Convert base64_test to GTest.

BUG=129

Change-Id: If91d97ea653177d55d5c703f091366ddce24da60
Reviewed-on: https://boringssl-review.googlesource.com/15006
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This commit is contained in:
David Benjamin 2017-04-17 10:04:39 -04:00 committed by CQ bot account: commit-bot@chromium.org
parent 1ddd6e5365
commit 76dd18008c
6 changed files with 173 additions and 273 deletions

View File

@ -234,6 +234,7 @@ add_executable(
crypto_test
asn1/asn1_test.cc
base64/base64_test.cc
bio/bio_test.cc
chacha/chacha_test.cc
constant_time_test.cc

View File

@ -7,14 +7,3 @@ add_library(
base64.c
)
add_executable(
base64_test
base64_test.cc
$<TARGET_OBJECTS:test_support>
)
target_link_libraries(base64_test crypto)
add_dependencies(all_tests base64_test)

View File

@ -18,11 +18,14 @@
#include <string>
#include <vector>
#include <gtest/gtest.h>
#include <openssl/base64.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include "../internal.h"
#include "../test/test_util.h"
enum encoding_relation {
@ -100,7 +103,9 @@ static const TestVector kTestVectors[] = {
"=======\n"},
};
static const size_t kNumTests = OPENSSL_ARRAY_SIZE(kTestVectors);
class Base64Test : public testing::TestWithParam<TestVector> {};
INSTANTIATE_TEST_CASE_P(, Base64Test, testing::ValuesIn(kTestVectors));
// RemoveNewlines returns a copy of |in| with all '\n' characters removed.
static std::string RemoveNewlines(const char *in) {
@ -116,281 +121,187 @@ static std::string RemoveNewlines(const char *in) {
return ret;
}
static bool TestEncodeBlock() {
for (unsigned i = 0; i < kNumTests; i++) {
const TestVector *t = &kTestVectors[i];
if (t->relation != canonical) {
continue;
}
TEST_P(Base64Test, EncodeBlock) {
const TestVector &t = GetParam();
if (t.relation != canonical) {
return;
}
const size_t decoded_len = strlen(t->decoded);
const size_t decoded_len = strlen(t.decoded);
size_t max_encoded_len;
ASSERT_TRUE(EVP_EncodedLength(&max_encoded_len, decoded_len));
std::vector<uint8_t> out_vec(max_encoded_len);
uint8_t *out = out_vec.data();
size_t len = EVP_EncodeBlock(out, (const uint8_t *)t.decoded, decoded_len);
std::string encoded(RemoveNewlines(t.encoded));
EXPECT_EQ(Bytes(encoded), Bytes(out, len));
}
TEST_P(Base64Test, DecodeBase64) {
const TestVector &t = GetParam();
if (t.relation == valid) {
// The non-canonical encodings will generally have odd whitespace etc
// that |EVP_DecodeBase64| will reject.
return;
}
const std::string encoded(RemoveNewlines(t.encoded));
std::vector<uint8_t> out_vec(encoded.size());
uint8_t *out = out_vec.data();
size_t len;
int ok = EVP_DecodeBase64(out, &len, out_vec.size(),
(const uint8_t *)encoded.data(), encoded.size());
if (t.relation == invalid) {
EXPECT_FALSE(ok);
} else if (t.relation == canonical) {
ASSERT_TRUE(ok);
EXPECT_EQ(Bytes(t.decoded), Bytes(out, len));
}
}
TEST_P(Base64Test, DecodeBlock) {
const TestVector &t = GetParam();
if (t.relation != canonical) {
return;
}
std::string encoded(RemoveNewlines(t.encoded));
std::vector<uint8_t> out_vec(encoded.size());
uint8_t *out = out_vec.data();
// Test that the padding behavior of the deprecated API is preserved.
int ret =
EVP_DecodeBlock(out, (const uint8_t *)encoded.data(), encoded.size());
ASSERT_GE(ret, 0);
// EVP_DecodeBlock should ignore padding.
ASSERT_EQ(0, ret % 3);
size_t expected_len = strlen(t.decoded);
if (expected_len % 3 != 0) {
ret -= 3 - (expected_len % 3);
}
EXPECT_EQ(Bytes(t.decoded), Bytes(out, static_cast<size_t>(ret)));
}
TEST_P(Base64Test, EncodeDecode) {
const TestVector &t = GetParam();
EVP_ENCODE_CTX ctx;
const size_t decoded_len = strlen(t.decoded);
if (t.relation == canonical) {
size_t max_encoded_len;
if (!EVP_EncodedLength(&max_encoded_len, decoded_len)) {
fprintf(stderr, "#%u: EVP_EncodedLength failed\n", i);
return false;
}
ASSERT_TRUE(EVP_EncodedLength(&max_encoded_len, decoded_len));
// EVP_EncodeUpdate will output new lines every 64 bytes of output so we
// need slightly more than |EVP_EncodedLength| returns. */
max_encoded_len += (max_encoded_len + 63) >> 6;
std::vector<uint8_t> out_vec(max_encoded_len);
uint8_t *out = out_vec.data();
