// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package main import ( "bytes" "crypto" "crypto/ecdsa" "crypto/rsa" "crypto/subtle" "crypto/x509" "encoding/asn1" "errors" "fmt" "io" "math/big" "net" "strconv" ) type clientHandshakeState struct { c *Conn serverHello *serverHelloMsg hello *clientHelloMsg suite *cipherSuite finishedHash finishedHash masterSecret []byte session *ClientSessionState } func (c *Conn) clientHandshake() error { if c.config == nil { c.config = defaultConfig() } if len(c.config.ServerName) == 0 && !c.config.InsecureSkipVerify { return errors.New("tls: either ServerName or InsecureSkipVerify must be specified in the tls.Config") } hello := &clientHelloMsg{ vers: c.config.maxVersion(), compressionMethods: []uint8{compressionNone}, random: make([]byte, 32), ocspStapling: true, serverName: c.config.ServerName, supportedCurves: c.config.curvePreferences(), supportedPoints: []uint8{pointFormatUncompressed}, nextProtoNeg: len(c.config.NextProtos) > 0, secureRenegotiation: true, duplicateExtension: c.config.Bugs.DuplicateExtension, } possibleCipherSuites := c.config.cipherSuites() hello.cipherSuites = make([]uint16, 0, len(possibleCipherSuites)) NextCipherSuite: for _, suiteId := range possibleCipherSuites { for _, suite := range cipherSuites { if suite.id != suiteId { continue } // Don't advertise TLS 1.2-only cipher suites unless // we're attempting TLS 1.2. if hello.vers < VersionTLS12 && suite.flags&suiteTLS12 != 0 { continue } hello.cipherSuites = append(hello.cipherSuites, suiteId) continue NextCipherSuite } } _, err := io.ReadFull(c.config.rand(), hello.random) if err != nil { c.sendAlert(alertInternalError) return errors.New("tls: short read from Rand: " + err.Error()) } if hello.vers >= VersionTLS12 { hello.signatureAndHashes = supportedSKXSignatureAlgorithms } var session *ClientSessionState var cacheKey string sessionCache := c.config.ClientSessionCache if c.config.SessionTicketsDisabled { sessionCache = nil } if sessionCache != nil { hello.ticketSupported = true // Try to resume a previously negotiated TLS session, if // available. cacheKey = clientSessionCacheKey(c.conn.RemoteAddr(), c.config) candidateSession, ok := sessionCache.Get(cacheKey) if ok { // Check that the ciphersuite/version used for the // previous session are still valid. cipherSuiteOk := false for _, id := range hello.cipherSuites { if id == candidateSession.cipherSuite { cipherSuiteOk = true break } } versOk := candidateSession.vers >= c.config.minVersion() && candidateSession.vers <= c.config.maxVersion() if versOk && cipherSuiteOk { session = candidateSession } } } if session != nil { hello.sessionTicket = session.sessionTicket // A random session ID is used to detect when the // server accepted the ticket and is resuming a session // (see RFC 5077). hello.sessionId = make([]byte, 16) if _, err := io.ReadFull(c.config.rand(), hello.sessionId); err != nil { c.sendAlert(alertInternalError) return errors.New("tls: short read from Rand: " + err.Error()) } } c.writeRecord(recordTypeHandshake, hello.marshal()) msg, err := c.readHandshake() if err != nil { return err } serverHello, ok := msg.(*serverHelloMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(serverHello, msg) } vers, ok := c.config.mutualVersion(serverHello.vers) if !ok || vers < VersionTLS10 { // TLS 1.0 is the minimum version supported as a client. c.sendAlert(alertProtocolVersion) return fmt.Errorf("tls: server selected unsupported protocol version %x", serverHello.vers) } c.vers = vers c.haveVers = true suite := mutualCipherSuite(c.config.cipherSuites(), serverHello.cipherSuite) if suite == nil { c.sendAlert(alertHandshakeFailure) return fmt.Errorf("tls: server selected an unsupported cipher suite") } hs := &clientHandshakeState{ c: c, serverHello: serverHello, hello: hello, suite: suite, finishedHash: newFinishedHash(c.vers, suite), session: session, } hs.finishedHash.Write(hs.hello.marshal()) hs.finishedHash.Write(hs.serverHello.marshal()) if