/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #ifndef OPENSSL_HEADER_EVP_H #define OPENSSL_HEADER_EVP_H #include #include /* OpenSSL included digest and cipher functions in this header so we include * them for users that still expect that. * * TODO(fork): clean up callers so that they include what they use. */ #include #include #include #include #include #include #if defined(__cplusplus) extern "C" { #endif /* EVP abstracts over public/private key algorithms. */ /* Public key objects. */ /* EVP_PKEY_new creates a new, empty public-key object and returns it or NULL * on allocation failure. */ EVP_PKEY *EVP_PKEY_new(); /* EVP_PKEY_free frees all data referenced by |pkey| and then frees |pkey| * itself. */ void EVP_PKEY_free(EVP_PKEY *pkey); /* EVP_PKEY_cmp compares |a| and |b| and returns one if they are equal, zero if * not and a negative number on error. * * WARNING: this differs from the traditional return value of a "cmp" * function. */ int EVP_PKEY_cmp(const EVP_PKEY *a, const EVP_PKEY *b); /* EVP_PKEY_dup adds one to the reference count of |pkey| and returns * |pkey|. */ EVP_PKEY *EVP_PKEY_dup(EVP_PKEY *pkey); /* EVP_PKEY_copy_parameters sets the parameters of |to| to equal the parameters * of |from|. It returns one on success and zero on error. */ int EVP_PKEY_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from); /* EVP_PKEY_missing_parameters returns one if |pkey| is missing needed * parameters or zero if not, or if the algorithm doesn't take parameters. */ int EVP_PKEY_missing_parameters(const EVP_PKEY *pkey); /* EVP_PKEY_size returns the "size", in bytes, of |pkey|. For example, for an * RSA key this returns the number of bytes needed to represent the modulus. */ int EVP_PKEY_size(const EVP_PKEY *pkey); /* EVP_PKEY_bits returns the "size", in bits, of |pkey|. For example, for an * RSA key, this returns the bit length of the modulus. */ int EVP_PKEY_bits(EVP_PKEY *pkey); /* EVP_PKEY_id returns the type of |pkey|, which is one of the |EVP_PKEY_*| * values. */ int EVP_PKEY_id(const EVP_PKEY *pkey); /* EVP_PKEY_type returns a canonicalised form of |NID|. For example, * |EVP_PKEY_RSA2| will be turned into |EVP_PKEY_RSA|. */ int EVP_PKEY_type(int nid); /* EVP_PKEY_new_mac_key allocates a fresh |EVP_PKEY| of the given type (e.g. * |EVP_PKEY_HMAC|), sets |mac_key| as the MAC key and "generates" a new key, * suitable for signing. It returns the fresh |EVP_PKEY|, or NULL on error. */ EVP_PKEY *EVP_PKEY_new_mac_key(int type, ENGINE *engine, const uint8_t *mac_key, size_t mac_key_len); /* Getting and setting concrete public key types. * * The following functions get and set the underlying public key in an * |EVP_PKEY| object. The |set1| functions take a additional reference to the * underlying key and return one on success or zero on error. The |assign| * functions adopt the caller's reference. The getters return a fresh reference * to the underlying object. */ int EVP_PKEY_set1_RSA(EVP_PKEY *pkey, RSA *key); int EVP_PKEY_assign_RSA(EVP_PKEY *pkey, RSA *key); RSA *EVP_PKEY_get1_RSA(EVP_PKEY *pkey); int EVP_PKEY_set1_DSA(EVP_PKEY *pkey, struct dsa_st *key); int EVP_PKEY_assign_DSA(EVP_PKEY *pkey, DSA *key); struct dsa_st *EVP_PKEY_get1_DSA(EVP_PKEY *pkey); int EVP_PKEY_set1_EC_KEY(EVP_PKEY *pkey, struct ec_key_st *key); int EVP_PKEY_assign_EC_KEY(EVP_PKEY *pkey, EC_KEY *key); struct ec_key_st *EVP_PKEY_get1_EC_KEY(EVP_PKEY *pkey); int EVP_PKEY_set1_DH(EVP_PKEY *pkey, struct dh_st *key); int EVP_PKEY_assign_DH(EVP_PKEY *pkey, DH *key); struct dh_st *EVP_PKEY_get1_DH(EVP_PKEY *pkey); #define EVP_PKEY_NONE NID_undef #define EVP_PKEY_RSA NID_rsaEncryption #define EVP_PKEY_RSA2 NID_rsa #define EVP_PKEY_DSA NID_dsa #define EVP_PKEY_DH NID_dhKeyAgreement #define EVP_PKEY_DHX NID_dhpublicnumber #define EVP_PKEY_EC NID_X9_62_id_ecPublicKey #define EVP_PKEY_HMAC NID_hmac /* EVP_PKEY_assign sets the underlying key of |pkey| to |key|, which must be of * the given type. The |type| argument should be one of the |EVP_PKEY_*| * values. */ int EVP_PKEY_assign(EVP_PKEY *pkey, int type, void *key); /* EVP_PKEY_set_type sets the type of |pkey| to |type|, which should be one of * the |EVP_PKEY_*| values. It returns one if sucessful or zero otherwise. If * |pkey| is NULL, it simply reports whether the type is known. */ int EVP_PKEY_set_type(EVP_PKEY *pkey, int type); /* EVP_PKEY_cmp_parameters compares the parameters of |a| and |b|. It returns * one if they match, zero if not, or a negative number of on error. * * WARNING: the return value differs from the usual return value convention. */ int EVP_PKEY_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b); /* ASN.1 functions */ /* d2i_PrivateKey parses an ASN.1, DER-encoded, private key from |len| bytes at * |*inp|. If |out| is not NULL then, on exit, a pointer to the result is in * |*out|. If |*out| is already non-NULL on entry then the result is written * directly into |*out|, otherwise a fresh |EVP_PKEY| is allocated. On * successful exit, |*inp| is advanced past the DER structure. It returns the * result or NULL on error. */ EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out, const uint8_t **inp, long len); /* d2i_AutoPrivateKey acts the same as |d2i_PrivateKey|, but detects the type * of the private key. */ EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp, long len); /* i2d_PrivateKey marshals a private key from |key| to an ASN.1, DER * structure. If |outp| is not NULL then the result is written to |*outp| and * |*outp| is advanced just past the output. It returns the number of bytes in * the result, whether written or not, or a negative value on error. */ int i2d_PrivateKey(const EVP_PKEY *key, uint8_t **outp); /* i2d_PublicKey marshals a public key from |key| to an ASN.1, DER * structure. If |outp| is not NULL then the result is written to |*outp| and * |*outp| is advanced just past the output. It returns the number of bytes in * the result, whether written or not, or a negative value on error. */ int i2d_PublicKey(EVP_PKEY *key, uint8_t **outp); /* Signing */ /* EVP_DigestSignInit sets up |ctx| for a signing operation with |type| and * |pkey|. The |ctx| argument must have been initialised with * |EVP_MD_CTX_init|. If |pctx| is not NULL, the |EVP_PKEY_CTX| of the signing * operation will be written to |*pctx|; this can be used to set alternative * signing options. * * It returns one on success, or <= 0 on error. WARNING: this differs from the * usual OpenSSL return convention. */ int EVP_DigestSignInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx, const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey); /* EVP_DigestSignUpdate appends |len| bytes from |data| to the data which will * be signed in |EVP_DigestSignFinal|. It returns one on success and zero * otherwise. */ int EVP_DigestSignUpdate(EVP_MD_CTX *ctx, const void *data, size_t len); /* EVP_DigestSignFinal signs the data that has been included by one or more * calls to |EVP_DigestSignUpdate|. If |out_sig| is NULL then |*out_sig_len| is * set to the maximum number of output bytes. Otherwise, on entry, * |*out_sig_len| must contain the length of the |out_sig| buffer. If the call * is successful, the signature is written to |out_sig| and |*out_sig_len| is * set to its length. * * It returns one on success and <= 0 on error. WARNING: this differs from the * usual, OpenSSL return value convention. */ int EVP_DigestSignFinal(EVP_MD_CTX *ctx, uint8_t *out_sig, size_t *out_sig_len); /* Verifying */ /* EVP_DigestVerifyInit sets up |ctx| for a signature verification operation * with |type| and |pkey|. The |ctx| argument must have been initialised with * |EVP_MD_CTX_init|. If |pctx| is not NULL, the |EVP_PKEY_CTX| of the signing * operation will be written to |*pctx|; this can be used to set alternative * signing options. * * It returns one