKey, sizeof(kSixPrimeKey) - 1,
kSixPrimeEncryptedMessage,
sizeof(kSixPrimeEncryptedMessage)) ||
!TestMultiPrimeKeygen()) {
!TestMultiPrimeKeygen() ||
!TestASN1()) {
return 1;
}

View File

@ -64,8 +64,6 @@
#include <openssl/x509.h>
extern const ASN1_ITEM RSAPrivateKey_it;
int X509_verify(X509 *a, EVP_PKEY *r)
{
if (X509_ALGOR_cmp(a->sig_alg, a->cert_info->signature))
@ -244,12 +242,12 @@ int i2d_X509_REQ_bio(BIO *bp, X509_REQ *req)
#ifndef OPENSSL_NO_FP_API
RSA *d2i_RSAPrivateKey_fp(FILE *fp, RSA **rsa)
{
return ASN1_item_d2i_fp(ASN1_ITEM_rptr(RSAPrivateKey), fp, rsa);
return ASN1_d2i_fp_of(RSA, RSA_new, d2i_RSAPrivateKey, fp, rsa);
}
int i2d_RSAPrivateKey_fp(FILE *fp, RSA *rsa)
{
return ASN1_item_i2d_fp(ASN1_ITEM_rptr(RSAPrivateKey), fp, rsa);
return ASN1_i2d_fp_of_const(RSA, i2d_RSAPrivateKey, fp, rsa);
}
RSA *d2i_RSAPublicKey_fp(FILE *fp, RSA **rsa)
@ -277,12 +275,12 @@ int i2d_RSA_PUBKEY_fp(FILE *fp, RSA *rsa)
RSA *d2i_RSAPrivateKey_bio(BIO *bp, RSA **rsa)
{
return ASN1_item_d2i_bio(ASN1_ITEM_rptr(RSAPrivateKey), bp, rsa);
return ASN1_d2i_bio_of(RSA, RSA_new, d2i_RSAPrivateKey, bp, rsa);
}
int i2d_RSAPrivateKey_bio(BIO *bp, RSA *rsa)
{
return ASN1_item_i2d_bio(ASN1_ITEM_rptr(RSAPrivateKey), bp, rsa);
return ASN1_i2d_bio_of_const(RSA, i2d_RSAPrivateKey, bp, rsa);
}
RSA *d2i_RSAPublicKey_bio(BIO *bp, RSA **rsa)

View File

@ -353,19 +353,27 @@ OPENSSL_EXPORT int RSA_marshal_public_key(CBB *cbb, const RSA *rsa);
OPENSSL_EXPORT int RSA_public_key_to_bytes(uint8_t **out_bytes, size_t *out_len,
const RSA *rsa);
/* d2i_RSAPrivateKey parses an ASN.1, DER-encoded, RSA private key from |len|
* bytes at |*inp|. If |out| is not NULL then, on exit, a pointer to the result
* is in |*out|. If |*out| is already non-NULL on entry then the result is
* written directly into |*out|, otherwise a fresh |RSA| is allocated. On
* successful exit, |*inp| is advanced past the DER structure. It returns the
* result or NULL on error. */
OPENSSL_EXPORT RSA *d2i_RSAPrivateKey(RSA **out, const uint8_t **inp, long len);
/* RSA_parse_private_key parses a DER-encoded RSAPrivateKey structure (RFC 3447)
* from |cbs| and advances |cbs|. It returns a newly-allocated |RSA| or NULL on
* error. */
OPENSSL_EXPORT RSA *RSA_parse_private_key(CBS *cbs);
/* i2d_RSAPrivateKey marshals |in| to an ASN.1, DER structure. If |outp| is not
* NULL then the result is written to |*outp| and |*outp| is advanced just past
* the output. It returns the number of bytes in the result, whether written or
* not, or a negative value on error. */
OPENSSL_EXPORT int i2d_RSAPrivateKey(const RSA *in, uint8_t **outp);
/* RSA_private_key_from_bytes parses |in| as a DER-encoded RSAPrivateKey
* structure (RFC 3447). It returns a newly-allocated |RSA| or NULL on error. */
OPENSSL_EXPORT RSA *RSA_private_key_from_bytes(const uint8_t *in,
size_t in_len);
/* RSA_marshal_private_key marshals |rsa| as a DER-encoded RSAPrivateKey
* structure (RFC 3447) and appends the result to |cbb|. It returns one on
* success and zero on failure. */
OPENSSL_EXPORT int RSA_marshal_private_key(CBB *cbb, const RSA *rsa);
/* RSA_private_key_to_bytes marshals |rsa| as a DER-encoded RSAPrivateKey
* structure (RFC 3447) and, on success, sets |*out_bytes| to a newly allocated
* buffer containing the result and returns one. Otherwise, it returns zero. The
* result should be freed with |OPENSSL_free|. */
OPENSSL_EXPORT int RSA_private_key_to_bytes(uint8_t **out_bytes,
size_t *out_len, const RSA *rsa);
/* Deprecated functions. */
@ -384,6 +392,20 @@ OPENSSL_EXPORT RSA *d2i_RSAPublicKey(RSA **out, const uint8_t **inp, long len);
* not, or a negative value on error. */
OPENSSL_EXPORT int i2d_RSAPublicKey(const RSA *in, uint8_t **outp);
/* d2i_RSAPrivateKey parses an ASN.1, DER-encoded, RSA private key from |len|
* bytes at |*inp|. If |out| is not NULL then, on exit, a pointer to the result
* is in |*out|. If |*out| is already non-NULL on entry then the result is
* written directly into |*out|, otherwise a fresh |RSA| is allocated. On
* successful exit, |*inp| is advanced past the DER structure. It returns the
* result or NULL on error. */
OPENSSL_EXPORT RSA *d2i_RSAPrivateKey(RSA **out, const uint8_t **inp, long len);
/* i2d_RSAPrivateKey marshals |in| to an ASN.1, DER structure. If |outp| is not
* NULL then the result is written to |*outp| and |*outp| is advanced just past
* the output. It returns the number of bytes in the result, whether written or
* not, or a negative value on error. */
OPENSSL_EXPORT int i2d_RSAPrivateKey(const RSA *in, uint8_t **outp);
/* ex_data functions.
*
@ -509,8 +531,6 @@ struct rsa_meth_st {
typedef struct bn_blinding_st BN_BLINDING;
struct rsa_st {
/* version is only used during ASN.1 (de)serialisation. */
long version;
RSA_METHOD *meth;
BIGNUM *n;
@ -588,6 +608,12 @@ struct rsa_st {
#define RSA_F_RSA_public_key_to_bytes 132
#define RSA_F_i2d_RSAPublicKey 133
#define RSA_F_marshal_integer 134
#define RSA_F_RSA_marshal_private_key 135
#define RSA_F_RSA_parse_private_key 136
#define RSA_F_RSA_private_key_from_bytes 137
#define RSA_F_RSA_private_key_to_bytes 138
#define RSA_F_i2d_RSAPrivateKey 139
#define RSA_F_rsa_parse_additional_prime 140
#define RSA_R_BAD_E_VALUE 100
#define RSA_R_BAD_FIXED_HEADER_DECRYPT 101
#define RSA_R_BAD_PAD_BYTE_COUNT 102
@ -633,5 +659,6 @@ struct rsa_st {
#define RSA_R_CANNOT_RECOVER_MULTI_PRIME_KEY 142
#define RSA_R_BAD_ENCODING 143
#define RSA_R_ENCODE_ERROR 144
#define RSA_R_BAD_VERSION 145
#endif /* OPENSSL_HEADER_RSA_H */

