/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #if defined(OPENSSL_WINDOWS) #include #elif defined(OPENSSL_APPLE) #include #endif extern "C" { // These values are DER encoded, RSA private keys. extern const uint8_t kDERRSAPrivate2048[]; extern size_t kDERRSAPrivate2048Len; extern const uint8_t kDERRSAPrivate4096[]; extern size_t kDERRSAPrivate4096Len; } // TimeResults represents the results of benchmarking a function. struct TimeResults { // num_calls is the number of function calls done in the time period. unsigned num_calls; // us is the number of microseconds that elapsed in the time period. unsigned us; void Print(const std::string &description) { printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls, description.c_str(), us, (static_cast(num_calls) / us) * 1000000); } void PrintWithBytes(const std::string &description, size_t bytes_per_call) { printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n", num_calls, description.c_str(), us, (static_cast(num_calls) / us) * 1000000, static_cast(bytes_per_call * num_calls) / us); } }; #if defined(OPENSSL_WINDOWS) static uint64_t time_now() { return GetTickCount64() * 1000; } #elif defined(OPENSSL_APPLE) static uint64_t time_now() { struct timeval tv; uint64_t ret; gettimeofday(&tv, NULL); ret = tv.tv_sec; ret *= 1000000; ret += tv.tv_usec; return ret; } #else static uint64_t time_now() { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); uint64_t ret = ts.tv_sec; ret *= 1000000; ret += ts.tv_nsec / 1000; return ret; } #endif static bool TimeFunction(TimeResults *results, std::function func) { // kTotalMS is the total amount of time that we'll aim to measure a function // for. static const uint64_t kTotalUS = 3000000; uint64_t start = time_now(), now, delta; unsigned done = 0, iterations_between_time_checks; if (!func()) { return false; } now = time_now(); delta = now - start; if (delta == 0) { iterations_between_time_checks = 250; } else { // Aim for about 100ms between time checks. iterations_between_time_checks = static_cast(100000) / static_cast(delta); if (iterations_between_time_checks > 1000) { iterations_between_time_checks = 1000; } else if (iterations_between_time_checks < 1) { iterations_between_time_checks = 1; } } for (;;) { for (unsigned i = 0; i < iterations_between_time_checks; i++) { if (!func()) { return false; } done++; } now = time_now(); if (now - start > kTotalUS) { break; } } results->us = now - start; results->num_calls = done; return true; } static bool SpeedRSA(const std::string& key_name, RSA *key) { TimeResults results; std::unique_ptr sig(new uint8_t[RSA_size(key)]); const uint8_t fake_sha256_hash[32] = {0}; unsigned sig_len; if (!TimeFunction(&results, [key, &sig, &fake_sha256_hash, &sig_len]() -> bool { return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), sig.get(), &sig_len, key); })) { fprintf(stderr, "RSA_sign failed.\n"); BIO_print_errors_fp(stderr); return false; } results.Print(key_name + " signing"); if (!TimeFunction(&results, [key, &fake_sha256_hash, &sig, sig_len]() -> bool { return RSA_verify(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), sig.get(), sig_len, key); })) { fprintf(stderr, "RSA_verify failed.\n"); BIO_print_errors_fp(stderr); return false; } results.Print(key_name + " verify"); return true; } template struct free_functor { void operator()(T* ptr) { free(ptr); } }; #if defined(OPENSSL_WINDOWS) #define AllocAligned malloc #else uint8_t *AllocAligned(size_t size) { void *ptr; if (posix_memalign(&ptr, 64, size)) { abort(); } return static_cast(ptr); } #endif static bool SpeedAEADChunk(const EVP_AEAD *aead, const std::string &name, size_t chunk_len, size_t ad_len) { EVP_AEAD_CTX ctx; const size_t key_len = EVP_AEAD_key_length(aead); const size_t nonce_len = EVP_AEAD_nonce_length(aead); const size_t overhead_len = EVP_AEAD_max_overhead(aead); std::unique_ptr