Always use Fermat's Little Theorem in ecdsa_sign_setup.

The case where ec_group_get_mont_data is NULL is only for arbitrary groups
which we now require to be prime order. BN_mod_exp_mont is fine with a NULL
BN_MONT_CTX. It will just compute it. Saves a bit of special-casing.

Also don't mark p-2 as BN_FLG_CONSTTIME as the exponent is public anyway.

Change-Id: Ie868576d52fc9ae5f5c9f2a4039a729151bf84c7
Reviewed-on: https://boringssl-review.googlesource.com/8307
Reviewed-by: Adam Langley <agl@google.com>
This commit is contained in:
David Benjamin 2016-06-16 14:58:36 -04:00 committed by Adam Langley
parent 40e3906234
commit 8cf79af7d1
4 changed files with 22 additions and 22 deletions

View File

@ -397,6 +397,12 @@ int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
return 0;
}
/* Require a cofactor of one for custom curves, which implies prime order. */
if (!BN_is_one(cofactor)) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COFACTOR);
return 0;
}
group->generator = EC_POINT_new(group);
return group->generator != NULL &&
EC_POINT_copy(group->generator, generator) &&

View File

@ -225,7 +225,7 @@ static int ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp,
BIGNUM **rp, const uint8_t *digest,
size_t digest_len) {
BN_CTX *ctx = NULL;
BIGNUM *k = NULL, *r = NULL, *X = NULL;
BIGNUM *k = NULL, *r = NULL, *tmp = NULL;
EC_POINT *tmp_point = NULL;
const EC_GROUP *group;
int ret = 0;
@ -246,8 +246,8 @@ static int ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp,
k = BN_new(); /* this value is later returned in *kinvp */
r = BN_new(); /* this value is later returned in *rp */
X = BN_new();
if (k == NULL || r == NULL || X == NULL) {
tmp = BN_new();
if (k == NULL || r == NULL || tmp == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
goto err;
}
@ -296,33 +296,25 @@ static int ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp,
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
goto err;
}
if (!EC_POINT_get_affine_coordinates_GFp(group, tmp_point, X, NULL, ctx)) {
if (!EC_POINT_get_affine_coordinates_GFp(group, tmp_point, tmp, NULL,
ctx)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
goto err;
}
if (!BN_nnmod(r, X, order, ctx)) {
if (!BN_nnmod(r, tmp, order, ctx)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
goto err;
}
} while (BN_is_zero(r));
/* compute the inverse of k */
if (ec_group_get_mont_data(group) != NULL) {
/* We want inverse in constant time, therefore we use that the order must
* be prime and thus we can use Fermat's Little Theorem. */
if (!BN_set_word(X, 2) ||
!BN_sub(X, order, X)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
goto err;
}
BN_set_flags(X, BN_FLG_CONSTTIME);
if (!BN_mod_exp_mont_consttime(k, k, X, order, ctx,
ec_group_get_mont_data(group))) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
goto err;
}
} else if (!BN_mod_inverse(k, k, order, ctx)) {
/* Compute the inverse of k. The order is a prime, so use Fermat's Little
* Theorem. */
if (!BN_set_word(tmp, 2) ||
!BN_sub(tmp, order, tmp) ||
/* Note |ec_group_get_mont_data| may return NULL but |BN_mod_exp_mont|
* allows it to be. */
!BN_mod_exp_mont(k, k, tmp, order, ctx, ec_group_get_mont_data(group))) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
goto err;
}
@ -344,7 +336,7 @@ err:
BN_CTX_free(ctx);
}
EC_POINT_free(tmp_point);
BN_clear_free(X);
BN_clear_free(tmp);
return ret;
}

View File

@ -9,6 +9,7 @@ EC,104,GROUP2PKPARAMETERS_FAILURE
EC,130,GROUP_MISMATCH
EC,105,I2D_ECPKPARAMETERS_FAILURE
EC,106,INCOMPATIBLE_OBJECTS
EC,131,INVALID_COFACTOR
EC,107,INVALID_COMPRESSED_POINT
EC,108,INVALID_COMPRESSION_BIT
EC,109,INVALID_ENCODING

View File

@ -392,5 +392,6 @@ OPENSSL_EXPORT size_t EC_get_builtin_curves(EC_builtin_curve *out_curves,
#define EC_R_DECODE_ERROR 128
#define EC_R_ENCODE_ERROR 129
#define EC_R_GROUP_MISMATCH 130
#define EC_R_INVALID_COFACTOR 131
#endif /* OPENSSL_HEADER_EC_H */