/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project 1999. */ /* ==================================================================== * Copyright (c) 1999 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "../bytestring/internal.h" #include "../digest/internal.h" #include "../internal.h" /* Minor tweak to operation: zero private key data */ static int pkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { /* Since the structure must still be valid use ASN1_OP_FREE_PRE */ if (operation == ASN1_OP_FREE_PRE) { PKCS8_PRIV_KEY_INFO *key = (PKCS8_PRIV_KEY_INFO *)*pval; if (key->pkey && key->pkey->type == V_ASN1_OCTET_STRING && key->pkey->value.octet_string) { OPENSSL_cleanse(key->pkey->value.octet_string->data, key->pkey->value.octet_string->length); } } return 1; } ASN1_SEQUENCE_cb(PKCS8_PRIV_KEY_INFO, pkey_cb) = { ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, version, ASN1_INTEGER), ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkeyalg, X509_ALGOR), ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkey, ASN1_ANY), ASN1_IMP_SET_OF_OPT(PKCS8_PRIV_KEY_INFO, attributes, X509_ATTRIBUTE, 0) } ASN1_SEQUENCE_END_cb(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO) IMPLEMENT_ASN1_FUNCTIONS(PKCS8_PRIV_KEY_INFO) EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) { uint8_t *der = NULL; int der_len = i2d_PKCS8_PRIV_KEY_INFO(p8, &der); if (der_len < 0) { return NULL; } CBS cbs; CBS_init(&cbs, der, (size_t)der_len); EVP_PKEY *ret = EVP_parse_private_key(&cbs); if (ret == NULL || CBS_len(&cbs) != 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); EVP_PKEY_free(ret); OPENSSL_free(der); return NULL; } OPENSSL_free(der); return ret; } PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) { CBB cbb; uint8_t *der = NULL; size_t der_len; if (!CBB_init(&cbb, 0) || !EVP_marshal_private_key(&cbb, pkey) || !CBB_finish(&cbb, &der, &der_len) || der_len > LONG_MAX) { CBB_cleanup(&cbb); OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ENCODE_ERROR); goto err; } const uint8_t *p = der; PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, (long)der_len); if (p8 == NULL || p != der + der_len) { PKCS8_PRIV_KEY_INFO_free(p8); OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); goto err; } OPENSSL_free(der); return p8; err: OPENSSL_free(der); return NULL; } PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass, int pass_len_in) { size_t pass_len; if (pass_len_in == -1 && pass != NULL) { pass_len = strlen(pass); } else { pass_len = (size_t)pass_len_in; } PKCS8_PRIV_KEY_INFO *ret = NULL; EVP_PKEY *pkey = NULL; uint8_t *in = NULL; /* Convert the legacy ASN.1 object to a byte string. */ int in_len = i2d_X509_SIG(pkcs8, &in); if (in_len < 0) { goto err; } CBS cbs; CBS_init(&cbs, in, in_len); pkey = PKCS8_parse_encrypted_private_key(&cbs, pass, pass_len); if (pkey == NULL || CBS_len(&cbs) != 0) { goto err; } ret = EVP_PKEY2PKCS8(pkey); err: OPENSSL_free(in); EVP_PKEY_free(pkey); return ret; } X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass, int pass_len_in, const uint8_t *salt, size_t salt_len, int iterations, PKCS8_PRIV_KEY_INFO *p8inf) { size_t pass_len; if (pass_len_in == -1 && pass != NULL) { pass_len = strlen(pass); } else { pass_len = (size_t)pass_len_in; } /* Parse out the private key. */ EVP_PKEY *pkey = EVP_PKCS82PKEY(p8inf); if (pkey == NULL) { return NULL; } X509_SIG *ret = NULL; uint8_t *der = NULL; size_t der_len; CBB cbb; if (!CBB_init(&cbb, 128) || !PKCS8_marshal_encrypted_private_key(&cbb, pbe_nid, cipher, pass, pass_len, salt, salt_len, iterations, pkey) || !CBB_finish(&cbb, &der, &der_len)) { CBB_cleanup(&cbb); goto err; } /* Convert back to legacy ASN.1 objects. */ const uint8_t *ptr = der; ret = d2i_X509_SIG(NULL, &ptr, der_len); if (ret == NULL || ptr != der + der_len) { OPENSSL_PUT_ERROR(PKCS8, ERR_R_INTERNAL_ERROR); X509_SIG_free(ret); ret = NULL; } err: OPENSSL_free(der); EVP_PKEY_free(pkey); return ret; } struct pkcs12_context { EVP_PKEY **out_key; STACK_OF(X509) *out_certs; const char *password; size_t password_len; }; /* PKCS12_handle_sequence parses a BER-encoded SEQUENCE of elements in a PKCS#12 * structure. */ static int PKCS12_handle_sequence( CBS *sequence, struct pkcs12_context *ctx, int (*handle_element)(CBS *cbs, struct pkcs12_context *ctx)) { uint8_t *der_bytes = NULL; size_t der_len; CBS in; int ret = 0; /* Although a BER->DER conversion is done at the beginning of |PKCS12_parse|, * the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the * conversion cannot see through those wrappings. So each time we step * through one we need to convert to DER again. */ if (!CBS_asn1_ber_to_der(sequence, &der_bytes, &der_len)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); return 0; } if (der_bytes != NULL) { CBS_init(&in, der_bytes, der_len); } else { CBS_init(&in, CBS_data(sequence), CBS_len(sequence)); } CBS child; if (!CBS_get_asn1(&in, &child, CBS_ASN1_SEQUENCE) || CBS_len(&in) != 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } while (CBS_len(&child) > 0) { CBS element; if (!CBS_get_asn1(&child, &element, CBS_ASN1_SEQUENCE)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (!handle_element(&element, ctx)) { goto err; } } ret = 1; err: OPENSSL_free(der_bytes); return ret; } /* 1.2.840.113549.1.12.10.1.2 */ static const uint8_t kPKCS8ShroudedKeyBag[] = { 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x02}; /* 1.2.840.113549.1.12.10.1.3 */ static const uint8_t kCertBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x03}; /* 1.2.840.113549.1.9.22.1 */ static const uint8_t kX509Certificate[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x09, 0x16, 0x01}; /* PKCS12_handle_safe_bag parses a single SafeBag element in a PKCS#12 * structure. */ static int PKCS12_handle_safe_bag(CBS *safe_bag, struct pkcs12_context *ctx) { CBS bag_id, wrapped_value; if (!CBS_get_asn1(safe_bag, &bag_id, CBS_ASN1_OBJECT) || !CBS_get_asn1(safe_bag, &wrapped_value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) /* Ignore the bagAttributes field. */) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); return 0; } if (CBS_mem_equal(&bag_id, kPKCS8ShroudedKeyBag, sizeof(kPKCS8ShroudedKeyBag))) { /* See RFC 7292, section 4.2.2. */ if (*ctx->out_key) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12); return 0; } EVP_PKEY *pkey = PKCS8_parse_encrypted_private_key( &wrapped_value, ctx->password, ctx->password_len); if (pkey == NULL) { return 0; } if (CBS_len(&wrapped_value) != 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); EVP_PKEY_free(pkey); return 0; } *ctx->out_key = pkey; return 1; } if (CBS_mem_equal(&bag_id, kCertBag, sizeof(kCertBag))) { /* See RFC 7292, section 4.2.3. */ CBS cert_bag, cert_type, wrapped_cert, cert; if (!CBS_get_asn1(&wrapped_value, &cert_bag, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) || !CBS_get_asn1(&cert_bag, &wrapped_cert, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || !CBS_get_asn1(&wrapped_cert, &cert, CBS_ASN1_OCTETSTRING)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); return 0; } /* Skip unknown certificate types. */ if (!CBS_mem_equal(&cert_type, kX509Certificate, sizeof(kX509Certificate))) { return 1; } if (CBS_len(&cert) > LONG_MAX) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); return 0; } const uint8_t *inp = CBS_data(&cert); X509 *x509 = d2i_X509(NULL, &inp, (long)CBS_len(&cert)); if (!x509) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); return 0; } if (inp != CBS_data(&cert) + CBS_len(&cert)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); X509_free(x509); return 0; } if (0 == sk_X509_push(ctx->out_certs, x509)) { X509_free(x509); return 0; } return 1; } /* Unknown element type - ignore it. */ return 1; } /* 1.2.840.113549.1.7.1 */ static const uint8_t kPKCS7Data[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x07, 0x01}; /* 1.2.840.113549.1.7.6 */ static const uint8_t kPKCS7EncryptedData[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x07, 0x06}; /* PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a * PKCS#12 structure. */ static int PKCS12_handle_content_info(CBS *content_info, struct pkcs12_context *ctx) { CBS content_type, wrapped_contents, contents; int ret = 0; uint8_t *storage = NULL; if (!CBS_get_asn1(content_info, &content_type, CBS_ASN1_OBJECT) || !CBS_get_asn1(content_info, &wrapped_contents, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || CBS_len(content_info) != 