/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include #include #include #include #include #include #include #include #include "ssl_locl.h" /* seed1 through seed5 are virtually concatenated */ static int tls1_P_hash(const EVP_MD *md, const unsigned char *sec, int sec_len, const void *seed1, int seed1_len, const void *seed2, int seed2_len, const void *seed3, int seed3_len, const void *seed4, int seed4_len, const void *seed5, int seed5_len, unsigned char *out, int olen) { int chunk; size_t j; EVP_MD_CTX ctx, ctx_tmp, ctx_init; EVP_PKEY *mac_key; unsigned char A1[EVP_MAX_MD_SIZE]; size_t A1_len; int ret = 0; chunk=EVP_MD_size(md); EVP_MD_CTX_init(&ctx); EVP_MD_CTX_init(&ctx_tmp); EVP_MD_CTX_init(&ctx_init); mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, sec, sec_len); if (!mac_key) goto err; if (!EVP_DigestSignInit(&ctx_init,NULL,md, NULL, mac_key)) goto err; if (!EVP_MD_CTX_copy_ex(&ctx,&ctx_init)) goto err; if (seed1 && !EVP_DigestSignUpdate(&ctx,seed1,seed1_len)) goto err; if (seed2 && !EVP_DigestSignUpdate(&ctx,seed2,seed2_len)) goto err; if (seed3 && !EVP_DigestSignUpdate(&ctx,seed3,seed3_len)) goto err; if (seed4 && !EVP_DigestSignUpdate(&ctx,seed4,seed4_len)) goto err; if (seed5 && !EVP_DigestSignUpdate(&ctx,seed5,seed5_len)) goto err; A1_len = EVP_MAX_MD_SIZE; if (!EVP_DigestSignFinal(&ctx,A1,&A1_len)) goto err; for (;;) { /* Reinit mac contexts */ if (!EVP_MD_CTX_copy_ex(&ctx,&ctx_init)) goto err; if (!EVP_DigestSignUpdate(&ctx,A1,A1_len)) goto err; if (olen>chunk && !EVP_MD_CTX_copy_ex(&ctx_tmp,&ctx)) goto err; if (seed1 && !EVP_DigestSignUpdate(&ctx,seed1,seed1_len)) goto err; if (seed2 && !EVP_DigestSignUpdate(&ctx,seed2,seed2_len)) goto err; if (seed3 && !EVP_DigestSignUpdate(&ctx,seed3,seed3_len)) goto err; if (seed4 && !EVP_DigestSignUpdate(&ctx,seed4,seed4_len)) goto err; if (seed5 && !EVP_DigestSignUpdate(&ctx,seed5,seed5_len)) goto err; if (olen > chunk) { j = olen; if (!EVP_DigestSignFinal(&ctx,out,&j)) goto err; out+=j; olen-=j; /* calc the next A1 value */ A1_len = EVP_MAX_MD_SIZE; if (!EVP_DigestSignFinal(&ctx_tmp,A1,&A1_len)) goto err; } else /* last one */ { A1_len = EVP_MAX_MD_SIZE; if (!EVP_DigestSignFinal(&ctx,A1,&A1_len)) goto err; memcpy(out,A1,olen); break; } } ret = 1; err: EVP_PKEY_free(mac_key); EVP_MD_CTX_cleanup(&ctx); EVP_MD_CTX_cleanup(&ctx_tmp); EVP_MD_CTX_cleanup(&ctx_init); OPENSSL_cleanse(A1,sizeof(A1)); return ret; } /* seed1 through seed5 are virtually concatenated */ static int tls1_PRF(long digest_mask, const void *seed1, int seed1_len, const void *seed2, int seed2_len, const void *seed3, int seed3_len, const void *seed4, int seed4_len, const void *seed5, int seed5_len, const unsigned char *sec, int slen, unsigned char *out1, unsigned char *out2, int olen) { int len,i,idx,count; const unsigned char *S1; long m; const EVP_MD *md; int ret = 0; /* Count number of digests and partition sec evenly */ count=0; for (idx=0;ssl_get_handshake_digest(idx,&m,&md);idx++) { if ((m<s3->server_random,SSL3_RANDOM_SIZE, s->s3->client_random,SSL3_RANDOM_SIZE, NULL,0,NULL,0, s->session->master_key,s->session->master_key_length, km,tmp,num); #ifdef KSSL_DEBUG printf("tls1_generate_key_block() ==> %d byte master_key =\n\t", s->session->master_key_length); { int i; for (i=0; i < s->session->master_key_length; i++) { printf("%02X", s->session->master_key[i]); } printf("\n"); } #endif /* KSSL_DEBUG */ return ret; } /* tls1_aead_ctx_init allocates |*aead_ctx|, if needed and returns 1. It * returns 0 on malloc error. */ static int tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx) { if (*aead_ctx != NULL) EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx); else { *aead_ctx = (SSL_AEAD_CTX*) OPENSSL_malloc(sizeof(SSL_AEAD_CTX)); if (*aead_ctx == NULL) { OPENSSL_PUT_ERROR(SSL, tls1_aead_ctx_init, ERR_R_MALLOC_FAILURE); return 0; } } return 1; } static int tls1_change_cipher_state_aead(SSL *s, char is_read, const unsigned char *key, unsigned key_len, const unsigned char *iv, unsigned iv_len, const unsigned char *mac_secret, unsigned mac_secret_len) { const EVP_AEAD *aead = s->s3->tmp.new_aead; SSL_AEAD_CTX *aead_ctx; /* mac_key_and_key is used to merge the MAC and cipher keys for an AEAD * which simulates pre-AEAD cipher suites. It needs to be large enough * to cope with the largest pair of keys. */ uint8_t mac_key_and_key[32 /* HMAC(SHA256) */ + 32 /* AES-256 */]; if (mac_secret_len > 0) { /* This is a "stateful" AEAD (for compatibility with pre-AEAD * cipher suites). */ if (mac_secret_len + key_len > sizeof(mac_key_and_key)) { OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR); return 0; } memcpy(mac_key_and_key, mac_secret, mac_secret_len); memcpy(mac_key_and_key + mac_secret_len, key, key_len); key = mac_key_and_key; key_len += mac_secret_len; } if (is_read) { if (!tls1_aead_ctx_init(&s->aead_read_ctx)) return 0; aead_ctx = s->aead_read_ctx; } else { if (!tls1_aead_ctx_init(&s->aead_write_ctx)) return 0; aead_ctx = s->aead_write_ctx; } if (!EVP_AEAD_CTX_init(&aead_ctx->ctx, aead, key, key_len, EVP_AEAD_DEFAULT_TAG_LENGTH, NULL /* engine */)) return 0; if (iv_len > sizeof(aead_ctx->fixed_nonce)) { OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR); return 0; } memcpy(aead_ctx->fixed_nonce, iv, iv_len); aead_ctx->fixed_nonce_len = iv_len; aead_ctx->variable_nonce_len = 8; /* correct for all true AEADs so far. */ if (s->s3->tmp.new_cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_STATEFUL_AEAD) aead_ctx->variable_nonce_len = 0; aead_ctx->variable_nonce_included_in_record = (s->s3->tmp.new_cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD) != 0; if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len != EVP_AEAD_nonce_length(aead)) { OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR); return 0; } aead_ctx->tag_len = EVP_AEAD_max_overhead(aead); return 1; } /* tls1_change_cipher_state_cipher performs the work needed to switch cipher * states when using EVP_CIPHER. The argument |is_read| is true iff this * function is being called due to reading, as opposed to writing, a * ChangeCipherSpec message. In order to support export ciphersuites, * use_client_keys indicates whether the key material provided is in the * "client write" direction. */ static int tls1_change_cipher_state_cipher( SSL *s, char is_read, char use_client_keys, const unsigned char *mac_secret, unsigned mac_secret_len, const unsigned char *key, unsigned key_len, const unsigned char *iv, unsigned iv_len) { const EVP_CIPHER *cipher = s->s3->tmp.new_sym_enc; EVP_CIPHER_CTX *cipher_ctx; EVP_MD_CTX *mac_ctx; if (is_read) { if (s->enc_read_ctx != NULL && !SSL_IS_DTLS(s)) EVP_CIPHER_CTX_cleanup(s->enc_read_ctx); else if ((s->enc_read_ctx=EVP_CIPHER_CTX_new()) == NULL) goto err; cipher_ctx = s->enc_read_ctx; mac_ctx = ssl_replace_hash(&s->read_hash, NULL); memcpy(s->s3->read_mac_secret, mac_secret, mac_secret_len); s->s3->read_mac_secret_size = mac_secret_len; } else { /* When updating the write contexts for DTLS, we do not wish to * free the old ones because DTLS stores pointers to them in * order to implement retransmission. */ if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s)) EVP_CIPHER_CTX_cleanup(s->enc_write_ctx); else if ((s->enc_write_ctx=OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL) goto err; else /* make sure it's intialized in case we exit later with an error */ EVP_CIPHER_CTX_init(s->enc_write_ctx); cipher_ctx = s->enc_write_ctx; if (SSL_IS_DTLS(s)) { /* This is the same as ssl_replace_hash, but doesn't * free the old |s->write_hash|. */ mac_ctx = EVP_MD_CTX_create(); if (!mac_ctx) goto err; s->write_hash = mac_ctx; } else mac_ctx = ssl_replace_hash(&s->write_hash, NULL); memcpy(s->s3->write_mac_secret, mac_secret, mac_secret_len); s->s3->write_mac_secret_size = mac_secret_len; } EVP_PKEY *mac_key = EVP_PKEY_new_mac_key(s->s3->tmp.new_mac_pkey_type, NULL, mac_secret, mac_secret_len); if (!mac_key) return 0; EVP_DigestSignInit(mac_ctx, NULL, s->s3->tmp.new_hash, NULL, mac_key); EVP_PKEY_free(mac_key); EVP_CipherInit_ex(cipher_ctx, cipher, NULL /* engine */, key, iv, !is_read); return 1; err: OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_cipher, ERR_R_MALLOC_FAILURE); return 0; } int tls1_change_cipher_state(SSL *s, int which) { /* is_read is true if we have just read a ChangeCipherSpec message - * i.e. we need to update the read cipherspec. Otherwise we have just * written one. */ const char is_read = (which & SSL3_CC_READ) != 0; /* use_client_keys is true if we wish to use the keys for the "client * write" direction. This is the case if we're a client sending a * ChangeCipherSpec, or a server reading a client's ChangeCipherSpec. */ const char use_client_keys = which == SSL3_CHANGE_CIPHER_CLIENT_WRITE || which == SSL3_CHANGE_CIPHER_SERVER_READ; const unsigned char *client_write_mac_secret, *server_write_mac_secret, *mac_secret; const unsigned char *client_write_key, *server_write_key, *key; const unsigned char *client_write_iv, *server_write_iv, *iv; const EVP_CIPHER *cipher = s->s3->tmp.new_sym_enc; const EVP_AEAD *aead = s->s3->tmp.new_aead; unsigned key_len, iv_len, mac_secret_len; const unsigned char *key_data; /* Reset sequence number to zero. */ if (!SSL_IS_DTLS(s)) memset(is_read ? s->s3->read_sequence : s->s3->write_sequence, 0, 8); /* key_arg is used for SSLv2. We don't need it for TLS. */ s->session->key_arg_length = 0; mac_secret_len = s->s3->tmp.new_mac_secret_size; if (aead != NULL) { key_len = EVP_AEAD_key_length(aead); /* For "stateful" AEADs (i.e. compatibility with pre-AEAD * cipher suites) the key length reported by * |EVP_AEAD_key_length| will include the MAC key bytes. */ if (key_len < mac_secret_len) { OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR); return 0; } key_len -= mac_secret_len; iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->s3->tmp.new_cipher); } else { key_len = EVP_CIPHER_key_length(cipher); iv_len = EVP_CIPHER_iv_length(cipher); } key_data = s->s3->tmp.key_block; client_write_mac_secret = key_data; key_data += mac_secret_len; server_write_mac_secret = key_data; key_data += mac_secret_len; client_write_key = key_data; key_data += key_len; server_write_key = key_data; key_data += key_len; client_write_iv = key_data; key_data += iv_len; server_write_iv = key_data; key_data += iv_len; if (use_client_keys) { mac_secret = client_write_mac_secret; key = client_write_key; iv = client_write_iv; } else { mac_secret = server_write_mac_secret; key = server_write_key; iv = server_write_iv; } if (key_data - s->s3->tmp.key_block != s->s3->tmp.key_block_length) { OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR); return 0; } if (aead != NULL) { if (!tls1_change_cipher_state_aead(s, is_read, key, key_len, iv, iv_len, mac_secret, mac_secret_len)) return 0; } else { if (!tls1_change_cipher_state_cipher(s, is_read, use_client_keys, mac_secret, mac_secret_len, key, key_len, iv, iv_len)) return 0; } return 1; } int tls1_setup_key_block(SSL *s) { unsigned char *p1,*p2=NULL; const EVP_CIPHER *c = NULL; const EVP_MD *hash = NULL; const