Replace |alloca| in |BN_mod_exp_mont_consttime|.

|alloca| is dangerous and poorly specified, according to any
description of |alloca|. It's also hard for some analysis tools to
reason about.

The code here assumed |alloca| is a macro, which isn't a valid
assumption. Depending on what which headers are included and what
toolchain is being used, |alloca| may or may not be defined as a macro,
and this might change over time if/when toolchains are updated. Or, we
might be doing static analysis and/or dynamic analysis with a different
configuration w.r.t. the availability of |alloca| than production
builds use.

Regardless, the |alloca| code path only kicked in when the inputs are
840 bits or smaller. Since the multi-prime RSA support was removed, for
interesting RSA key sizes the input will be at least 1024 bits and this
code path won't be triggered since powerbufLen will be larger than 3072
bytes in those cases. ECC inversion via Fermat's Little Theorem has its
own constant-time exponentiation so there are no cases where smaller
inputs need to be fast.

The RSAZ code avoids the |OPENSSL_malloc| for 2048-bit RSA keys.
Increasingly the RSAZ code won't be used though, since it will be
skipped over on Broadwell+ CPUs. Generalize the RSAZ stack allocation
to work for non-RSAZ code paths. In order to ensure this doesn't cause
too much stack usage on platforms where RSAZ wasn't already being used,
only do so on x86-64, which already has this large stack size
requirement due to RSAZ.

This change will make it easier to refactor |BN_mod_exp_mont_consttime|
to do that more safely and in a way that's more compatible with various
analysis tools.

This is also a step towards eliminating the |uintptr_t|-based alignment
hack.

Since this change increases the number of times |OPENSSL_free| is
skipped, I've added an explicit |OPENSSL_cleanse| to ensure the
zeroization is done. This should be done regardless of the other changes
here.

Change-Id: I8a161ce2720a26127e85fff7513f394883e50b2e
Reviewed-on: https://boringssl-review.googlesource.com/28584
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: David Benjamin <davidben@google.com>
This commit is contained in:
Brian Smith 2018-05-16 17:24:20 -10:00 committed by CQ bot account: commit-bot@chromium.org
parent 63e2a08123
commit fee8709f69
4 changed files with 47 additions and 23 deletions

View File

@ -914,9 +914,6 @@ static int copy_from_prebuf(BIGNUM *b, int top, unsigned char *buf, int idx,
return 1;
}
// BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
// line width of the target processor is at least the following value.
#define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH (64)
#define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \
(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
@ -1004,6 +1001,14 @@ int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
// implementation assumes it can use |top| to size R.
int top = mont->N.width;
#if defined(OPENSSL_BN_ASM_MONT5) || defined(RSAZ_ENABLED)
// Share one large stack-allocated buffer between the RSAZ and non-RSAZ code
// paths. If we were to use separate static buffers for each then there is
// some chance that both large buffers would be allocated on the stack,
// causing the stack space requirement to be truly huge (~10KB).
alignas(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH) BN_ULONG
storage[MOD_EXP_CTIME_STORAGE_LEN];
#endif
#ifdef RSAZ_ENABLED
// If the size of the operands allow it, perform the optimized
// RSAZ exponentiation. For further information see
@ -1013,7 +1018,8 @@ int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
if (!bn_wexpand(rr, 16)) {
goto err;
}
RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]);
RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0],
storage);
rr->width = 16;
rr->neg = 0;
ret = 1;
@ -1037,27 +1043,24 @@ int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
powerbufLen +=
sizeof(m->d[0]) *
(top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers));
#ifdef alloca
if (powerbufLen < 3072) {
powerbufFree = alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
} else
#if defined(OPENSSL_BN_ASM_MONT5)
if ((size_t)powerbufLen <= sizeof(storage)) {
powerbuf = (unsigned char *)storage;
}
// |storage| is more than large enough to handle 1024-bit inputs.
assert(powerbuf != NULL || top * BN_BITS2 > 1024);
#endif
{
if ((powerbufFree = OPENSSL_malloc(
powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) {
if (powerbuf == NULL) {
powerbufFree =
OPENSSL_malloc(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
if (powerbufFree == NULL) {
goto err;
}
powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
}
powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
OPENSSL_memset(powerbuf, 0, powerbufLen);
#ifdef alloca
if (powerbufLen < 3072) {
powerbufFree = NULL;
}
#endif
// lay down tmp and am right after powers table
tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
am.d = tmp.d + top;
@ -1264,6 +1267,9 @@ int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
err:
BN_MONT_CTX_free(new_mont);
if (powerbuf != NULL && powerbufFree == NULL) {
OPENSSL_cleanse(powerbuf, powerbufLen);
}
OPENSSL_free(powerbufFree);
return (ret);
}

View File

@ -185,6 +185,16 @@ extern "C" {
#error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
#endif
// |BN_mod_exp_mont_consttime| is based on the assumption that the L1 data
// cache line width of the target processor is at least the following value.
#define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH 64
// The number of |BN_ULONG|s needed for the |BN_mod_exp_mont_consttime| stack-
// allocated storage buffer. The buffer is just the right size for the RSAZ
// and is about ~1KB larger than what's necessary (4480 bytes) for 1024-bit
// inputs.
#define MOD_EXP_CTIME_STORAGE_LEN \
(((320u * 3u) + (32u * 9u * 16u)) / sizeof(BN_ULONG))
#define STATIC_BIGNUM(x) \
{ \

View File

@ -45,8 +45,13 @@ alignas(64) static const BN_ULONG two80[40] = {
void RSAZ_1024_mod_exp_avx2(BN_ULONG result_norm[16],
const BN_ULONG base_norm[16], const BN_ULONG exponent[16],
const BN_ULONG m_norm[16], const BN_ULONG RR[16], BN_ULONG k0) {
alignas(64) uint8_t storage[(320 * 3) + (32 * 9 * 16)]; // 5.5KB
const BN_ULONG m_norm[16], const BN_ULONG RR[16], BN_ULONG k0,
BN_ULONG storage_words[MOD_EXP_CTIME_STORAGE_LEN]) {
OPENSSL_COMPILE_ASSERT(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH % 64 == 0,
MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH_is_large_enough);
unsigned char *storage = (unsigned char *)storage_words;
assert((uintptr_t)storage % 64 == 0);
unsigned char *a_inv, *m, *result, *table_s = storage + (320 * 3),
*R2 = table_s; // borrow
if (((((uintptr_t)storage & 4095) + 320) >> 12) != 0) {

View File

@ -20,11 +20,14 @@
// RSAZ_1024_mod_exp_avx2 sets |result| to |base_norm| raised to |exponent|
// modulo |m_norm|. |base_norm| must be fully-reduced and |exponent| must have
// the high bit set (it is 1024 bits wide). |RR| and |k0| must be |RR| and |n0|,
// respectively, extracted from |m_norm|'s |BN_MONT_CTX|.
// respectively, extracted from |m_norm|'s |BN_MONT_CTX|. |storage_words| is a
// temporary buffer that must be aligned to |MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH|
// bytes.
void RSAZ_1024_mod_exp_avx2(BN_ULONG result[16], const BN_ULONG base_norm[16],
const BN_ULONG exponent[16],
const BN_ULONG m_norm[16], const BN_ULONG RR[16],
BN_ULONG k0);
BN_ULONG k0,
BN_ULONG storage_words[MOD_EXP_CTIME_STORAGE_LEN]);
// rsaz_avx2_eligible returns one if |RSAZ_1024_mod_exp_avx2| should be used and
// zero otherwise.