/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include #include #include #include #include #include #include #include #include "ssl_locl.h" /* seed1 through seed3 are virtually concatenated */ static int tls1_P_hash(const EVP_MD *md, const uint8_t *sec, int sec_len, const void *seed1, int seed1_len, const void *seed2, int seed2_len, const void *seed3, int seed3_len, uint8_t *out, int olen) { int chunk; size_t j; EVP_MD_CTX ctx, ctx_tmp, ctx_init; EVP_PKEY *mac_key; uint8_t A1[EVP_MAX_MD_SIZE]; size_t A1_len; int ret = 0; chunk = EVP_MD_size(md); EVP_MD_CTX_init(&ctx); EVP_MD_CTX_init(&ctx_tmp); EVP_MD_CTX_init(&ctx_init); mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, sec, sec_len); A1_len = EVP_MAX_MD_SIZE; if (!mac_key || !EVP_DigestSignInit(&ctx_init, NULL, md, NULL, mac_key) || !EVP_MD_CTX_copy_ex(&ctx, &ctx_init) || (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len)) || (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len)) || (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len)) || !EVP_DigestSignFinal(&ctx, A1, &A1_len)) { goto err; } for (;;) { /* Reinit mac contexts */ if (!EVP_MD_CTX_copy_ex(&ctx, &ctx_init) || !EVP_DigestSignUpdate(&ctx, A1, A1_len) || (olen > chunk && !EVP_MD_CTX_copy_ex(&ctx_tmp, &ctx)) || (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len)) || (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len)) || (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len))) { goto err; } if (olen > chunk) { j = olen; if (!EVP_DigestSignFinal(&ctx, out, &j)) { goto err; } out += j; olen -= j; /* calc the next A1 value */ A1_len = EVP_MAX_MD_SIZE; if (!EVP_DigestSignFinal(&ctx_tmp, A1, &A1_len)) { goto err; } } else { /* last one */ A1_len = EVP_MAX_MD_SIZE; if (!EVP_DigestSignFinal(&ctx, A1, &A1_len)) { goto err; } memcpy(out, A1, olen); break; } } ret = 1; err: EVP_PKEY_free(mac_key); EVP_MD_CTX_cleanup(&ctx); EVP_MD_CTX_cleanup(&ctx_tmp); EVP_MD_CTX_cleanup(&ctx_init); OPENSSL_cleanse(A1, sizeof(A1)); return ret; } /* seed1 through seed3 are virtually concatenated */ static int tls1_PRF(long digest_mask, const void *seed1, int seed1_len, const void *seed2, int seed2_len, const void *seed3, int seed3_len, const uint8_t *sec, int slen, uint8_t *out, int olen) { int len, i, idx, count; const uint8_t *S1; long m; const EVP_MD *md; int ret = 0; uint8_t *tmp; if (olen <= 0) { return 1; } /* Allocate a temporary buffer. */ tmp = OPENSSL_malloc(olen); if (tmp == NULL) { OPENSSL_PUT_ERROR(SSL, tls1_PRF, ERR_R_MALLOC_FAILURE); return 0; } /* Count number of digests and partition sec evenly */ count = 0; for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) { if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) { count++; } } len = slen / count; if (count == 1) { slen = 0; } S1 = sec; memset(out, 0, olen); for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) { if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) { if (!md) { OPENSSL_PUT_ERROR(SSL, tls1_PRF, SSL_R_UNSUPPORTED_DIGEST_TYPE); goto err; } if (!tls1_P_hash(md, S1, len + (slen & 1), seed1, seed1_len, seed2, seed2_len, seed3, seed3_len, tmp, olen)) { goto err; } S1 += len; for (i = 0; i < olen; i++) { out[i] ^= tmp[i]; } } } ret = 1; err: OPENSSL_cleanse(tmp, olen); OPENSSL_free(tmp); return