EVP_AEAD *aead = NULL; int num; int mac_type= NID_undef,mac_secret_size=0; int ret=0; unsigned key_len, iv_len; #ifdef KSSL_DEBUG printf ("tls1_setup_key_block()\n"); #endif /* KSSL_DEBUG */ if (s->s3->tmp.key_block_length != 0) return(1); if (s->session->cipher && ((s->session->cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD) || (s->session->cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_STATEFUL_AEAD))) { if (!ssl_cipher_get_evp_aead(s->session, &aead)) goto cipher_unavailable_err; key_len = EVP_AEAD_key_length(aead); iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->session->cipher); if ((s->session->cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_STATEFUL_AEAD) && !ssl_cipher_get_mac(s->session, &hash, &mac_type, &mac_secret_size)) goto cipher_unavailable_err; /* For "stateful" AEADs (i.e. compatibility with pre-AEAD * cipher suites) the key length reported by * |EVP_AEAD_key_length| will include the MAC key bytes. */ if (key_len < (size_t)mac_secret_size) { OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR); return 0; } key_len -= mac_secret_size; } else { if (!ssl_cipher_get_evp(s->session,&c,&hash,&mac_type,&mac_secret_size)) goto cipher_unavailable_err; key_len = EVP_CIPHER_key_length(c); iv_len = EVP_CIPHER_iv_length(c); } s->s3->tmp.new_aead=aead; s->s3->tmp.new_sym_enc=c; s->s3->tmp.new_hash=hash; s->s3->tmp.new_mac_pkey_type = mac_type; s->s3->tmp.new_mac_secret_size = mac_secret_size; num=key_len+mac_secret_size+iv_len; num*=2; ssl3_cleanup_key_block(s); if ((p1=(unsigned char *)OPENSSL_malloc(num)) == NULL) { OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_MALLOC_FAILURE); goto err; } s->s3->tmp.key_block_length=num; s->s3->tmp.key_block=p1; if ((p2=(unsigned char *)OPENSSL_malloc(num)) == NULL) { OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_MALLOC_FAILURE); goto err; } #ifdef TLS_DEBUG printf("client random\n"); { int z; for (z=0; zs3->client_random[z],((z+1)%16)?' ':'\n'); } printf("server random\n"); { int z; for (z=0; zs3->server_random[z],((z+1)%16)?' ':'\n'); } printf("pre-master\n"); { int z; for (z=0; zsession->master_key_length; z++) printf("%02X%c",s->session->master_key[z],((z+1)%16)?' ':'\n'); } #endif if (!tls1_generate_key_block(s,p1,p2,num)) goto err; #ifdef TLS_DEBUG printf("\nkey block\n"); { int z; for (z=0; zmethod->version <= TLS1_VERSION && (s->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0) { /* enable vulnerability countermeasure for CBC ciphers with * known-IV problem (http://www.openssl.org/~bodo/tls-cbc.txt) */ s->s3->need_record_splitting = 1; if (s->session->cipher != NULL) { if (s->session->cipher->algorithm_enc == SSL_RC4) s->s3->need_record_splitting = 0; } } ret = 1; err: if (p2) { OPENSSL_cleanse(p2,num); OPENSSL_free(p2); } return(ret); cipher_unavailable_err: OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, SSL_R_CIPHER_OR_HASH_UNAVAILABLE); return 0; } /* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively. * * Returns: * 0: (in non-constant time) if the record is publically invalid (i.e. too * short etc). * 1: if the record's padding is valid / the encryption was successful. * -1: if the record's padding/AEAD-authenticator is invalid or, if sending, * an internal error occured. */ int tls1_enc(SSL *s, int send) { SSL3_RECORD *rec; EVP_CIPHER_CTX *ds; unsigned long l; int bs,i,j,k,pad=0,ret,mac_size=0; const EVP_CIPHER *enc; const SSL_AEAD_CTX *aead; if (send) rec = &s->s3->wrec; else rec = &s->s3->rrec; if (send) aead = s->aead_write_ctx; else aead = s->aead_read_ctx; if (aead) { unsigned char ad[13], *seq, *in, *out, nonce[16]; unsigned nonce_used; size_t n; seq = send ? s->s3->write_sequence : s->s3->read_sequence; if (SSL_IS_DTLS(s)) { unsigned char dtlsseq[9], *p = dtlsseq; s2n(send ? s->d1->w_epoch : s->d1->r_epoch, p); memcpy(p, &seq[2], 6); memcpy(ad, dtlsseq, 8); } else { memcpy(ad, seq, 8); for (i=7; i>=0; i--) /* increment */ { ++seq[i]; if (seq[i] != 0) break; } } ad[8] = rec->type; ad[9] = (unsigned char)(s->version>>8); ad[10] = (unsigned char)(s->version); if (aead->fixed_nonce_len + aead->variable_nonce_len > sizeof(nonce) || aead->variable_nonce_len > 8) return -1; /* internal error - should never happen. */ memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len); nonce_used = aead->fixed_nonce_len; if (send) { size_t len = rec->length; size_t eivlen = 0; in = rec->input; out = rec->data; /* When sending we use the sequence number as the * variable part of the nonce. */ if (aead->variable_nonce_len > 8) return -1; memcpy(nonce + nonce_used, ad, aead->variable_nonce_len); nonce_used += aead->variable_nonce_len; /* in do_ssl3_write, rec->input is moved forward by * variable_nonce_len in order to leave space for the * variable nonce. Thus we can copy the sequence number * bytes into place without overwriting any of the * plaintext. */ if (aead->variable_nonce_included_in_record) { memcpy(out, ad, aead->variable_nonce_len); len -= aead->variable_nonce_len; eivlen = aead->variable_nonce_len; } ad[11] = len >> 8; ad[12] = len & 0xff; if (!EVP_AEAD_CTX_seal( &aead->ctx, out + eivlen, &n, len + aead->tag_len, nonce, nonce_used, in + eivlen, len, ad, sizeof(ad))) { return -1; } if (aead->variable_nonce_included_in_record) n += aead->variable_nonce_len; } else { /* receive */ size_t len = rec->length; if (rec->data != rec->input) return -1; /* internal error - should never happen. */ out = in = rec->input; if (len < aead->variable_nonce_len) return 0; memcpy(nonce + nonce_used, aead->variable_nonce_included_in_record ? in : ad, aead->variable_nonce_len); nonce_used += aead->variable_nonce_len; if (aead->variable_nonce_included_in_record) { in += aead->variable_nonce_len; len -= aead->variable_nonce_len; out += aead->variable_nonce_len; } if (len < aead->tag_len) return 0; len -= aead->tag_len; ad[11] = len >> 8; ad[12] = len & 0xff; if (!EVP_AEAD_CTX_open( &aead->ctx, out, &n, len, nonce, nonce_used, in, len + aead->tag_len, ad, sizeof(ad))) { return -1; } rec->data = rec->input = out; } rec->length = n; return 1; } if (send) { ds=s->enc_write_ctx; rec= &(s->s3->wrec); if (s->enc_write_ctx == NULL) enc=NULL; else { int ivlen; enc=EVP_CIPHER_CTX_cipher(s->enc_write_ctx); /* For TLSv1.1 and later explicit IV */ if (SSL_USE_EXPLICIT_IV(s) && EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE) ivlen = EVP_CIPHER_iv_length(enc); else ivlen = 0; if (ivlen > 1) { if ( rec->data != rec->input) /* we can't write into the input stream: * Can this ever happen?? (steve) */ fprintf(stderr, "%s:%d: rec->data != rec->input\n", __FILE__, __LINE__); else if (RAND_bytes(rec->input, ivlen) <= 0) return -1; } } } else { ds=s->enc_read_ctx; rec= &(s->s3->rrec); if (s->enc_read_ctx == NULL) enc=NULL; else enc=EVP_CIPHER_CTX_cipher(s->enc_read_ctx); } #ifdef KSSL_DEBUG printf("tls1_enc(%d)\n", send); #endif /* KSSL_DEBUG */ if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) { memmove(rec->data,rec->input,rec->length); rec->input=rec->data; ret = 1; } else { l=rec->length; bs=EVP_CIPHER_block_size(ds->cipher); if ((bs != 1) && send) { i=bs-((int)l%bs); /* Add weird padding of upto 256 bytes */ /* we need to add 'i' padding bytes of value j */ j=i-1; for (k=(int)l; k<(int)(l+i); k++) rec->input[k]=j; l+=i; rec->length+=i; } #ifdef KSSL_DEBUG { unsigned long ui; printf("EVP_Cipher(ds=%p,rec->data=%p,rec->input=%p,l=%ld) ==>\n", ds,rec->data,rec->input,l); printf("\tEVP_CIPHER_CTX: %d buf_len, %d key_len [%d %d], %d iv_len\n", ds->buf_len, ds->cipher->key_len, DES_KEY_SZ, DES_SCHEDULE_SZ, ds->cipher->iv_len); printf("\t\tIV: "); for (i=0; icipher->iv_len; i++) printf("%02X", ds->iv[i]); printf("\n"); printf("\trec->input="); for (ui=0; uiinput[ui]); printf("\n"); } #endif /* KSSL_DEBUG */ if (!send) { if (l == 0 || l%bs != 0) return 0; } i = EVP_Cipher(ds,rec->data,rec->input,l); if ((EVP_CIPHER_flags(ds->cipher)&EVP_CIPH_FLAG_CUSTOM_CIPHER) ?