Ensure result affine coordinates in nistz256 are fully reduced.

Revert 3f3358ac15. Add documentation
clarifying the misunderstanding that lead to the mistake, and make use
of the recently-added |bn_set_words|.

Change-Id: I58814bace3db3b0b44e2dfe09c44918a4710c621
Reviewed-on: https://boringssl-review.googlesource.com/8831
Reviewed-by: Adam Langley <agl@google.com>
This commit is contained in:
Brian Smith 2016-07-18 12:17:18 -10:00 committed by Adam Langley
parent 93a034a7d7
commit c7fe3b9ac5

View File

@ -54,20 +54,28 @@ typedef struct {
typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
/* Functions implemented in assembly */
/* Arithmetic on field elements using Almost Montgomery Multiplication. The
* "almost" means, in particular, that the inputs and outputs of these
* functions are in the range [0, 2**BN_BITS2), not [0, P). Only
* |ecp_nistz256_from_mont| outputs a fully reduced value in [0, P). Almost
* Montgomery Arithmetic is described clearly in "Efficient Software
* Implementations of Modular Exponentiation" by Shay Gueron. */
/* Modular neg: res = -a mod P */
/* Modular neg: res = -a mod P, where res is not fully reduced. */
void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
/* Montgomery mul: res = a*b*2^-256 mod P */
/* Montgomery mul: res = a*b*2^-256 mod P, where res is not fully reduced. */
void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
const BN_ULONG a[P256_LIMBS],
const BN_ULONG b[P256_LIMBS]);
/* Montgomery sqr: res = a*a*2^-256 mod P */
/* Montgomery sqr: res = a*a*2^-256 mod P, where res is not fully reduced. */
void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
const BN_ULONG a[P256_LIMBS]);
/* Convert a number from Montgomery domain, by multiplying with 1 */
/* Convert a number from Montgomery domain, by multiplying with 1, where res
* will be fully reduced mod P. */
void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
const BN_ULONG in[P256_LIMBS]);
/* Functions that perform constant time access to the precomputed tables */
void ecp_nistz256_select_w5(P256_POINT *val, const P256_POINT *in_t, int index);
void ecp_nistz256_select_w7(P256_POINT_AFFINE *val,
@ -519,33 +527,30 @@ static int ecp_nistz256_get_affine(const EC_GROUP *group, const EC_POINT *point,
ecp_nistz256_mod_inverse(z_inv3, point_z);
ecp_nistz256_sqr_mont(z_inv2, z_inv3);
/* Instead of using |ecp_nistz256_from_mont| to convert the |x| coordinate
* and then calling |ecp_nistz256_from_mont| again to convert the |y|
* coordinate below, convert the common factor |z_inv2| once now, saving one
* reduction. */
ecp_nistz256_from_mont(z_inv2, z_inv2);
/* Unlike the |BN_mod_mul_montgomery|-based implementation, we cannot factor
* out the two calls to |ecp_nistz256_from_mont| into one call, because
* |ecp_nistz256_from_mont| must be the last operation to ensure that the
* result is fully reduced mod P. */
if (x != NULL) {
if (bn_wexpand(x, P256_LIMBS) == NULL) {
BN_ULONG x_aff[P256_LIMBS];
ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
ecp_nistz256_from_mont(x_aff, x_aff);
if (!bn_set_words(x, x_aff, P256_LIMBS)) {
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
return 0;
}
x->top = P256_LIMBS;
x->neg = 0;
ecp_nistz256_mul_mont(x->d, z_inv2, point_x);
bn_correct_top(x);
}
if (y != NULL) {
BN_ULONG y_aff[P256_LIMBS];
ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
if (bn_wexpand(y, P256_LIMBS) == NULL) {
ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
ecp_nistz256_from_mont(y_aff, y_aff);
if (!bn_set_words(y, y_aff, P256_LIMBS)) {
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
return 0;
}
y->top = P256_LIMBS;
y->neg = 0;
ecp_nistz256_mul_mont(y->d, z_inv3, point_y);
bn_correct_top(y);
}
return 1;