c.config.Bugs.EarlyChangeCipherSpec > 0 { hs.establishKeys() c.writeRecord(recordTypeChangeCipherSpec, []byte{1}) } isResume, err := hs.processServerHello() if err != nil { return err } if isResume { if c.config.Bugs.EarlyChangeCipherSpec == 0 { if err := hs.establishKeys(); err != nil { return err } } if err := hs.readSessionTicket(); err != nil { return err } if err := hs.readFinished(); err != nil { return err } if err := hs.sendFinished(); err != nil { return err } } else { if err := hs.doFullHandshake(); err != nil { return err } if err := hs.establishKeys(); err != nil { return err } if err := hs.sendFinished(); err != nil { return err } if err := hs.readSessionTicket(); err != nil { return err } if err := hs.readFinished(); err != nil { return err } } if sessionCache != nil && hs.session != nil && session != hs.session { sessionCache.Put(cacheKey, hs.session) } c.didResume = isResume c.handshakeComplete = true c.cipherSuite = suite.id return nil } func (hs *clientHandshakeState) doFullHandshake() error { c := hs.c msg, err := c.readHandshake() if err != nil { return err } certMsg, ok := msg.(*certificateMsg) if !ok || len(certMsg.certificates) == 0 { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(certMsg, msg) } hs.finishedHash.Write(certMsg.marshal()) certs := make([]*x509.Certificate, len(certMsg.certificates)) for i, asn1Data := range certMsg.certificates { cert, err := x509.ParseCertificate(asn1Data) if err != nil { c.sendAlert(alertBadCertificate) return errors.New("tls: failed to parse certificate from server: " + err.Error()) } certs[i] = cert } if !c.config.InsecureSkipVerify { opts := x509.VerifyOptions{ Roots: c.config.RootCAs, CurrentTime: c.config.time(), DNSName: c.config.ServerName, Intermediates: x509.NewCertPool(), } for i, cert := range certs { if i == 0 { continue } opts.Intermediates.AddCert(cert) } c.verifiedChains, err = certs[0].Verify(opts) if err != nil { c.sendAlert(alertBadCertificate) return err } } switch certs[0].PublicKey.(type) { case *rsa.PublicKey, *ecdsa.PublicKey: break default: c.sendAlert(alertUnsupportedCertificate) return fmt.Errorf("tls: server's certificate contains an unsupported type of public key: %T", certs[0].PublicKey) } c.peerCertificates = certs if hs.serverHello.ocspStapling { msg, err = c.readHandshake() if err != nil { return err } cs, ok := msg.(*certificateStatusMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(cs, msg) } hs.finishedHash.Write(cs.marshal()) if cs.statusType == statusTypeOCSP { c.ocspResponse = cs.response } } msg, err = c.readHandshake() if err != nil { return err } keyAgreement := hs.suite.ka(c.vers) skx, ok := msg.(*serverKeyExchangeMsg) if ok { hs.finishedHash.Write(skx.marshal()) err = keyAgreement.processServerKeyExchange(c.config, hs.hello, hs.serverHello, certs[0], skx) if err != nil { c.sendAlert(alertUnexpectedMessage) return err } msg, err = c.readHandshake() if err != nil { return err } } var chainToSend *Certificate var certRequested bool certReq, ok := msg.(*certificateRequestMsg) if ok { certRequested = true // RFC 4346 on the certificateAuthorities field: // A list of the distinguished names of acceptable certificate // authorities. These distinguished names may specify a desired // distinguished name for a root CA or for a subordinate CA; // thus, this message can be used to describe both known roots // and a desired authorization space. If the // certificate_authorities list is empty then the client MAY // send any certificate of the appropriate // ClientCertificateType, unless there is some external // arrangement to the contrary. hs.finishedHash.Write(certReq.marshal()) var rsaAvail, ecdsaAvail bool for _, certType := range certReq.certificateTypes { switch certType { case CertTypeRSASign: rsaAvail = true case CertTypeECDSASign: ecdsaAvail = true } } // We need to search our list of client certs for one // where SignatureAlgorithm is RSA and the Issuer is in // certReq.certificateAuthorities findCert: for i, chain := range c.config.Certificates { if !rsaAvail && !ecdsaAvail { continue } for j, cert := range chain.Certificate { x509Cert := chain.Leaf // parse the certificate if this isn't the leaf // node, or if chain.Leaf was nil if j != 0 || x509Cert == nil { if x509Cert, err = x509.ParseCertificate(cert); err != nil { c.sendAlert(alertInternalError) return errors.New("tls: failed to parse client certificate #" + strconv.Itoa(i) + ": " + err.Error()) } } switch { case rsaAvail && x509Cert.PublicKeyAlgorithm == x509.RSA: case ecdsaAvail && x509Cert.PublicKeyAlgorithm == x509.ECDSA: default: continue findCert } if len(certReq.certificateAuthorities) == 0 { // they gave us an empty list, so just take the // first RSA cert from c.config.Certificates chainToSend = &chain break findCert } for _, ca := range certReq.certificateAuthorities { if bytes.Equal(x509Cert.RawIssuer, ca) { chainToSend = &chain break findCert } } } } msg, err = c.readHandshake() if err != nil { return err } } shd, ok := msg.(*serverHelloDoneMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(shd, msg) } hs.finishedHash.Write(shd.marshal()) // If the server requested a certificate then we have to send a // Certificate message, even if it's empty because we don't have a // certificate to send. if certRequested { certMsg = new(certificateMsg) if chainToSend != nil { certMsg.certificates = chainToSend.Certificate } hs.finishedHash.Write(certMsg.marshal()) c.writeRecord(recordTypeHandshake, certMsg.marshal()) } preMasterSecret, ckx, err := keyAgreement.generateClientKeyExchange(c.config, hs.hello, certs[0]) if err != nil { c.sendAlert(alertInternalError) return err } if ckx != nil { if c.config.Bugs.EarlyChangeCipherSpec < 2 { hs.finishedHash.Write(ckx.marshal()) } c.writeRecord(recordTypeHandshake, ckx.marshal()) } if chainToSend != nil { var signed []byte certVerify := &certificateVerifyMsg{ hasSignatureAndHash: c.vers >= VersionTLS12, } switch key := c.config.Certificates[0].PrivateKey.(type) { case *ecdsa.PrivateKey: certVerify.signatureAndHash, err = hs.finishedHash.selectClientCertSignatureAlgorithm(certReq.signatureAndHashes, signatureECDSA) if err != nil { break } var digest []byte digest, _, err = hs.finishedHash.hashForClientCertificate(certVerify.signatureAndHash) if err != nil { break } var r, s *big.Int r, s, err = ecdsa.Sign(c.config.rand(), key, digest) if err == nil { signed, err = asn1.Marshal(ecdsaSignature{r, s}) } case *rsa.PrivateKey: certVerify.signatureAndHash, err = hs.finishedHash.selectClientCertSignatureAlgorithm(certReq.signatureAndHashes, signatureRSA) if err != nil { break } var digest []byte var hashFunc crypto.Hash digest, hashFunc, err = hs.finishedHash.hashForClientCertificate(certVerify.signatureAndHash) if err != nil { break } signed, err = rsa.SignPKCS1v15(c.config.rand(), key, hashFunc, digest) default: err = errors.New("unknown private key type") } if err != nil { c.sendAlert(alertInternalError) return errors.New("tls: failed to sign handshake with client certificate: " + err.Error()) } certVerify.signature = signed hs.finishedHash.Write(certVerify.marshal()) c.writeRecord(recordTypeHandshake, certVerify.marshal()) } hs.masterSecret = masterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.hello.random, hs.serverHello.random) return nil } func (hs *clientHandshakeState) establishKeys() error { c := hs.c clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV := keysFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.hello.random, hs.serverHello.random, hs.suite.macLen, hs.suite.keyLen, hs.suite.ivLen) var clientCipher, serverCipher interface{} var clientHash, serverHash macFunction if hs.suite.cipher != nil { clientCipher = hs.suite.cipher(clientKey, clientIV, false /* not for reading */) clientHash = hs.suite.mac(c.vers, clientMAC) serverCipher = hs.suite.cipher(serverKey, serverIV, true /* for reading */) serverHash = hs.suite.mac(c.vers, serverMAC) } else { clientCipher = hs.suite.aead(clientKey, clientIV) serverCipher = hs.suite.aead(serverKey, serverIV) } c.in.prepareCipherSpec(c.vers, serverCipher, serverHash) c.out.prepareCipherSpec(c.vers, clientCipher, clientHash) return nil } func (hs *clientHandshakeState) serverResumedSession() bool { // If the server responded with the same sessionId then it means the // sessionTicket is being used to resume a TLS session. return hs.session != nil && hs.hello.sessionId != nil && bytes.Equal(hs.serverHello.sessionId, hs.hello.sessionId) } func (hs *clientHandshakeState) processServerHello() (bool, error) { c := hs.c if hs.serverHello.compressionMethod != compressionNone { c.sendAlert(alertUnexpectedMessage) return false, errors.New("tls: server selected unsupported compression format") } if !hs.hello.nextProtoNeg && hs.serverHello.nextProtoNeg { c.sendAlert(alertHandshakeFailure) return false, errors.New("server advertised unrequested NPN extension") } if hs.serverResumedSession() { // Restore masterSecret and peerCerts from previous state hs.masterSecret = hs.session.masterSecret c.peerCertificates = hs.session.serverCertificates return true, nil } return false, nil } func (hs *clientHandshakeState) readFinished() error { c := hs.c c.readRecord(recordTypeChangeCipherSpec) if err := c.in.error(); err != nil { return err } msg, err := c.readHandshake() if err != nil { return err } serverFinished, ok := msg.(*finishedMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(serverFinished, msg) } if c.config.Bugs.EarlyChangeCipherSpec == 0 { verify := hs.finishedHash.serverSum(hs.masterSecret) if len(verify) != len(serverFinished.verifyData) || subtle.ConstantTimeCompare(verify, serverFinished.verifyData) != 1 { c.sendAlert(alertHandshakeFailure) return errors.New("tls: server's Finished message was incorrect") } } hs.finishedHash.Write(serverFinished.marshal()) return nil } func (hs *clientHandshakeState) readSessionTicket() error { if !hs.serverHello.ticketSupported { return nil } c := hs.c msg, err := c.readHandshake() if err != nil { return err } sessionTicketMsg, ok := msg.(*newSessionTicketMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(sessionTicketMsg, msg) } hs.finishedHash.Write(sessionTicketMsg.marshal()) hs.session = &ClientSessionState{ sessionTicket: sessionTicketMsg.ticket, vers: c.vers, cipherSuite: hs.suite.id, masterSecret: hs.masterSecret, serverCertificates: c.peerCertificates, } return nil } func (hs *clientHandshakeState) sendFinished() error { c := hs.c if !c.config.Bugs.SkipChangeCipherSpec && c.config.Bugs.EarlyChangeCipherSpec == 0 { c.writeRecord(recordTypeChangeCipherSpec, []byte{1}) } if hs.serverHello.nextProtoNeg { nextProto := new(nextProtoMsg) proto, fallback := mutualProtocol(c.config.NextProtos, hs.serverHello.nextProtos) nextProto.proto = proto c.clientProtocol = proto c.clientProtocolFallback = fallback hs.finishedHash.Write(nextProto.marshal()) c.writeRecord(recordTypeHandshake, nextProto.marshal()) } finished := new(finishedMsg) if c.config.Bugs.EarlyChangeCipherSpec == 2 { finished.verifyData = hs.finishedHash.clientSum(nil) } else { finished.verifyData = hs.finishedHash.clientSum(hs.masterSecret) } hs.finishedHash.Write(finished.marshal()) c.writeRecord(recordTypeHandshake, finished.marshal()) return nil } // clientSessionCacheKey returns a key used to cache sessionTickets that could // be used to resume previously negotiated TLS sessions with a server. func clientSessionCacheKey(serverAddr net.Addr, config *Config) string { if len(config.ServerName) > 0 { return config.ServerName } return serverAddr.String() } // mutualProtocol finds the mutual Next Protocol Negotiation protocol given the // set of client and server supported protocols. The set of client supported // protocols must not be empty. It returns the resulting protocol and flag // indicating if the fallback case was reached. func mutualProtocol(clientProtos, serverProtos []string) (string, bool) { for _, s := range serverProtos { for _, c := range clientProtos { if s == c { return s, false } } } return clientProtos[0], true }