on success, or <= 0 on error. WARNING: this differs from the * usual OpenSSL return convention. */ int EVP_DigestVerifyInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx, const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey); /* EVP_DigestVerifyUpdate appends |len| bytes from |data| to the data which * will be verified by |EVP_DigestVerifyFinal|. It returns one on success and * zero otherwise. */ int EVP_DigestVerifyUpdate(EVP_MD_CTX *ctx, const void *data, size_t len); /* EVP_DigestVerifyFinal verifies that |sig_len| bytes of |sig| are a valid * signature for the data that has been included by one or more calls to * |EVP_DigestVerifyUpdate|. * * It returns one on success and <= 0 on error. WARNING: this differs from the * usual return value convention. */ int EVP_DigestVerifyFinal(EVP_MD_CTX *ctx, const uint8_t *sig, size_t sig_len); /* Signing (old functions) */ /* EVP_SignInit_ex configures |ctx|, which must already have been initialised, * for a fresh signing operation using the hash function |type|. It returns one * on success and zero otherwise. * * (In order to initialise |ctx|, either obtain it initialised with * |EVP_MD_CTX_create|, or use |EVP_MD_CTX_init|.) */ int EVP_SignInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl); /* EVP_SignInit is a deprecated version of |EVP_SignInit_ex|. * * TODO(fork): remove. */ int EVP_SignInit(EVP_MD_CTX *ctx, const EVP_MD *type); /* EVP_SignUpdate appends |len| bytes from |data| to the data which will be * signed in |EVP_SignFinal|. */ int EVP_SignUpdate(EVP_MD_CTX *ctx, const void *data, size_t len); /* EVP_SignFinal signs the data that has been included by one or more calls to * |EVP_SignUpdate|, using the key |pkey|, and writes it to |sig|. On entry, * |sig| must point to at least |EVP_PKEY_size(pkey)| bytes of space. The * actual size of the signature is written to |*out_sig_len|. * * It returns one on success and zero otherwise. * * It does not modify |ctx|, thus it's possible to continue to use |ctx| in * order to sign a longer message. */ int EVP_SignFinal(const EVP_MD_CTX *ctx, uint8_t *sig, unsigned int *out_sig_len, EVP_PKEY *pkey); /* Verifying (old functions) */ /* EVP_VerifyInit_ex configures |ctx|, which must already have been * initialised, for a fresh signature verification operation using the hash * function |type|. It returns one on success and zero otherwise. * * (In order to initialise |ctx|, either obtain it initialised with * |EVP_MD_CTX_create|, or use |EVP_MD_CTX_init|.) */ int EVP_VerifyInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl); /* EVP_VerifyInit is a deprecated version of |EVP_VerifyInit_ex|. * * TODO(fork): remove. */ int EVP_VerifyInit(EVP_MD_CTX *ctx, const EVP_MD *type); /* EVP_VerifyUpdate appends |len| bytes from |data| to the data which will be * signed in |EVP_VerifyFinal|. */ int EVP_VerifyUpdate(EVP_MD_CTX *ctx, const void *data, size_t len); /* EVP_VerifyFinal verifies that |sig_len| bytes of |sig| are a valid * signature, by |pkey|, for the data that has been included by one or more * calls to |EVP_VerifyUpdate|. * * It returns one on success and zero otherwise. * * It does not modify |ctx|, thus it's possible to continue to use |ctx| in * order to sign a longer message. */ int EVP_VerifyFinal(EVP_MD_CTX *ctx, const uint8_t *sig, size_t sig_len, EVP_PKEY *pkey); /* Printing */ /* EVP_PKEY_print_public prints a textual representation of the public key in * |pkey| to |out|. Returns one on success or zero otherwise. */ int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx); /* EVP_PKEY_print_public prints a textual representation of the private key in * |pkey| to |out|. Returns one on success or zero otherwise. */ int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx); /* EVP_PKEY_print_public prints a textual representation of the parameters in * |pkey| to |out|. Returns one on success or zero otherwise. */ int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx); /* Password stretching. * * Password stretching functions take a low-entropy password and apply a slow * function that results in a key suitable for use in symmetric * cryptography. */ /* PKCS5_PBKDF2_HMAC computes |iterations| iterations of PBKDF2 of |password| * and |salt|, using |digest|, and outputs |key_len| bytes to |out_key|. It * returns one on success and zero on error. */ int PKCS5_PBKDF2_HMAC(const char *password, int password_len, const uint8_t *salt, size_t salt_len, unsigned iterations, const EVP_MD *digest, size_t key_len, uint8_t *out_key); /* PKCS5_PBKDF2_HMAC_SHA1 is the same as PKCS5_PBKDF2_HMAC, but with |digest| * fixed to |EVP_sha1|. */ int PKCS5_PBKDF2_HMAC_SHA1(const char *password, int password_len, const uint8_t *salt, size_t salt_len, unsigned iterations, size_t key_len, uint8_t *out_key); /* Public key contexts. * * |EVP_PKEY_CTX| objects hold the context of an operation (e.g. signing or * encrypting) that uses a public key. */ /* EVP_PKEY_CTX_new allocates a fresh |EVP_PKEY_CTX| for use with |pkey|. It * returns the context or NULL on error. */ EVP_PKEY_CTX *EVP_PKEY_CTX_new(EVP_PKEY *pkey, ENGINE *e); /* EVP_PKEY_CTX_new allocates a fresh |EVP_PKEY_CTX| for a key of type |id| * (e.g. |EVP_PKEY_HMAC|). This can be used for key generation where * |EVP_PKEY_CTX_new| can't be used because there isn't an |EVP_PKEY| to pass * it. It returns the context or NULL on error. */ EVP_PKEY_CTX *EVP_PKEY_CTX_new_id(int id, ENGINE *e); /* EVP_KEY_CTX_free frees |ctx| and the data it owns. */ void EVP_PKEY_CTX_free(EVP_PKEY_CTX *ctx); /* EVP_PKEY_CTX_dup allocates a fresh |EVP_PKEY_CTX| and sets it equal to the * state of |ctx|. It returns the fresh |EVP_PKEY_CTX| or NULL on error. */ EVP_PKEY_CTX *EVP_PKEY_CTX_dup(EVP_PKEY_CTX *ctx); /* EVP_PKEY_CTX_get0_pkey returns the |EVP_PKEY| associated with |ctx|. */ EVP_PKEY *EVP_PKEY_CTX_get0_pkey(EVP_PKEY_CTX *ctx); /* EVP_PKEY_CTX_set_app_data sets an opaque pointer on |ctx|. */ void EVP_PKEY_CTX_set_app_data(EVP_PKEY_CTX *ctx, void *data); /* EVP_PKEY_CTX_get_app_data returns the opaque pointer from |ctx| that was * previously set with |EVP_PKEY_CTX_set_app_data|, or NULL if none has been * set. */ void *EVP_PKEY_CTX_get_app_data(EVP_PKEY_CTX *ctx); /* EVP_PKEY_CTX_ctrl performs |cmd| on |ctx|. The |keytype| and |optype| * arguments can be -1 to specify that any type and operation are acceptable, * otherwise |keytype| must match the type of |ctx| and the bits of |optype| * must intersect the operation flags set on |ctx|. * * The |p1| and |p2| arguments depend on the value of |cmd|. * * It returns -2 if |cmd| is not recognised, -1 on error or a |cmd| specific * value otherwise. */ int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype, int cmd, int p1, void *p2); /* EVP_PKEY_sign_init initialises an |EVP_PKEY_CTX| for a signing operation. It * should be called before |EVP_PKEY_sign|. * * It returns one on success or <= 0 on error. WARNING: this differs from the * usual return value convention. */ int EVP_PKEY_sign_init(EVP_PKEY_CTX *ctx); /* EVP_PKEY_sign signs |data_len| bytes from |data| using |ctx|. If |sig| is * NULL, the size of the signature is written to |out_sig_len|. Otherwise, * |*sig_len| must contain the number of bytes of space available at |sig|. If * sufficient, the signature will be written to |sig| and |*sig_len| updated * with the true length. * * It returns one on success or zero on error. (Note: this differs from * OpenSSL, which can also return negative values to indicate an error. ) */ int EVP_PKEY_sign(EVP_PKEY_CTX *ctx, uint8_t *sig, size_t *sig_len, const uint8_t *data, size_t data_len); /* EVP_PKEY_verify_init initialises an |EVP_PKEY_CTX| for a signature * verification operation. It should be called before |EVP_PKEY_verify|. * * It returns one on success or <= 0 on error. WARNING: this differs from the * usual return value convention. */ int EVP_PKEY_verify_init(EVP_PKEY_CTX *ctx); /* EVP_PKEY_verify verifies that |sig_len| bytes from |sig| are a valid signature * for |data|. * * It returns one on success or zero on error. (Note: this differs from * OpenSSL, which can also return negative values to indicate an error. ) */ int EVP_PKEY_verify(EVP_PKEY_CTX *ctx, const uint8_t *sig, size_t sig_len, const uint8_t *data, size_t data_len); /* EVP_PKEY_encrypt_init initialises an |EVP_PKEY_CTX| for an encryption * operation. It should be called before |EVP_PKEY_encrypt|. * * It returns one on success or <= 0 on error. WARNING: this differs from the * usual return value convention. */ int EVP_PKEY_encrypt_init(EVP_PKEY_CTX *ctx); /* EVP_PKEY_encrypt encrypts |in_len| bytes from |in| and writes it to |out|. * TODO(fork): need more details on |out_len|. * * It returns one on success or <= 0 on error. (Note: this differs from * OpenSSL, which can also return negative values to indicate an error. ) */ int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len, const uint8_t *in, size_t in_len); /* EVP_PKEY_decrypt_init initialises an |EVP_PKEY_CTX| for a decryption * operation. It should be called before |EVP_PKEY_decrypt|. * * It returns one on success or <= 0 on error. WARNING: this differs from the * usual return value convention. */ int EVP_PKEY_decrypt_init(EVP_PKEY_CTX *ctx); /* EVP_PKEY_decrypt decrypts |in_len| bytes from |in|, writes it to |out| and * sets |*outlen| to the number of bytes written. * * It returns one on success or <= 0 on error. (Note: this differs from * OpenSSL, which can also return negative values to indicate an error. ) */ int EVP_PKEY_decrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len, const uint8_t *in, size_t in_len); /* EVP_PKEY_derive_init initialises an |EVP_PKEY_CTX| for a key derivation * operation. It should be called before |EVP_PKEY_derive_set_peer| and * |EVP_PKEY_derive|. * * It returns one on success or <= 0 on error. WARNING: this differs from the * usual return value convention. */ int EVP_PKEY_derive_init(EVP_PKEY_CTX *ctx); /* EVP_PKEY_derive_set_peer sets the peer's key to be used for key derivation * by |ctx| to |peer|. It should be called after |EVP_PKEY_derive_init|. (For * example, this is used to set the peer's key in (EC)DH.) It returns one on * success and <= 0 on error. WARNING: this differs from the usual return value * convention. */ int EVP_PKEY_derive_set_peer(EVP_PKEY_CTX *ctx, EVP_PKEY *peer); /* EVP_PKEY_derive derives a shared key between the two keys configured in * |ctx|. If |key| is non-NULL then, on entry, |out_key_len| must contain the * amount of space at |key|. If sufficient then the shared key will be written * to |key| and |*out_key_len| will be set to the length. If |key| is NULL then * |out_key_len| will be set the length. * * It returns one on success and <= 0 on error. WARNING: this differs from the * usual return convention. */ int EVP_PKEY_derive(EVP_PKEY_CTX *ctx, uint8_t *key, size_t *out_key_len); /* EVP_PKEY_keygen_init initialises an |EVP_PKEY_CTX| for a key generation * operation. It should be called before |EVP_PKEY_keygen|. * * It returns one on success or <= 0 on error. WARNING: this differs from the * usual return value convention. */ int EVP_PKEY_keygen_init(EVP_PKEY_CTX *ctx); /* EVP_PKEY_keygen performs a key generation operation using the values from * |ctx| and sets |*ppkey| to a fresh |EVP_PKEY| containing the resulting key. * It returns one on success or <= 0 on error. WARNING: this differs from the * normal return value convention. */ int EVP_PKEY_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY **ppkey); /* EVP_PKEY_CTX_ctrl operations. * * These values are passed as the |cmd| argument to * EVP_PKEY_CTX_ctrl */ /* Generic. */ /* EVP_PKEY_CTX_set_signature_md sets |md| as the digest to be used in a * signature