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (CBS_mem_equal(&content_type, kPKCS7EncryptedData, sizeof(kPKCS7EncryptedData))) { /* See https://tools.ietf.org/html/rfc2315#section-13. * * PKCS#7 encrypted data inside a PKCS#12 structure is generally an * encrypted certificate bag and it's generally encrypted with 40-bit * RC2-CBC. */ CBS version_bytes, eci, contents_type, ai, encrypted_contents; uint8_t *out; size_t out_len; if (!CBS_get_asn1(&wrapped_contents, &contents, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&contents, &version_bytes, CBS_ASN1_INTEGER) || /* EncryptedContentInfo, see * https://tools.ietf.org/html/rfc2315#section-10.1 */ !CBS_get_asn1(&contents, &eci, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&eci, &contents_type, CBS_ASN1_OBJECT) || /* AlgorithmIdentifier, see * https://tools.ietf.org/html/rfc5280#section-4.1.1.2 */ !CBS_get_asn1(&eci, &ai, CBS_ASN1_SEQUENCE) || !CBS_get_asn1_implicit_string( &eci, &encrypted_contents, &storage, CBS_ASN1_CONTEXT_SPECIFIC | 0, CBS_ASN1_OCTETSTRING)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (!CBS_mem_equal(&contents_type, kPKCS7Data, sizeof(kPKCS7Data))) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (!pkcs8_pbe_decrypt(&out, &out_len, &ai, ctx->password, ctx->password_len, CBS_data(&encrypted_contents), CBS_len(&encrypted_contents))) { goto err; } CBS safe_contents; CBS_init(&safe_contents, out, out_len); ret = PKCS12_handle_sequence(&safe_contents, ctx, PKCS12_handle_safe_bag); OPENSSL_free(out); } else if (CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) { CBS octet_string_contents; if (!CBS_get_asn1(&wrapped_contents, &octet_string_contents, CBS_ASN1_OCTETSTRING)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } ret = PKCS12_handle_sequence(&octet_string_contents, ctx, PKCS12_handle_safe_bag); } else { /* Unknown element type - ignore it. */ ret = 1; } err: OPENSSL_free(storage); return ret; } int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs, CBS *ber_in, const char *password) { uint8_t *der_bytes = NULL; size_t der_len; CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes; uint64_t version; int ret = 0; struct pkcs12_context ctx; const size_t original_out_certs_len = sk_X509_num(out_certs); /* The input may be in BER format. */ if (!CBS_asn1_ber_to_der(ber_in, &der_bytes, &der_len)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); return 0; } if (der_bytes != NULL) { CBS_init(&in, der_bytes, der_len); } else { CBS_init(&in, CBS_data(ber_in), CBS_len(ber_in)); } *out_key = NULL; OPENSSL_memset(&ctx, 0, sizeof(ctx)); /* See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section * four. */ if (!CBS_get_asn1(&in, &pfx, CBS_ASN1_SEQUENCE) || CBS_len(&in) != 0 || !CBS_get_asn1_uint64(&pfx, &version)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (version < 3) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_VERSION); goto err; } if (!CBS_get_asn1(&pfx, &authsafe, CBS_ASN1_SEQUENCE)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (CBS_len(&pfx) == 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MISSING_MAC); goto err; } if (!CBS_get_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } /* authsafe is a PKCS#7 ContentInfo. See * https://tools.ietf.org/html/rfc2315#section-7. */ if (!CBS_get_asn1(&authsafe, &content_type, CBS_ASN1_OBJECT) || !CBS_get_asn1(&authsafe, &wrapped_authsafes, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } /* The content type can either be data or signedData. The latter indicates * that it's signed by a public key, which isn't supported. */ if (!CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED); goto err; } if (!CBS_get_asn1(&wrapped_authsafes, &authsafes, CBS_ASN1_OCTETSTRING)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } ctx.out_key = out_key; ctx.out_certs = out_certs; ctx.password = password; ctx.password_len = password != NULL ? strlen(password) : 0; /* Verify the MAC. */ { CBS mac, salt, expected_mac; if (!CBS_get_asn1(&mac_data, &mac, CBS_ASN1_SEQUENCE)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } const EVP_MD *md = EVP_parse_digest_algorithm(&mac); if (md == NULL) { goto err; } if (!CBS_get_asn1(&mac, &expected_mac, CBS_ASN1_OCTETSTRING) || !CBS_get_asn1(&mac_data, &salt, CBS_ASN1_OCTETSTRING)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } /* The iteration count is optional and the default is one. */ uint64_t iterations = 1; if (CBS_len(&mac_data) > 0) { if (!CBS_get_asn1_uint64(&mac_data, &iterations) || iterations > UINT_MAX) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } } uint8_t hmac_key[EVP_MAX_MD_SIZE]; if (!pkcs12_key_gen(ctx.password, ctx.password_len, CBS_data(&salt), CBS_len(&salt), PKCS12_MAC_ID, iterations, EVP_MD_size(md), hmac_key, md)) { goto err; } uint8_t hmac[EVP_MAX_MD_SIZE]; unsigned hmac_len; if (NULL == HMAC(md, hmac_key, EVP_MD_size(md), CBS_data(&authsafes), CBS_len(&authsafes), hmac, &hmac_len)) { goto err; } if (!CBS_mem_equal(&expected_mac, hmac, hmac_len)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INCORRECT_PASSWORD); goto err; } } /* authsafes contains a series of PKCS#7 ContentInfos. */ if (!PKCS12_handle_sequence(&authsafes, &ctx, PKCS12_handle_content_info)) { goto err; } ret = 1; err: OPENSSL_free(der_bytes); if (!ret) { EVP_PKEY_free(*out_key); *out_key = NULL; while (sk_X509_num(out_certs) > original_out_certs_len) { X509 *x509 = sk_X509_pop(out_certs); X509_free(x509); } } return ret; } void PKCS12_PBE_add(void) {} struct pkcs12_st { uint8_t *ber_bytes; size_t ber_len; }; PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes, size_t ber_len) { PKCS12 *p12; p12 = OPENSSL_malloc(sizeof(PKCS12)); if (!p12) { return NULL; } p12->ber_bytes = OPENSSL_malloc(ber_len); if (!p12->ber_bytes) { OPENSSL_free(p12); return NULL; } OPENSSL_memcpy(p12->ber_bytes, *ber_bytes, ber_len); p12->ber_len = ber_len; *ber_bytes += ber_len; if (out_p12) { PKCS12_free(*out_p12); *out_p12 = p12; } return p12; } PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) { size_t used = 0; BUF_MEM *buf; const uint8_t *dummy; static const size_t kMaxSize = 256 * 1024; PKCS12 *ret = NULL; buf = BUF_MEM_new(); if (buf == NULL) { return NULL; } if (BUF_MEM_grow(buf, 8192) == 0) { goto out; } for (;;) { int n = BIO_read(bio, &buf->data[used], buf->length - used); if (n < 0) { if (used == 0) { goto out; } /* Workaround a bug in node.js. It uses a memory BIO for this in the wrong * mode. */ n = 0; } if (n == 0) { break; } used += n; if (used < buf->length) { continue; } if (buf->length > kMaxSize || BUF_MEM_grow(buf, buf->length * 2) == 0) { goto out; } } dummy = (uint8_t*) buf->data; ret = d2i_PKCS12(out_p12, &dummy, used); out: BUF_MEM_free(buf); return ret; } PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) { BIO *bio; PKCS12 *ret; bio = BIO_new_fp(fp, 0 /* don't take ownership */); if (!bio) { return NULL; } ret = d2i_PKCS12_bio(bio, out_p12); BIO_free(bio); return ret; } int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey, X509 **out_cert, STACK_OF(X509) **out_ca_certs) { CBS ber_bytes; STACK_OF(X509) *ca_certs = NULL; char ca_certs_alloced = 0; if (out_ca_certs != NULL && *out_ca_certs != NULL) { ca_certs = *out_ca_certs; } if (!ca_certs) { ca_certs = sk_X509_new_null(); if (ca_certs == NULL) { OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); return 0; } ca_certs_alloced = 1; } CBS_init(&ber_bytes, p12->ber_bytes, p12->ber_len); if (!PKCS12_get_key_and_certs(out_pkey, ca_certs, &ber_bytes, password)) { if (ca_certs_alloced) { sk_X509_free(ca_certs); } return 0; } *out_cert = NULL; if (sk_X509_num(ca_certs) > 0) { *out_cert = sk_X509_shift(ca_certs); } if (out_ca_certs) { *out_ca_certs = ca_certs; } else { sk_X509_pop_free(ca_certs, X509_free); } return 1; } int PKCS12_verify_mac(const PKCS12 *p12, const char *password, int password_len) { if (password == NULL) { if (password_len != 0) { return 0; } } else if (password_len != -1 && (password[password_len] != 0 || OPENSSL_memchr(password, 0, password_len) != NULL)) { return 0; } EVP_PKEY *pkey = NULL; X509 *cert = NULL; if (!PKCS12_parse(p12, password, &pkey, &cert, NULL)) { ERR_clear_error(); return 0; } EVP_PKEY_free(pkey); X509_free(cert); return 1; } void PKCS12_free(PKCS12 *p12) { if (p12 == NULL) { return; } OPENSSL_free(p12->ber_bytes); OPENSSL_free(p12); }