ret; } static int tls1_generate_key_block(SSL *s, uint8_t *km, int num) { return tls1_PRF(ssl_get_algorithm2(s), TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE, s->s3->server_random, SSL3_RANDOM_SIZE, s->s3->client_random, SSL3_RANDOM_SIZE, s->session->master_key, s->session->master_key_length, km, num); } /* tls1_aead_ctx_init allocates |*aead_ctx|, if needed and returns 1. It * returns 0 on malloc error. */ static int tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx) { if (*aead_ctx != NULL) { EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx); } else { *aead_ctx = (SSL_AEAD_CTX *)OPENSSL_malloc(sizeof(SSL_AEAD_CTX)); if (*aead_ctx == NULL) { OPENSSL_PUT_ERROR(SSL, tls1_aead_ctx_init, ERR_R_MALLOC_FAILURE); return 0; } } return 1; } static void tls1_cleanup_enc_ctx(EVP_CIPHER_CTX **ctx) { if (*ctx != NULL) { EVP_CIPHER_CTX_free(*ctx); } *ctx = NULL; } static void tls1_cleanup_hash_ctx(EVP_MD_CTX **ctx) { if (*ctx != NULL) { EVP_MD_CTX_destroy(*ctx); } *ctx = NULL; } static int tls1_change_cipher_state_aead(SSL *s, char is_read, const uint8_t *key, unsigned key_len, const uint8_t *iv, unsigned iv_len, const uint8_t *mac_secret, unsigned mac_secret_len) { const EVP_AEAD *aead = s->s3->tmp.new_aead; SSL_AEAD_CTX *aead_ctx; /* merged_key is used to merge the MAC, cipher, and IV keys for an AEAD which * simulates pre-AEAD cipher suites. */ uint8_t merged_key[EVP_AEAD_MAX_KEY_LENGTH]; if (is_read) { tls1_cleanup_enc_ctx(&s->enc_read_ctx); tls1_cleanup_hash_ctx(&s->read_hash); } else { tls1_cleanup_enc_ctx(&s->enc_write_ctx); tls1_cleanup_hash_ctx(&s->write_hash); } if (mac_secret_len > 0) { /* This is a "stateful" AEAD (for compatibility with pre-AEAD cipher * suites). */ if (mac_secret_len + key_len + iv_len > sizeof(merged_key)) { OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR); return 0; } memcpy(merged_key, mac_secret, mac_secret_len); memcpy(merged_key + mac_secret_len, key, key_len); memcpy(merged_key + mac_secret_len + key_len, iv, iv_len); key = merged_key; key_len += mac_secret_len; key_len += iv_len; } if (is_read) { if (!tls1_aead_ctx_init(&s->aead_read_ctx)) { return 0; } aead_ctx = s->aead_read_ctx; } else { if (!tls1_aead_ctx_init(&s->aead_write_ctx)) { return 0; } aead_ctx = s->aead_write_ctx; } if (!EVP_AEAD_CTX_init(&aead_ctx->ctx, aead, key, key_len, EVP_AEAD_DEFAULT_TAG_LENGTH, NULL /* engine */)) { OPENSSL_free(aead_ctx); if (is_read) { s->aead_read_ctx = NULL; } else { s->aead_write_ctx = NULL; } return 0; } if (mac_secret_len == 0) { /* For a real AEAD, the IV is the fixed part of the nonce. */ if (iv_len > sizeof(aead_ctx->fixed_nonce)) { OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR); return 0; } memcpy(aead_ctx->fixed_nonce, iv, iv_len); aead_ctx->fixed_nonce_len = iv_len; aead_ctx->variable_nonce_included_in_record = (s->s3->tmp.new_cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD) != 0; aead_ctx->random_variable_nonce = 0; aead_ctx->omit_length_in_ad = 0; } else { aead_ctx->fixed_nonce_len = 0; aead_ctx->variable_nonce_included_in_record = 1; aead_ctx->random_variable_nonce = 1; aead_ctx->omit_length_in_ad = 1; } aead_ctx->variable_nonce_len = s->s3->tmp.new_variable_iv_len; if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len != EVP_AEAD_nonce_length(aead)) { OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR); return 0; } aead_ctx->tag_len = EVP_AEAD_max_overhead(aead); return 1; } static void tls1_cleanup_aead_ctx(SSL_AEAD_CTX **ctx) { if (*ctx != NULL) { EVP_AEAD_CTX_cleanup(&(*ctx)->ctx); OPENSSL_free(*ctx); } *ctx = NULL; } /* tls1_change_cipher_state_cipher performs the work needed to switch cipher * states when using EVP_CIPHER. The argument |is_read| is true iff this * function is being called due to reading, as opposed to writing, a * ChangeCipherSpec message. In order to support export ciphersuites, * use_client_keys indicates whether the key material provided is in the * "client write" direction. */ static int tls1_change_cipher_state_cipher(SSL *s, char is_read, char use_client_keys, const uint8_t *mac_secret, unsigned mac_secret_len, const uint8_t *key, unsigned key_len, const uint8_t *iv, unsigned iv_len) { const EVP_CIPHER *cipher = s->s3->tmp.new_sym_enc; EVP_CIPHER_CTX *cipher_ctx; EVP_MD_CTX *mac_ctx; if (is_read) { tls1_cleanup_aead_ctx(&s->aead_read_ctx); } else { tls1_cleanup_aead_ctx(&s->aead_write_ctx); } if (is_read) { if (s->enc_read_ctx != NULL && !SSL_IS_DTLS(s)) { EVP_CIPHER_CTX_cleanup(s->enc_read_ctx); } else if ((s->enc_read_ctx = EVP_CIPHER_CTX_new()) == NULL) { goto err; } cipher_ctx = s->enc_read_ctx; mac_ctx = ssl_replace_hash(&s->read_hash, NULL); if (mac_ctx == NULL) { goto err; } memcpy(s->s3->read_mac_secret, mac_secret, mac_secret_len); s->s3->read_mac_secret_size = mac_secret_len; } else { /* When updating the write contexts for DTLS, we do not wish to free the * old ones because DTLS stores pointers to them in order to implement * retransmission. */ if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s)) { EVP_CIPHER_CTX_cleanup(s->enc_write_ctx); } else { s->enc_write_ctx = OPENSSL_malloc(sizeof(EVP_CIPHER_CTX)); if (s->enc_write_ctx == NULL) { goto err; } } EVP_CIPHER_CTX_init(s->enc_write_ctx); cipher_ctx = s->enc_write_ctx; if (SSL_IS_DTLS(s)) { /* This is the same as ssl_replace_hash, but doesn't * free the old |s->write_hash|. */ mac_ctx = EVP_MD_CTX_create(); if (!mac_ctx) { goto err; } s->write_hash = mac_ctx; } else { mac_ctx = ssl_replace_hash(&s->write_hash, NULL); if (mac_ctx == NULL) { goto err; } } memcpy(s->s3->write_mac_secret, mac_secret, mac_secret_len); s->s3->write_mac_secret_size = mac_secret_len; } EVP_PKEY *mac_key = EVP_PKEY_new_mac_key(s->s3->tmp.new_mac_pkey_type, NULL, mac_secret, mac_secret_len); if (!mac_key) { return 0; } if (!EVP_DigestSignInit(mac_ctx, NULL, s->s3->tmp.new_hash, NULL, mac_key)) { EVP_PKEY_free(mac_key); goto err; } EVP_PKEY_free(mac_key); if (!EVP_CipherInit_ex(cipher_ctx, cipher, NULL /* engine */, key, iv, !is_read)) { goto err; } return 1; err: OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_cipher, ERR_R_MALLOC_FAILURE); return 0; } int tls1_change_cipher_state(SSL *s, int which) { /* is_read is true if we have just read a ChangeCipherSpec message - i.e. we * need to update the read cipherspec. Otherwise we have just written one. */ const char is_read = (which & SSL3_CC_READ) != 0; /* use_client_keys is true if we wish to use the keys for the "client write" * direction. This is the case if we're a client sending a ChangeCipherSpec, * or a server reading