operation. It returns one on success or otherwise on error. See * the return values of |EVP_PKEY_CTX_ctrl| for details. */ int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); /* EVP_PKEY_CTX_get_signature_md sets |*out_md| to the digest to be used in a * signature operation. It returns one on success or otherwise on error. See * the return values of |EVP_PKEY_CTX_ctrl| for details. */ int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md); /* EVP_PKEY_CTRL_DIGESTINIT is an internal value. It's called by * EVP_DigestInit_ex to signal the |EVP_PKEY| that a digest operation is * starting. */ #define EVP_PKEY_CTRL_DIGESTINIT 3 /* EVP_PKEY_CTRL_PEER_KEY is called with different values of |p1|: * 0: Is called from |EVP_PKEY_derive_set_peer| and |p2| contains a peer key. * If the return value is <= 0, the key is rejected. * 1: Is called at the end of |EVP_PKEY_derive_set_peer| and |p2| contains a * peer key. If the return value is <= 0, the key is rejected. * 2: Is called with |p2| == NULL to test whether the peer's key was used. * (EC)DH always return one in this case. * 3: Is called with |p2| == NULL to set whether the peer's key was used. * (EC)DH always return one in this case. This was only used for GOST. */ #define EVP_PKEY_CTRL_PEER_KEY 4 /* EVP_PKEY_CTRL_SET_MAC_KEY sets a MAC key. For example, this can be done an * |EVP_PKEY_CTX| prior to calling |EVP_PKEY_keygen| in order to generate an * HMAC |EVP_PKEY| with the given key. It returns one on success and zero on * error. */ #define EVP_PKEY_CTRL_SET_MAC_KEY 5 /* EVP_PKEY_ALG_CTRL is the base value from which key-type specific ctrl * commands are numbered. */ #define EVP_PKEY_ALG_CTRL 0x1000 /* RSA specific control functions. */ /* EVP_PKEY_CTX_set_rsa_padding sets the padding type to use. It should be one * of the |RSA_*_PADDING| values. Returns one on success or another value on * error. See |EVP_PKEY_CTX_ctrl| for the other return values, which are * non-standard. */ int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int padding); /* EVP_PKEY_CTX_get_rsa_padding sets |*out_padding| to the current padding * value, which is one of the |RSA_*_PADDING| values. Returns one on success or * another value on error. See |EVP_PKEY_CTX_ctrl| for the other return values, * which are non-standard. */ int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *out_padding); /* EVP_PKEY_CTX_set_rsa_pss_saltlen sets the length of the salt in a PSS-padded * signature. A value of -1 cause the salt to be the same length as the digest * in the signature. A value of -2 causes the salt to be the maximum length * that will fit. Otherwise the value gives the size of the salt in bytes. * * Returns one on success or another value on error. See |EVP_PKEY_CTX_ctrl| * for the other return values, which are non-standard. */ int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int salt_len); /* EVP_PKEY_CTX_get_rsa_pss_saltlen sets |*out_salt_len| to the salt length of * a PSS-padded signature. See the documentation for * |EVP_PKEY_CTX_set_rsa_pss_saltlen| for details of the special values that it * can take. * * Returns one on success or another value on error. See |EVP_PKEY_CTX_ctrl| * for the other return values, which are non-standard. */ int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *out_salt_len); /* EVP_PKEY_CTX_set_rsa_keygen_bits sets the size of the desired RSA modulus, * in bits, for key generation. Returns one on success or another value on * error. See |EVP_PKEY_CTX_ctrl| for the other return values, which are * non-standard. */ int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits); /* EVP_PKEY_CTX_set_rsa_keygen_pubexp sets |e| as the public exponent for key * generation. Returns one on success or another value on error. See * |EVP_PKEY_CTX_ctrl| for the other return values, which are non-standard. */ int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *e); /* EVP_PKEY_CTX_set_rsa_oaep_md