/* ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include #include #include #include namespace bssl { enum Api { kEncodedApi, kRawApi, }; // VerifyECDSASig returns true on success, false on failure. static bool VerifyECDSASig(Api api, const uint8_t *digest, size_t digest_len, const ECDSA_SIG *ecdsa_sig, EC_KEY *eckey, int expected_result) { int actual_result; switch (api) { case kEncodedApi: { uint8_t *der; size_t der_len; if (!ECDSA_SIG_to_bytes(&der, &der_len, ecdsa_sig)) { return false; } ScopedBytes delete_der(der); actual_result = ECDSA_verify(0, digest, digest_len, der, der_len, eckey); break; } case kRawApi: actual_result = ECDSA_do_verify(digest, digest_len, ecdsa_sig, eckey); break; default: return false; } return expected_result == actual_result; } // TestTamperedSig verifies that signature verification fails when a valid // signature is tampered with. |ecdsa_sig| must be a valid signature, which will // be modified. TestTamperedSig returns true on success, false on failure. static bool TestTamperedSig(FILE *out, Api api, const uint8_t *digest, size_t digest_len, ECDSA_SIG *ecdsa_sig, EC_KEY *eckey, const BIGNUM *order) { // Modify a single byte of the signature: to ensure we don't // garble the ASN1 structure, we read the raw signature and // modify a byte in one of the bignums directly. // Store the two BIGNUMs in raw_buf. size_t r_len = BN_num_bytes(ecdsa_sig->r); size_t s_len = BN_num_bytes(ecdsa_sig->s); size_t bn_len = BN_num_bytes(order); if (r_len > bn_len || s_len > bn_len) { return false; } size_t buf_len = 2 * bn_len; std::vector raw_buf(buf_len); // Pad the bignums with leading zeroes. if (!BN_bn2bin_padded(raw_buf.data(), bn_len, ecdsa_sig->r) || !BN_bn2bin_padded(raw_buf.data() + bn_len, bn_len, ecdsa_sig->s)) { return false; } // Modify a single byte in the buffer. size_t offset = raw_buf[10] % buf_len; uint8_t dirt = raw_buf[11] ? raw_buf[11] : 1; raw_buf[offset] ^= dirt; // Now read the BIGNUMs back in from raw_buf. if (BN_bin2bn(raw_buf.data(), bn_len, ecdsa_sig->r) == NULL || BN_bin2bn(raw_buf.data() + bn_len, bn_len, ecdsa_sig->s) == NULL || !VerifyECDSASig(api, digest, digest_len, ecdsa_sig, eckey, 0)) { return false; } // Sanity check: Undo the modification and verify signature. raw_buf[offset] ^= dirt; if (BN_bin2bn(raw_buf.data(), bn_len, ecdsa_sig->r) == NULL || BN_bin2bn(raw_buf.data() + bn_len, bn_len, ecdsa_sig->s) == NULL || !VerifyECDSASig(api, digest, digest_len, ecdsa_sig, eckey, 1)) { return false; } return true; } static bool TestBuiltin(FILE *out) { // Fill digest values with some random data. uint8_t digest[20], wrong_digest[20]; if (!RAND_bytes(digest, 20) || !RAND_bytes(wrong_digest, 20)) { fprintf(out, "ERROR: unable to get random data\n"); return false; } static const struct { int nid; const char *name; } kCurves[] = { { NID_secp224r1, "secp224r1" }, { NID_X9_62_prime256v1, "secp256r1" }, { NID_secp384r1, "secp384r1" }, { NID_secp521r1, "secp521r1" }, { NID_undef, NULL } }; // Create and verify ECDSA signatures with every available curve. fputs("\ntesting ECDSA_sign(), ECDSA_verify(), ECDSA_do_sign(), and " "ECDSA_do_verify() with some internal curves:\n", out); for (size_t n = 0; kCurves[n].nid != NID_undef; n++) { fprintf(out, "%s: ", kCurves[n].name); int nid = kCurves[n].nid; ScopedEC_GROUP group(EC_GROUP_new_by_curve_name(nid)); if (!group) { fprintf(out, " failed\n"); return false; } const BIGNUM *order = EC_GROUP_get0_order(group.get()); if (BN_num_bits(order) < 160) { // Too small to test. fprintf(out, " skipped\n"); continue; } // Create a new ECDSA key. ScopedEC_KEY eckey(EC_KEY_new()); if (!eckey || !EC_KEY_set_group(eckey.get(), group.get()) || !EC_KEY_generate_key(eckey.get())) { fprintf(out, " failed\n"); return false; } // Create a second key. ScopedEC_KEY wrong_eckey(EC_KEY_new()); if (!wrong_eckey || !EC_KEY_set_group(wrong_eckey.get(), group.get()) || !EC_KEY_generate_key(wrong_eckey.get())) { fprintf(out, " failed\n"); return