key(new uint8_t[key_len]); memset(key.get(), 0, key_len); std::unique_ptr nonce(new uint8_t[nonce_len]); memset(nonce.get(), 0, nonce_len); std::unique_ptr> in(AllocAligned(chunk_len)); memset(in.get(), 0, chunk_len); std::unique_ptr> out( AllocAligned(chunk_len + overhead_len)); memset(out.get(), 0, chunk_len + overhead_len); std::unique_ptr ad(new uint8_t[ad_len]); memset(ad.get(), 0, ad_len); if (!EVP_AEAD_CTX_init(&ctx, aead, key.get(), key_len, EVP_AEAD_DEFAULT_TAG_LENGTH, NULL)) { fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n"); BIO_print_errors_fp(stderr); return false; } TimeResults results; if (!TimeFunction(&results, [chunk_len, overhead_len, nonce_len, ad_len, &in, &out, &ctx, &nonce, &ad]() -> bool { size_t out_len; return EVP_AEAD_CTX_seal( &ctx, out.get(), &out_len, chunk_len + overhead_len, nonce.get(), nonce_len, in.get(), chunk_len, ad.get(), ad_len); })) { fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n"); BIO_print_errors_fp(stderr); return false; } results.PrintWithBytes(name + " seal", chunk_len); EVP_AEAD_CTX_cleanup(&ctx); return true; } static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name, size_t ad_len) { return SpeedAEADChunk(aead, name + " (16 bytes)", 16, ad_len) && SpeedAEADChunk(aead, name + " (1350 bytes)", 1350, ad_len) && SpeedAEADChunk(aead, name + " (8192 bytes)", 8192, ad_len); } static bool SpeedHashChunk(const EVP_MD *md, const std::string &name, size_t chunk_len) { EVP_MD_CTX *ctx = EVP_MD_CTX_create(); uint8_t scratch[8192]; if (chunk_len > sizeof(scratch)) { return false; } TimeResults results; if (!TimeFunction(&results, [ctx, md, chunk_len, &scratch]() -> bool { uint8_t digest[EVP_MAX_MD_SIZE]; unsigned int md_len; return EVP_DigestInit_ex(ctx, md, NULL /* ENGINE */) && EVP_DigestUpdate(ctx, scratch, chunk_len) && EVP_DigestFinal_ex(ctx, digest, &md_len); })) { fprintf(stderr, "EVP_DigestInit_ex failed.\n"); BIO_print_errors_fp(stderr); return false; } results.PrintWithBytes(name, chunk_len); EVP_MD_CTX_destroy(ctx); return true; } static bool SpeedHash(const EVP_MD *md, const std::string &name) { return SpeedHashChunk(md, name + " (16 bytes)", 16) && SpeedHashChunk(md, name + " (256 bytes)", 256) && SpeedHashChunk(md, name + " (8192 bytes)", 8192); } bool Speed(const std::vector &args) { const uint8_t *inp; RSA *key = NULL; inp = kDERRSAPrivate2048; if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate2048Len)) { fprintf(stderr, "Failed to parse RSA key.\n"); BIO_print_errors_fp(stderr); return false; } if (!SpeedRSA("RSA 2048", key)) { return false; } RSA_free(key); key = NULL; inp = kDERRSAPrivate4096; if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate4096Len)) { fprintf(stderr, "Failed to parse 4096-bit RSA key.\n"); BIO_print_errors_fp(stderr); return 1; } if (!SpeedRSA("RSA 4096", key)) { return false; } RSA_free(key); // kTLSADLen is the number of bytes of additional data that TLS passes to // AEADs. static const size_t kTLSADLen = 13; // kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs. // These are AEADs that weren't originally defined as AEADs, but which we use // via the AEAD interface. In order for that to work, they have some TLS // knowledge in them and construct a couple of the AD bytes internally. static const size_t kLegacyADLen = kTLSADLen - 2; if (!SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen) || !SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen) || !SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen) || !SpeedAEAD(EVP_aead_rc4_md5_tls(), "RC4-MD5", kLegacyADLen) || !SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1", kLegacyADLen) || !SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1", kLegacyADLen) || !SpeedHash(EVP_sha1(), "SHA-1") || !SpeedHash(EVP_sha256(), "SHA-256") || !SpeedHash(EVP_sha512(), "SHA-512")) { return false; } return 0; }