/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include "internal.h" #include "../internal.h" struct nid_to_digest { int nid; const EVP_MD* (*md_func)(void); const char *short_name; const char *long_name; }; static const struct nid_to_digest nid_to_digest_mapping[] = { {NID_md4, EVP_md4, SN_md4, LN_md4}, {NID_md5, EVP_md5, SN_md5, LN_md5}, {NID_sha1, EVP_sha1, SN_sha1, LN_sha1}, {NID_sha224, EVP_sha224, SN_sha224, LN_sha224}, {NID_sha256, EVP_sha256, SN_sha256, LN_sha256}, {NID_sha384, EVP_sha384, SN_sha384, LN_sha384}, {NID_sha512, EVP_sha512, SN_sha512, LN_sha512}, {NID_md5_sha1, EVP_md5_sha1, SN_md5_sha1, LN_md5_sha1}, /* As a remnant of signing |EVP_MD|s, OpenSSL returned the corresponding * hash function when given a signature OID. To avoid unintended lax parsing * of hash OIDs, this is no longer supported for lookup by OID or NID. * Node.js, however, exposes |EVP_get_digestbyname|'s full behavior to * consumers so we retain it there. */ {NID_undef, EVP_sha1, SN_dsaWithSHA, LN_dsaWithSHA}, {NID_undef, EVP_sha1, SN_dsaWithSHA1, LN_dsaWithSHA1}, {NID_undef, EVP_sha1, SN_ecdsa_with_SHA1, NULL}, {NID_undef, EVP_md5, SN_md5WithRSAEncryption, LN_md5WithRSAEncryption}, {NID_undef, EVP_sha1, SN_sha1WithRSAEncryption, LN_sha1WithRSAEncryption}, {NID_undef, EVP_sha224, SN_sha224WithRSAEncryption, LN_sha224WithRSAEncryption}, {NID_undef, EVP_sha256, SN_sha256WithRSAEncryption, LN_sha256WithRSAEncryption}, {NID_undef, EVP_sha384, SN_sha384WithRSAEncryption, LN_sha384WithRSAEncryption}, {NID_undef, EVP_sha512, SN_sha512WithRSAEncryption, LN_sha512WithRSAEncryption}, }; const EVP_MD* EVP_get_digestbynid(int nid) { if (nid == NID_undef) { /* Skip the |NID_undef| entries in |nid_to_digest_mapping|. */ return NULL; } for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(nid_to_digest_mapping); i++) { if (nid_to_digest_mapping[i].nid == nid) { return nid_to_digest_mapping[i].md_func(); } } return NULL; } static const struct { uint8_t oid[9]; uint8_t oid_len; const EVP_MD *(*md_func) (void); } kMDOIDs[] = { /* 1.2.840.113549.2.4 */ { {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x04}, 8, EVP_md4 }, /* 1.2.840.113549.2.5 */ { {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05}, 8, EVP_md5 }, /* 1.3.14.3.2.26 */ { {0x2b, 0x0e, 0x03, 0x02, 0x1a}, 5, EVP_sha1 }, /* 2.16.840.1.101.3.4.2.1 */ { {0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01}, 9, EVP_sha256 }, /* 2.16.840.1.101.3.4.2.2 */ { {0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02}, 9, EVP_sha384 }, /* 2.16.840.1.101.3.4.2.3 */ { {0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03}, 9, EVP_sha512 }, /* 2.16.840.1.101.3.4.2.4 */ { {0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04}, 9, EVP_sha224 }, }; static const EVP_MD *cbs_to_md(const CBS *cbs) { for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kMDOIDs); i++) { if (CBS_len(cbs) == kMDOIDs[i].oid_len && OPENSSL_memcmp(CBS_data(cbs), kMDOIDs[i].oid, kMDOIDs[i].oid_len) == 0) { return kMDOIDs[i].md_func(); } } return NULL; } const EVP_MD *EVP_get_digestbyobj(const ASN1_OBJECT *obj) { /* Handle objects with no corresponding OID. */ if (obj->nid != NID_undef) { return EVP_get_digestbynid(obj->nid); } CBS cbs; CBS_init(&cbs, obj->data, obj->length); return cbs_to_md(&cbs); } const EVP_MD *EVP_parse_digest_algorithm(CBS *cbs) { CBS algorithm, oid; if (!CBS_get_asn1(cbs, &algorithm, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&algorithm, &oid, CBS_ASN1_OBJECT)) { OPENSSL_PUT_ERROR(DIGEST, DIGEST_R_DECODE_ERROR); return NULL; } const EVP_MD *ret = cbs_to_md(&oid); if (ret == NULL) { OPENSSL_PUT_ERROR(DIGEST, DIGEST_R_UNKNOWN_HASH); return NULL; } /* The parameters, if present, must be NULL. Historically, whether the NULL * was included or omitted was not well-specified. When parsing an * AlgorithmIdentifier, we allow both. (Note this code is not used when * verifying RSASSA-PKCS1-v1_5 signatures.) */ if (CBS_len(&algorithm) > 0) { CBS param; if (!CBS_get_asn1(&algorithm, ¶m, CBS_ASN1_NULL) || CBS_len(¶m) != 0 || CBS_len(&algorithm) != 0) { OPENSSL_PUT_ERROR(DIGEST, DIGEST_R_DECODE_ERROR); return NULL; } } return ret; } const EVP_MD *EVP_get_digestbyname(const char *name) { for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(nid_to_digest_mapping); i++) { const char *short_name = nid_to_digest_mapping[i].short_name; const char *long_name = nid_to_digest_mapping[i].long_name; if ((short_name && strcmp(short_name, name) == 0) || (long_name && strcmp(long_name, name) == 0)) { return nid_to_digest_mapping[i].md_func(); } } return NULL; }