(i<0) :(i==0)) return -1; /* AEAD can fail to verify MAC */ #ifdef KSSL_DEBUG { unsigned long i; printf("\trec->data="); for (i=0; idata[i]); printf("\n"); } #endif /* KSSL_DEBUG */ ret = 1; if (EVP_MD_CTX_md(s->read_hash) != NULL) mac_size = EVP_MD_CTX_size(s->read_hash); if ((bs != 1) && !send) ret = tls1_cbc_remove_padding(s, rec, bs, mac_size); if (pad && !send) rec->length -= pad; } return ret; } int tls1_cert_verify_mac(SSL *s, int md_nid, unsigned char *out) { unsigned int ret; EVP_MD_CTX ctx, *d=NULL; int i; if (s->s3->handshake_buffer) if (!ssl3_digest_cached_records(s)) return 0; for (i=0;is3->handshake_dgst[i]&&EVP_MD_CTX_type(s->s3->handshake_dgst[i])==md_nid) { d=s->s3->handshake_dgst[i]; break; } } if (!d) { OPENSSL_PUT_ERROR(SSL, tls1_cert_verify_mac, SSL_R_NO_REQUIRED_DIGEST); return 0; } EVP_MD_CTX_init(&ctx); EVP_MD_CTX_copy_ex(&ctx,d); EVP_DigestFinal_ex(&ctx,out,&ret); EVP_MD_CTX_cleanup(&ctx); return((int)ret); } /* tls1_handshake_digest calculates the current handshake hash and writes it to * |out|, which has space for |out_len| bytes. It returns the number of bytes * written or -1 in the event of an error. This function works on a copy of the * underlying digests so can be called multiple times and prior to the final * update etc. */ int tls1_handshake_digest(SSL *s, unsigned char *out, size_t out_len) { const EVP_MD *md; EVP_MD_CTX ctx; int i, err = 0, len = 0; long mask; EVP_MD_CTX_init(&ctx); for (i = 0; ssl_get_handshake_digest(i, &mask, &md); i++) { int hash_size; unsigned int digest_len; EVP_MD_CTX *hdgst = s->s3->handshake_dgst[i]; if ((mask & ssl_get_algorithm2(s)) == 0) continue; hash_size = EVP_MD_size(md); if (!hdgst || hash_size < 0 || (size_t)hash_size > out_len) { err = 1; break; } if (!EVP_MD_CTX_copy_ex(&ctx, hdgst) || !EVP_DigestFinal_ex(&ctx, out, &digest_len) || digest_len != (unsigned int)hash_size) /* internal error */ { err = 1; break; } out += digest_len; out_len -= digest_len; len += digest_len; } EVP_MD_CTX_cleanup(&ctx); if (err != 0) return -1; return len; } int tls1_final_finish_mac(SSL *s, const char *str, int slen, unsigned char *out) { unsigned char buf[2*EVP_MAX_MD_SIZE]; unsigned char buf2[12]; int err=0; int digests_len; if (s->s3->handshake_buffer) if (!ssl3_digest_cached_records(s)) return 0; digests_len = tls1_handshake_digest(s, buf, sizeof(buf)); if (digests_len < 0) { err = 1; digests_len = 0; } if (!tls1_PRF(ssl_get_algorithm2(s), str,slen, buf, digests_len, NULL,0, NULL,0, NULL,0, s->session->master_key,s->session->master_key_length, out,buf2,sizeof buf2)) err = 1; if (err) return 0; else return sizeof buf2; } int tls1_mac(SSL *ssl, unsigned char *md, int send) { SSL3_RECORD *rec; unsigned char *seq; EVP_MD_CTX *hash; size_t md_size, orig_len; int i; EVP_MD_CTX hmac, *mac_ctx; unsigned char header[13]; int t; if (send) { rec= &(ssl->s3->wrec); seq= &(ssl->s3->write_sequence[0]); hash=ssl->write_hash; } else { rec= &(ssl->s3->rrec); seq= &(ssl->s3->read_sequence[0]); hash=ssl->read_hash; } t=EVP_MD_CTX_size(hash); assert(t >= 0); md_size=t; if (!EVP_MD_CTX_copy(&hmac,hash)) return -1; mac_ctx = &hmac; if (SSL_IS_DTLS(ssl)) { unsigned