false; } fprintf(out, "."); fflush(out); // Check the key. if (!EC_KEY_check_key(eckey.get())) { fprintf(out, " failed\n"); return false; } fprintf(out, "."); fflush(out); // Test ASN.1-encoded signatures. // Create a signature. unsigned sig_len = ECDSA_size(eckey.get()); std::vector signature(sig_len); if (!ECDSA_sign(0, digest, 20, signature.data(), &sig_len, eckey.get())) { fprintf(out, " failed\n"); return false; } signature.resize(sig_len); fprintf(out, "."); fflush(out); // Verify the signature. if (!ECDSA_verify(0, digest, 20, signature.data(), signature.size(), eckey.get())) { fprintf(out, " failed\n"); return false; } fprintf(out, "."); fflush(out); // Verify the signature with the wrong key. if (ECDSA_verify(0, digest, 20, signature.data(), signature.size(), wrong_eckey.get())) { fprintf(out, " failed\n"); return false; } fprintf(out, "."); fflush(out); // Verify the signature using the wrong digest. if (ECDSA_verify(0, wrong_digest, 20, signature.data(), signature.size(), eckey.get())) { fprintf(out, " failed\n"); return false; } fprintf(out, "."); fflush(out); // Verify a truncated signature. if (ECDSA_verify(0, digest, 20, signature.data(), signature.size() - 1, eckey.get())) { fprintf(out, " failed\n"); return false; } fprintf(out, "."); fflush(out); // Verify a tampered signature. ScopedECDSA_SIG ecdsa_sig(ECDSA_SIG_from_bytes( signature.data(), signature.size())); if (!ecdsa_sig || !TestTamperedSig(out, kEncodedApi, digest, 20, ecdsa_sig.get(), eckey.get(), order)) { fprintf(out, " failed\n"); return false; } fprintf(out, "."); fflush(out); // Test ECDSA_SIG signing and verification. // Create a signature. ecdsa_sig.reset(ECDSA_do_sign(digest, 20, eckey.get())); if (!ecdsa_sig) { fprintf(out, " failed\n"); return false; } fprintf(out, "."); fflush(out); // Verify the signature using the correct key. if (!ECDSA_do_verify(digest, 20, ecdsa_sig.get(), eckey.get())) { fprintf(out, " failed\n"); return false; } fprintf(out, "."); fflush(out); // Verify the signature with the wrong key. if (ECDSA_do_verify(digest, 20, ecdsa_sig.get(), wrong_eckey.get())) { fprintf(out, " failed\n"); return false; } fprintf(out, "."); fflush(out); // Verify the signature using the wrong digest. if (ECDSA_do_verify(wrong_digest, 20, ecdsa_sig.get(), eckey.get())) { fprintf(out, " failed\n"); return false; } fprintf(out, "."); fflush(out); // Verify a tampered signature. if (!TestTamperedSig(out, kRawApi, digest, 20, ecdsa_sig.get(), eckey.get(), order)) { fprintf(out, " failed\n"); return false; } fprintf(out, "."); fflush(out); fprintf(out, " ok\n"); // Clear bogus errors. ERR_clear_error(); } return true; } static bool TestECDSA_SIG_max_len(size_t order_len) { /* Create the largest possible |ECDSA_SIG| of the given constraints. */ ScopedECDSA_SIG sig(ECDSA_SIG_new()); if (!sig) { return false; } std::vector bytes(order_len, 0xff); if (!BN_bin2bn(bytes.data(), bytes.size(), sig->r) || !BN_bin2bn(bytes.data(), bytes.size(), sig->s)) { return false; } /* Serialize it. */ uint8_t *der; size_t der_len; if (!ECDSA_SIG_to_bytes(&der, &der_len, sig.get())) { return false; } ScopedBytes delete_der(der); size_t max_len = ECDSA_SIG_max_len(order_len); if (max_len != der_len) { fprintf(stderr, "ECDSA_SIG_max_len(%u) returned %u, wanted %u\n", static_cast(order_len), static_cast(max_len), static_cast(der_len)); return false; } return true; } } // namespace bssl static size_t BitsToBytes(size_t bits) { return (bits / 8) + (7 + (bits % 8)) / 8; } int main(void) { CRYPTO_library_init(); if (!bssl::TestBuiltin(stdout) || !bssl::TestECDSA_SIG_max_len(BitsToBytes(224)) || !bssl::TestECDSA_SIG_max_len(BitsToBytes(256)) || !bssl::TestECDSA_SIG_max_len(BitsToBytes(384)) || !bssl::TestECDSA_SIG_max_len(BitsToBytes(521)) || !bssl::TestECDSA_SIG_max_len(BitsToBytes(10000))) { printf("\nECDSA test failed\n"); ERR_print_errors_fp(stdout); return 1; } printf("\nPASS\n"); return 0; }