View File

@ -649,9 +649,10 @@ OPENSSL_EXPORT int SSL_use_PrivateKey_ASN1(int type, SSL *ssl,
const uint8_t *d, long len);
OPENSSL_EXPORT int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx,
const uint8_t *d,
long len);
OPENSSL_EXPORT int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, uint8_t *d, long len);
const uint8_t *der,
size_t der_len);
OPENSSL_EXPORT int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der,
size_t der_len);
/* The following functions configure certificates or private keys but take as
* input files to read from. They return one on success and zero on failure. The

View File

@ -227,19 +227,14 @@ end:
return ret;
}
int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, uint8_t *d, long len) {
int ret;
const uint8_t *p;
RSA *rsa;
p = d;
rsa = d2i_RSAPrivateKey(NULL, &p, (long)len);
int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
RSA *rsa = RSA_private_key_from_bytes(der, der_len);
if (rsa == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_use_RSAPrivateKey_ASN1, ERR_R_ASN1_LIB);
return 0;
}
ret = SSL_use_RSAPrivateKey(ssl, rsa);
int ret = SSL_use_RSAPrivateKey(ssl, rsa);
RSA_free(rsa);
return ret;
}
@ -482,19 +477,15 @@ end:
return ret;
}
int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *d, long len) {
int ret;
const uint8_t *p;
RSA *rsa;
p = d;
rsa = d2i_RSAPrivateKey(NULL, &p, (long)len);
int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der,
size_t der_len) {
RSA *rsa = RSA_private_key_from_bytes(der, der_len);
if (rsa == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_CTX_use_RSAPrivateKey_ASN1, ERR_R_ASN1_LIB);
return 0;
}
ret = SSL_CTX_use_RSAPrivateKey(ctx, rsa);
int ret = SSL_CTX_use_RSAPrivateKey(ctx, rsa);
RSA_free(rsa);
return ret;
}

View File

@ -407,9 +407,9 @@ bool Speed(const std::vector<std::string> &args) {
selected = args[0];
}
RSA *key = NULL;
const uint8_t *inp = kDERRSAPrivate2048;
if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate2048Len)) {
RSA *key = RSA_private_key_from_bytes(kDERRSAPrivate2048,
kDERRSAPrivate2048Len);
if (key == NULL) {
fprintf(stderr, "Failed to parse RSA key.\n");
ERR_print_errors_fp(stderr);
return false;
@ -420,10 +420,9 @@ bool Speed(const std::vector<std::string> &args) {
}
RSA_free(key);
key = NULL;
inp = kDERRSAPrivate3Prime2048;
if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate3Prime2048Len)) {
key = RSA_private_key_from_bytes(kDERRSAPrivate3Prime2048,
kDERRSAPrivate3Prime2048Len);
if (key == NULL) {
fprintf(stderr, "Failed to parse RSA key.\n");
ERR_print_errors_fp(stderr);
return false;
@ -434,10 +433,9 @@ bool Speed(const std::vector<std::string> &args) {
}
RSA_free(key);
key = NULL;
inp = kDERRSAPrivate4096;
if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate4096Len)) {
key = RSA_private_key_from_bytes(kDERRSAPrivate4096,
kDERRSAPrivate4096Len);
if (key == NULL) {
fprintf(stderr, "Failed to parse 4096-bit RSA key.\n");
ERR_print_errors_fp(stderr);
return 1;