char dtlsseq[8],*p=dtlsseq; s2n(send?ssl->d1->w_epoch:ssl->d1->r_epoch, p); memcpy (p,&seq[2],6); memcpy(header, dtlsseq, 8); } else memcpy(header, seq, 8); /* kludge: tls1_cbc_remove_padding passes padding length in rec->type */ orig_len = rec->length+md_size+((unsigned int)rec->type>>8); rec->type &= 0xff; header[8]=rec->type; header[9]=(unsigned char)(ssl->version>>8); header[10]=(unsigned char)(ssl->version); header[11]=(rec->length)>>8; header[12]=(rec->length)&0xff; if (!send && EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && ssl3_cbc_record_digest_supported(mac_ctx)) { /* This is a CBC-encrypted record. We must avoid leaking any * timing-side channel information about how many blocks of * data we are hashing because that gives an attacker a * timing-oracle. */ ssl3_cbc_digest_record( mac_ctx, md, &md_size, header, rec->input, rec->length + md_size, orig_len, ssl->s3->read_mac_secret, ssl->s3->read_mac_secret_size, 0 /* not SSLv3 */); } else { EVP_DigestSignUpdate(mac_ctx,header,sizeof(header)); EVP_DigestSignUpdate(mac_ctx,rec->input,rec->length); t=EVP_DigestSignFinal(mac_ctx,md,&md_size); assert(t > 0); } EVP_MD_CTX_cleanup(&hmac); if (!SSL_IS_DTLS(ssl)) { for (i=7; i>=0; i--) { ++seq[i]; if (seq[i] != 0) break; } } return(md_size); } int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p, int len) { unsigned char buff[SSL_MAX_MASTER_KEY_LENGTH]; const void *co = NULL, *so = NULL; int col = 0, sol = 0; #ifdef KSSL_DEBUG printf ("tls1_generate_master_secret(%p,%p, %p, %d)\n", s,out, p,len); #endif /* KSSL_DEBUG */ tls1_PRF(ssl_get_algorithm2(s), TLS_MD_MASTER_SECRET_CONST,TLS_MD_MASTER_SECRET_CONST_SIZE, s->s3->client_random,SSL3_RANDOM_SIZE, co, col, s->s3->server_random,SSL3_RANDOM_SIZE, so, sol, p,len, s->session->master_key,buff,sizeof buff); #ifdef SSL_DEBUG fprintf(stderr, "Premaster Secret:\n"); BIO_dump_fp(stderr, (char *)p, len); fprintf(stderr, "Client Random:\n"); BIO_dump_fp(stderr, (char *)s->s3->client_random, SSL3_RANDOM_SIZE); fprintf(stderr, "Server Random:\n"); BIO_dump_fp(stderr, (char *)s->s3->server_random, SSL3_RANDOM_SIZE); fprintf(stderr, "Master Secret:\n"); BIO_dump_fp(stderr, (char *)s->session->master_key, SSL3_MASTER_SECRET_SIZE); #endif #ifdef OPENSSL_SSL_TRACE_CRYPTO if (s->msg_callback) { s->msg_callback(2, s->version, TLS1_RT_CRYPTO_PREMASTER, p, len, s, s->msg_callback_arg); s->msg_callback(2, s->version, TLS1_RT_CRYPTO_CLIENT_RANDOM, s->s3->client_random, SSL3_RANDOM_SIZE, s, s->msg_callback_arg); s->msg_callback(2, s->version, TLS1_RT_CRYPTO_SERVER_RANDOM, s->s3->server_random, SSL3_RANDOM_SIZE, s, s->msg_callback_arg); s->msg_callback(2, s->version, TLS1_RT_CRYPTO_MASTER, s->session->master_key, SSL3_MASTER_SECRET_SIZE, s, s->msg_callback_arg); } #endif #ifdef KSSL_DEBUG printf ("tls1_generate_master_secret() complete\n"); #endif /* KSSL_DEBUG */ return(SSL3_MASTER_SECRET_SIZE); } int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen, const char *label, size_t llen, const unsigned char *context, size_t contextlen, int use_context) { unsigned char *buff; unsigned char *val = NULL; size_t vallen, currentvalpos; int rv; #ifdef KSSL_DEBUG printf ("tls1_export_keying_material(%p,%p,%d,%s,%d,%p,%d)\n", s, out, olen, label, llen, p, plen); #endif /* KSSL_DEBUG */ buff = OPENSSL_malloc(olen); if (buff == NULL) goto err2; /* construct PRF arguments * we construct the PRF argument ourself rather than passing separate * values into the TLS PRF to ensure that the concatenation of values * does not create a prohibited label. */ vallen = llen + SSL3_RANDOM_SIZE * 2; if (use_context) { vallen += 2 + contextlen; } val = OPENSSL_malloc(vallen); if (val == NULL) goto err2; currentvalpos = 0; memcpy(val + currentvalpos, (unsigned char *) label, llen); currentvalpos += llen; memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE); currentvalpos += SSL3_RANDOM_SIZE; memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE); currentvalpos += SSL3_RANDOM_SIZE; if (use_context) { val[currentvalpos] = (contextlen >> 8) & 0xff; currentvalpos++; val[currentvalpos] = contextlen & 0xff; currentvalpos++; if ((contextlen > 0) || (context != NULL)) { memcpy(val + currentvalpos, context, contextlen); } } /* disallow prohibited labels * note that SSL3_RANDOM_SIZE > max(prohibited label len) = * 15, so size of val > max(prohibited label len) = 15 and the * comparisons won't have buffer overflow */ if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) goto err1; rv = tls1_PRF(ssl_get_algorithm2(s), val, vallen, NULL, 0, NULL, 0, NULL, 0, NULL, 0, s->session->master_key,s->session->master_key_length, out,buff,olen); #ifdef KSSL_DEBUG printf ("tls1_export_keying_material() complete\n"); #endif /* KSSL_DEBUG */ goto ret; err1: OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL); rv = 0; goto ret; err2: OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, ERR_R_MALLOC_FAILURE); rv = 0; ret: if (buff != NULL) OPENSSL_free(buff); if (val != NULL) OPENSSL_free(val); return(rv); } int tls1_alert_code(int code) { switch (code) { case SSL_AD_CLOSE_NOTIFY: return(SSL3_AD_CLOSE_NOTIFY); case SSL_AD_UNEXPECTED_MESSAGE: return(SSL3_AD_UNEXPECTED_MESSAGE); case SSL_AD_BAD_RECORD_MAC: return(SSL3_AD_BAD_RECORD_MAC); case SSL_AD_DECRYPTION_FAILED: return(TLS1_AD_DECRYPTION_FAILED); case SSL_AD_RECORD_OVERFLOW: return(TLS1_AD_RECORD_OVERFLOW); case SSL_AD_DECOMPRESSION_FAILURE:return(SSL3_AD_DECOMPRESSION_FAILURE); case SSL_AD_HANDSHAKE_FAILURE: return(SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_NO_CERTIFICATE: return(-1); case SSL_AD_BAD_CERTIFICATE: return(SSL3_AD_BAD_CERTIFICATE); case SSL_AD_UNSUPPORTED_CERTIFICATE:return(SSL3_AD_UNSUPPORTED_CERTIFICATE); case SSL_AD_CERTIFICATE_REVOKED:return(SSL3_AD_CERTIFICATE_REVOKED); case SSL_AD_CERTIFICATE_EXPIRED:return(SSL3_AD_CERTIFICATE_EXPIRED); case SSL_AD_CERTIFICATE_UNKNOWN:return(SSL3_AD_CERTIFICATE_UNKNOWN); case SSL_AD_ILLEGAL_PARAMETER: return(SSL3_AD_ILLEGAL_PARAMETER); case SSL_AD_UNKNOWN_CA: return(TLS1_AD_UNKNOWN_CA); case SSL_AD_ACCESS_DENIED: return(TLS1_AD_ACCESS_DENIED); case SSL_AD_DECODE_ERROR: return(TLS1_AD_DECODE_ERROR); case SSL_AD_DECRYPT_ERROR: return(TLS1_AD_DECRYPT_ERROR); case SSL_AD_EXPORT_RESTRICTION: return(TLS1_AD_EXPORT_RESTRICTION); case SSL_AD_PROTOCOL_VERSION: return(TLS1_AD_PROTOCOL_VERSION); case SSL_AD_INSUFFICIENT_SECURITY:return(TLS1_AD_INSUFFICIENT_SECURITY); case SSL_AD_INTERNAL_ERROR: return(TLS1_AD_INTERNAL_ERROR); case SSL_AD_USER_CANCELLED: return(TLS1_AD_USER_CANCELLED); case SSL_AD_NO_RENEGOTIATION: return(TLS1_AD_NO_RENEGOTIATION); case SSL_AD_UNSUPPORTED_EXTENSION: return(TLS1_AD_UNSUPPORTED_EXTENSION); case SSL_AD_CERTIFICATE_UNOBTAINABLE: return(TLS1_AD_CERTIFICATE_UNOBTAINABLE); case SSL_AD_UNRECOGNIZED_NAME: return(TLS1_AD_UNRECOGNIZED_NAME); case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: return(TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE); case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: return(TLS1_AD_BAD_CERTIFICATE_HASH_VALUE); case SSL_AD_UNKNOWN_PSK_IDENTITY:return(TLS1_AD_UNKNOWN_PSK_IDENTITY); case SSL_AD_INAPPROPRIATE_FALLBACK:return(SSL3_AD_INAPPROPRIATE_FALLBACK); #if 0 /* not appropriate for TLS, not used for DTLS */ case DTLS1_AD_MISSING_HANDSHAKE_MESSAGE: return (DTLS1_AD_MISSING_HANDSHAKE_MESSAGE); #endif default: return(-1); } }