size_t len = EVP_EncodeBlock(out, (const uint8_t *)t->decoded, decoded_len);
std::string encoded(RemoveNewlines(t->encoded));
if (len != encoded.size() ||
OPENSSL_memcmp(out, encoded.data(), len) != 0) {
fprintf(stderr, "encode(\"%s\") = \"%.*s\", want \"%s\"\n",
t->decoded, (int)len, (const char*)out, encoded.c_str());
return false;
}
}
EVP_EncodeInit(&ctx);
return true;
}
static bool TestDecodeBase64() {
size_t len;
for (unsigned i = 0; i < kNumTests; i++) {
const TestVector *t = &kTestVectors[i];
if (t->relation == valid) {
// The non-canonical encodings will generally have odd whitespace etc
// that |EVP_DecodeBase64| will reject.
continue;
}
const std::string encoded(RemoveNewlines(t->encoded));
std::vector<uint8_t> out_vec(encoded.size());
uint8_t *out = out_vec.data();
int ok = EVP_DecodeBase64(out, &len, out_vec.size(),
(const uint8_t *)encoded.data(), encoded.size());
if (t->relation == invalid) {
if (ok) {
fprintf(stderr, "decode(\"%s\") didn't fail but should have\n",
encoded.c_str());
return false;
}
} else if (t->relation == canonical) {
if (!ok) {
fprintf(stderr, "decode(\"%s\") failed\n", encoded.c_str());
return false;
}
if (len != strlen(t->decoded) ||
OPENSSL_memcmp(out, t->decoded, len) != 0) {
fprintf(stderr, "decode(\"%s\") = \"%.*s\", want \"%s\"\n",
encoded.c_str(), (int)len, (const char*)out, t->decoded);
return false;
}
}
}
return true;
}
static bool TestDecodeBlock() {
for (unsigned i = 0; i < kNumTests; i++) {
const TestVector *t = &kTestVectors[i];
if (t->relation != canonical) {
continue;
}
std::string encoded(RemoveNewlines(t->encoded));
std::vector<uint8_t> out_vec(encoded.size());
uint8_t *out = out_vec.data();
// Test that the padding behavior of the deprecated API is preserved.
int ret =
EVP_DecodeBlock(out, (const uint8_t *)encoded.data(), encoded.size());
if (ret < 0) {
fprintf(stderr, "EVP_DecodeBlock(\"%s\") failed\n", t->encoded);
return false;
}
if (ret % 3 != 0) {
fprintf(stderr, "EVP_DecodeBlock did not ignore padding\n");
return false;
}
size_t expected_len = strlen(t->decoded);
if (expected_len % 3 != 0) {
ret -= 3 - (expected_len % 3);
}
if (static_cast<size_t>(ret) != strlen(t->decoded) ||
OPENSSL_memcmp(out, t->decoded, ret) != 0) {
fprintf(stderr, "decode(\"%s\") = \"%.*s\", want \"%s\"\n",
t->encoded, ret, (const char*)out, t->decoded);
return false;
}
}
return true;
}
static bool TestEncodeDecode() {
for (unsigned test_num = 0; test_num < kNumTests; test_num++) {
const TestVector *t = &kTestVectors[test_num];
EVP_ENCODE_CTX ctx;
const size_t decoded_len = strlen(t->decoded);
if (t->relation == canonical) {
size_t max_encoded_len;
if (!EVP_EncodedLength(&max_encoded_len, decoded_len)) {
fprintf(stderr, "#%u: EVP_EncodedLength failed\n", test_num);
return false;
}
// EVP_EncodeUpdate will output new lines every 64 bytes of output so we
// need slightly more than |EVP_EncodedLength| returns. */
max_encoded_len += (max_encoded_len + 63) >> 6;
std::vector<uint8_t> out_vec(max_encoded_len);
uint8_t *out = out_vec.data();
EVP_EncodeInit(&ctx);
int out_len;
EVP_EncodeUpdate(&ctx, out, &out_len,
reinterpret_cast<const uint8_t *>(t->decoded),
decoded_len);
size_t total = out_len;
EVP_EncodeFinal(&ctx, out + total, &out_len);
total += out_len;
if (total != strlen(t->encoded) ||
OPENSSL_memcmp(out, t->encoded, total) != 0) {
fprintf(stderr, "#%u: EVP_EncodeUpdate produced different output: '%s' (%u)\n",
test_num, out, static_cast<unsigned>(total));
return false;
}
}
std::vector<uint8_t> out_vec(strlen(t->encoded));
uint8_t *out = out_vec.data();
EVP_DecodeInit(&ctx);
int out_len;
size_t total = 0;
int ret = EVP_DecodeUpdate(&ctx, out, &out_len,
reinterpret_cast<const uint8_t *>(t->encoded),
strlen(t->encoded));
if (ret != -1) {
total = out_len;
ret = EVP_DecodeFinal(&ctx, out + total, &out_len);
total += out_len;
}
EVP_EncodeUpdate(&ctx, out, &out_len,
reinterpret_cast<const uint8_t *>(t.decoded),
decoded_len);
size_t total = out_len;
switch (t->relation) {
case canonical:
case valid:
if (ret == -1) {
fprintf(stderr, "#%u: EVP_DecodeUpdate failed\n", test_num);
return false;
}
if (total != decoded_len ||
OPENSSL_memcmp(out, t->decoded, decoded_len)) {