sets |md| as the digest used in OAEP padding. * Returns one on success or another value on error. See |EVP_PKEY_CTX_ctrl| * for the other return values, which are non-standard. */ int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); /* EVP_PKEY_CTX_get_rsa_oaep_md sets |*out_md| to the digest function used in * OAEP padding. Returns one on success or another value on error. See * |EVP_PKEY_CTX_ctrl| for the other return values, which are non-standard. */ int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md); /* EVP_PKEY_CTX_set_rsa_mgf1_md sets |md| as the digest used in MGF1. Returns * one on success or another value on error. See |EVP_PKEY_CTX_ctrl| for the * other return values, which are non-standard. */ int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); /* EVP_PKEY_CTX_get_rsa_mgf1_md sets |*out_md| to the digest function used in * MGF1. Returns one on success or another value on error. See * |EVP_PKEY_CTX_ctrl| for the other return values, which are non-standard. */ int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md); /* EVP_PKEY_CTX_set0_rsa_oaep_label sets |label_len| bytes from |label| as the * label used in OAEP. DANGER: this call takes ownership of |label| and will * call |free| on it when |ctx| is destroyed. * * Returns one on success or another value on error. See |EVP_PKEY_CTX_ctrl| * for the other return values, which are non-standard. */ int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, const uint8_t *label, size_t label_len); /* EVP_PKEY_CTX_get0_rsa_oaep_label sets |*out_label| to point to the internal * buffer containing the OAEP label (which may be NULL) and returns the length * of the label or a negative value on error. */ int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, const uint8_t **out_label); /* EC specific */ #define EVP_PKEY_CTRL_EC_PARAMGEN_CURVE_NID (EVP_PKEY_ALG_CTRL + 1) #define EVP_PKEY_CTRL_EC_PARAM_ENC (EVP_PKEY_ALG_CTRL + 2) #define EVP_PKEY_CTRL_EC_ECDH_COFACTOR (EVP_PKEY_ALG_CTRL + 3) #define EVP_PKEY_CTRL_EC_KDF_TYPE (EVP_PKEY_ALG_CTRL + 4) #define EVP_PKEY_CTRL_EC_KDF_MD (EVP_PKEY_ALG_CTRL + 5) #define EVP_PKEY_CTRL_GET_EC_KDF_MD (EVP_PKEY_ALG_CTRL + 6) #define EVP_PKEY_CTRL_EC_KDF_OUTLEN (EVP_PKEY_ALG_CTRL + 7) #define EVP_PKEY_CTRL_GET_EC_KDF_OUTLEN (EVP_PKEY_ALG_CTRL + 8) #define EVP_PKEY_CTRL_EC_KDF_UKM (EVP_PKEY_ALG_CTRL + 9) #define EVP_PKEY_CTRL_GET_EC_KDF_UKM (EVP_PKEY_ALG_CTRL + 10) #define EVP_PKEY_ECDH_KDF_NONE 1 #define EVP_PKEY_ECDH_KDF_X9_62 2 /* PKEY ctrl commands. * * These values are passed as the |op| argument to * EVP_PKEY_ASN1_METHOD.pkey_ctrl. */ /* ASN1_PKEY_CTRL_DEFAULT_MD_NID expects |arg2| to be an |int*| and sets the * pointed at int to be the NID of the default hash function used in * signing. */ #define ASN1_PKEY_CTRL_DEFAULT_MD_NID 0x3 /* Private functions */ /* OpenSSL_add_all_algorithms does nothing. */ void OpenSSL_add_all_algorithms(); /* EVP_cleanup does nothing. */ void EVP_cleanup(); /* EVP_PKEY_asn1_find returns the ASN.1 method table for the given |nid|, which * should be one of the |EVP_PKEY_*| values. It returns NULL if |nid| is * unknown. */ const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_find(ENGINE **pengine, int nid); /* TODO(fork): move to PEM? */ const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_find_str(ENGINE **pengine, const char *name, size_t len); struct evp_pkey_st { int references; /* type contains one of the EVP_PKEY_* values or NID_undef and determines * which element (if any) of the |pkey| union is valid. */ int type; /* TODO(fork): document */ int save_type; union { char *ptr; struct rsa_st *rsa; /* RSA */ struct dsa_st *dsa; /* DSA */ struct dh_st *dh; /* DH */ struct ec_key_st *ec; /* ECC */ } pkey; ENGINE *engine; /* TODO(fork): document */ int save_parameters; /* ameth contains a pointer to a method table that contains many ASN.1 * methods for the key type. */ const EVP_PKEY_ASN1_METHOD *ameth; /* TODO(fork): document; */ STACK_OF(X509_ATTRIBUTE) * attributes; /* [ 0 ] */ } /* EVP_PKEY */; #if defined(__cplusplus) } /* extern C */ #endif #define EVP_F_rsa_item_verify 100 #define EVP_F_do_sigver_init 101 #define EVP_F_eckey_priv_decode 102 #define EVP_F_pkey_ec_sign 103 #define EVP_F_EVP_PKEY_sign_init 104 #define EVP_F_d2i_PrivateKey 105 #define EVP_F_rsa_priv_encode 106 #define EVP_F_rsa_mgf1_to_md 107 #define EVP_F_EVP_PKEY_get1_DH 108 #define EVP_F_EVP_PKEY_sign 109 #define EVP_F_old_ec_priv_decode 110 #define EVP_F_EVP_PKEY_get1_RSA 111 #define EVP_F_pkey_ec_ctrl 112 #define EVP_F_evp_pkey_ctx_new 113 #define EVP_F_EVP_PKEY_verify 114 #define EVP_F_EVP_PKEY_encrypt 115 #define EVP_F_EVP_PKEY_keygen 116 #define EVP_F_eckey_type2param 117 #define EVP_F_eckey_priv_encode 118 #define EVP_F_do_EC_KEY_print 119 #define EVP_F_pkey_ec_keygen 120 #define EVP_F_EVP_PKEY_encrypt_init 121 #define EVP_F_pkey_rsa_ctrl 122 #define EVP_F_rsa_priv_decode 123 #define EVP_F_rsa_pss_to_ctx 124 #define EVP_F_EVP_PKEY_get1_EC_KEY 125 #define EVP_F_EVP_PKEY_verify_init 126 #define EVP_F_EVP_PKEY_derive_init 127 #define EVP_F_eckey_param2type 128 #define EVP_F_eckey_pub_decode 129 #define EVP_F_d2i_AutoPrivateKey 130 #define EVP_F_eckey_param_decode 131 #define EVP_F_EVP_PKEY_new 132 #define EVP_F_pkey_ec_derive 133 #define EVP_F_pkey_ec_paramgen 134 #define EVP_F_EVP_PKEY_CTX_ctrl 135 #define EVP_F_EVP_PKEY_decrypt_init 136 #define EVP_F_EVP_PKEY_decrypt 137 #define EVP_F_EVP_PKEY_copy_parameters 138 #define EVP_F_EVP_PKEY_set_type 139 #define EVP_F_EVP_PKEY_derive 140 #define EVP_F_EVP_PKEY_keygen_init 141 #define EVP_F_do_rsa_print 142 #define EVP_F_old_rsa_priv_decode 143 #define EVP_F_rsa_algor_to_md 144 #define EVP_F_eckey_pub_encode 145 #define EVP_F_EVP_PKEY_derive_set_peer 146 #define EVP_F_pkey_rsa_sign 147 #define EVP_F_check_padding_md 148 #define EVP_F_i2d_PublicKey 149 #define EVP_F_rsa_pub_decode 150 #define EVP_F_EVP_PKEY_get1_DSA 151 #define EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE 100 #define EVP_R_UNSUPPORTED_SIGNATURE_TYPE 101 #define EVP_R_INVALID_DIGEST_TYPE 102 #define EVP_R_EXPECTING_A_DH_KEY 103 #define EVP_R_OPERATON_NOT_INITIALIZED 104 #define EVP_R_MISSING_PARAMETERS 105 #define EVP_R_NO_DEFAULT_DIGEST 106 #define EVP_R_UNKNOWN_DIGEST 107 #define EVP_R_KEYS_NOT_SET 108 #define EVP_R_X931_UNSUPPORTED 109 #define EVP_R_DIGEST_DOES_NOT_MATCH 110 #define EVP_R_DIFFERENT_PARAMETERS 111 #define EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE 112 #define EVP_R_DIFFERENT_KEY_TYPES 113 #define EVP_R_NO_PARAMETERS_SET 114 #define EVP_R_NO_NID_FOR_CURVE 115 #define EVP_R_NO_OPERATION_SET 116 #define EVP_R_UNSUPPORTED_ALGORITHM 117 #define EVP_R_EXPECTING_AN_DSA_KEY 118 #define EVP_R_UNKNOWN_MASK_DIGEST 119 #define EVP_R_INVALID_SALT_LENGTH 120 #define EVP_R_BUFFER_TOO_SMALL 121 #define EVP_R_INVALID_PADDING_MODE 122 #define EVP_R_INVALID_MGF1_MD 123 #define EVP_R_SHARED_INFO_ERROR 124 #define EVP_R_INVALID_KEYBITS 125 #define EVP_R_PEER_KEY_ERROR 126 #define EVP_R_EXPECTING_A_DSA_KEY 127 #define EVP_R_UNSUPPORTED_MASK_ALGORITHM 128 #define EVP_R_EXPECTING_AN_EC_KEY_KEY 129 #define EVP_R_INVALID_TRAILER 130 #define EVP_R_INVALID_DIGEST_LENGTH 131 #define EVP_R_COMMAND_NOT_SUPPORTED 132 #define EVP_R_EXPLICIT_EC_PARAMETERS_NOT_SUPPORTED 133 #define EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE 134 #define EVP_R_NO_MDC2_SUPPORT 135 #define EVP_R_INVALID_CURVE 136 #define EVP_R_NO_KEY_SET 137 #define EVP_R_INVALID_PSS_PARAMETERS 138 #define EVP_R_KDF_PARAMETER_ERROR 139 #define EVP_R_UNSUPPORTED_MASK_PARAMETER 140 #define EVP_R_EXPECTING_AN_RSA_KEY 141 #define EVP_R_INVALID_OPERATION 142 #define EVP_R_DECODE_ERROR 143 #define EVP_R_INVALID_PSS_SALTLEN 144 #define EVP_R_UNKNOWN_PUBLIC_KEY_TYPE 145 #endif /* OPENSSL_HEADER_EVP_H */