fprintf(stderr, "#%u: EVP_DecodeUpdate produced incorrect output\n",
test_num);
return false;
}
break;
EVP_EncodeFinal(&ctx, out + total, &out_len);
total += out_len;
case invalid:
if (ret != -1) {
fprintf(stderr, "#%u: EVP_DecodeUpdate was successful but shouldn't have been\n", test_num);
return false;
}
break;
}
EXPECT_EQ(Bytes(t.encoded), Bytes(out, total));
}
return true;
std::vector<uint8_t> out_vec(strlen(t.encoded));
uint8_t *out = out_vec.data();
EVP_DecodeInit(&ctx);
int out_len;
size_t total = 0;
int ret = EVP_DecodeUpdate(&ctx, out, &out_len,
reinterpret_cast<const uint8_t *>(t.encoded),
strlen(t.encoded));
if (ret != -1) {
total = out_len;
ret = EVP_DecodeFinal(&ctx, out + total, &out_len);
total += out_len;
}
switch (t.relation) {
case canonical:
case valid:
ASSERT_NE(-1, ret);
EXPECT_EQ(Bytes(t.decoded), Bytes(out, total));
break;
case invalid:
EXPECT_EQ(-1, ret);
break;
}
}
static bool TestDecodeUpdateStreaming() {
for (unsigned test_num = 0; test_num < kNumTests; test_num++) {
const TestVector *t = &kTestVectors[test_num];
if (t->relation == invalid) {
continue;
}
TEST_P(Base64Test, DecodeUpdateStreaming) {
const TestVector &t = GetParam();
if (t.relation == invalid) {
return;
}
const size_t encoded_len = strlen(t->encoded);
const size_t encoded_len = strlen(t.encoded);
std::vector<uint8_t> out(encoded_len);
std::vector<uint8_t> out(encoded_len);
for (size_t chunk_size = 1; chunk_size <= encoded_len; chunk_size++) {
size_t out_len = 0;
EVP_ENCODE_CTX ctx;
EVP_DecodeInit(&ctx);
for (size_t chunk_size = 1; chunk_size <= encoded_len; chunk_size++) {
SCOPED_TRACE(chunk_size);
size_t out_len = 0;
EVP_ENCODE_CTX ctx;
EVP_DecodeInit(&ctx);
for (size_t i = 0; i < encoded_len;) {
size_t todo = encoded_len - i;
if (todo > chunk_size) {
todo = chunk_size;
}
int bytes_written;
int ret = EVP_DecodeUpdate(
&ctx, out.data() + out_len, &bytes_written,
reinterpret_cast<const uint8_t *>(t->encoded + i), todo);
i += todo;
switch (ret) {
case -1:
fprintf(stderr, "#%u: EVP_DecodeUpdate returned error\n", test_num);
return 0;
case 0:
out_len += bytes_written;
if (i == encoded_len ||
(i + 1 == encoded_len && t->encoded[i] == '\n') ||
/* If there was an '-' in the input (which means “EOF”) then
* this loop will continue to test that |EVP_DecodeUpdate| will
* ignore the remainder of the input. */
strchr(t->encoded, '-') != nullptr) {
break;
}
fprintf(stderr,
"#%u: EVP_DecodeUpdate returned zero before end of "
"encoded data\n",
test_num);
return 0;
default:
out_len += bytes_written;
}
for (size_t i = 0; i < encoded_len;) {
size_t todo = encoded_len - i;
if (todo > chunk_size) {
todo = chunk_size;
}
int bytes_written;
int ret = EVP_DecodeFinal(&ctx, out.data() + out_len, &bytes_written);
if (ret == -1) {
fprintf(stderr, "#%u: EVP_DecodeFinal returned error\n", test_num);
return 0;
}
out_len += bytes_written;
int ret = EVP_DecodeUpdate(
&ctx, out.data() + out_len, &bytes_written,
reinterpret_cast<const uint8_t *>(t.encoded + i), todo);
i += todo;
if (out_len != strlen(t->decoded) ||
OPENSSL_memcmp(out.data(), t->decoded, out_len) != 0) {
fprintf(stderr, "#%u: incorrect output\n", test_num);
return 0;
switch (ret) {
case -1:
FAIL() << "EVP_DecodeUpdate failed";
case 0:
out_len += bytes_written;
if (i == encoded_len ||
(i + 1 == encoded_len && t.encoded[i] == '\n') ||
/* If there was an '-' in the input (which means “EOF”) then
* this loop will continue to test that |EVP_DecodeUpdate| will
* ignore the remainder of the input. */
strchr(t.encoded, '-') != nullptr) {
break;
}
FAIL()
<< "EVP_DecodeUpdate returned zero before end of encoded data.";
case 1:
out_len += bytes_written;
break;
default:
FAIL() << "Invalid return value " << ret;
}
}
int bytes_written;
int ret = EVP_DecodeFinal(&ctx, out.data() + out_len, &bytes_written);
ASSERT_NE(ret, -1);
out_len += bytes_written;
EXPECT_EQ(Bytes(t.decoded), Bytes(out.data(), out_len));
}
return true;
}
int main(void) {
CRYPTO_library_init();
if (!TestEncodeBlock() ||
!TestDecodeBase64() ||
!TestDecodeBlock() ||
!TestDecodeUpdateStreaming() ||
!TestEncodeDecode()) {
return 1;
}
printf("PASS\n");
return 0;
}

View File

@ -329,16 +329,13 @@ int CBS_peek_asn1_tag(const CBS *cbs, unsigned tag_value) {
int CBS_get_asn1_uint64(CBS *cbs, uint64_t *out) {
CBS bytes;
const uint8_t *data;
size_t i, len;
if (!CBS_get_asn1(cbs, &bytes, CBS_ASN1_INTEGER)) {
return 0;
}
*out = 0;
data = CBS_data(&bytes);
len = CBS_len(&bytes);
const uint8_t *data = CBS_data(&bytes);
size_t len = CBS_len(&bytes);
if (len == 0) {
/* An INTEGER is encoded with at least one octet. */
@ -355,7 +352,7 @@ int CBS_get_asn1_uint64(CBS *cbs, uint64_t *out) {
return 0;
}
for (i = 0; i < len; i++) {
for (size_t i = 0; i < len; i++) {
if ((*out >> 56) != 0) {
/* Too large to represent as a uint64_t. */
return 0;

View File

@ -21,6 +21,7 @@
#include <string.h>
#include <iosfwd>
#include <string>
#include "../internal.h"
@ -37,11 +38,13 @@ struct Bytes {
Bytes(const char *data_arg, size_t len_arg)
: data(reinterpret_cast<const uint8_t *>(data_arg)), len(len_arg) {}
Bytes(const char *str)
explicit Bytes(const char *str)
: data(reinterpret_cast<const uint8_t *>(str)), len(strlen(str)) {}
explicit Bytes(const std::string &str)
: data(reinterpret_cast<const uint8_t *>(str.data())), len(str.size()) {}
template <size_t N>
Bytes(const uint8_t (&array)[N]) : data(array), len(N) {}
explicit Bytes(const uint8_t (&array)[N]) : data(array), len(N) {}
const uint8_t *data;
size_t len;

View File

@ -1,6 +1,5 @@
[
["crypto/fipsmodule/aes_test", "crypto/fipsmodule/aes/aes_tests.txt"],
["crypto/base64/base64_test"],
["crypto/bn/bn_test", "crypto/bn/bn_tests.txt"],
["crypto/bytestring/bytestring_test"],
["crypto/cipher/aead_test", "aes-128-gcm", "crypto/cipher/test/aes_128_gcm_tests.txt"],