a client's ChangeCipherSpec. */ const char use_client_keys = which == SSL3_CHANGE_CIPHER_CLIENT_WRITE || which == SSL3_CHANGE_CIPHER_SERVER_READ; const uint8_t *client_write_mac_secret, *server_write_mac_secret, *mac_secret; const uint8_t *client_write_key, *server_write_key, *key; const uint8_t *client_write_iv, *server_write_iv, *iv; const EVP_CIPHER *cipher = s->s3->tmp.new_sym_enc; const EVP_AEAD *aead = s->s3->tmp.new_aead; size_t key_len, iv_len, mac_secret_len; const uint8_t *key_data; /* Reset sequence number to zero. */ if (!SSL_IS_DTLS(s)) { memset(is_read ? s->s3->read_sequence : s->s3->write_sequence, 0, 8); } mac_secret_len = s->s3->tmp.new_mac_secret_len; iv_len = s->s3->tmp.new_fixed_iv_len; if (aead != NULL) { key_len = EVP_AEAD_key_length(aead); if (mac_secret_len > 0) { /* For "stateful" AEADs (i.e. compatibility with pre-AEAD cipher suites) * the key length reported by |EVP_AEAD_key_length| will include the MAC * and IV key bytes. */ if (key_len < mac_secret_len + iv_len) { OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR); return 0; } key_len -= mac_secret_len + iv_len; } } else { key_len = EVP_CIPHER_key_length(cipher); } key_data = s->s3->tmp.key_block; client_write_mac_secret = key_data; key_data += mac_secret_len; server_write_mac_secret = key_data; key_data += mac_secret_len; client_write_key = key_data; key_data += key_len; server_write_key = key_data; key_data += key_len; client_write_iv = key_data; key_data += iv_len; server_write_iv = key_data; key_data += iv_len; if (use_client_keys) { mac_secret = client_write_mac_secret; key = client_write_key; iv = client_write_iv; } else { mac_secret = server_write_mac_secret; key = server_write_key; iv = server_write_iv; } if (key_data - s->s3->tmp.key_block != s->s3->tmp.key_block_length) { OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR); return 0; } if (aead != NULL) { if (!tls1_change_cipher_state_aead(s, is_read, key, key_len, iv, iv_len, mac_secret, mac_secret_len)) { return 0; } } else { if (!tls1_change_cipher_state_cipher(s, is_read, use_client_keys, mac_secret, mac_secret_len, key, key_len, iv, iv_len)) { return 0; } } return 1; } int tls1_setup_key_block(SSL *s) { uint8_t *p; const EVP_CIPHER *c = NULL; const EVP_MD *hash = NULL; const EVP_AEAD *aead = NULL; int num; int mac_type = NID_undef; int ret = 0; size_t mac_secret_len, fixed_iv_len, variable_iv_len, key_len; if (s->s3->tmp.key_block_length != 0) { return 1; } if (s->session->cipher == NULL) { goto cipher_unavailable_err; } /* TODO(davidben): Make DTLS record-layer code EVP_AEAD-aware. */ if (!SSL_IS_DTLS(s)) { if (!ssl_cipher_get_evp_aead(&aead, &mac_secret_len, &fixed_iv_len, s->session->cipher, ssl3_version_from_wire(s, s->version))) { goto cipher_unavailable_err; } key_len = EVP_AEAD_key_length(aead); variable_iv_len = EVP_AEAD_nonce_length(aead); if (mac_secret_len > 0) { /* For "stateful" AEADs (i.e. compatibility with pre-AEAD cipher suites) * the key length reported by |EVP_AEAD_key_length| will include the MAC * key bytes and initial implicit IV. */ if (key_len < mac_secret_len + fixed_iv_len) { OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_INTERNAL_ERROR); return 0; } key_len -= mac_secret_len + fixed_iv_len; } else { /* The nonce is split into a fixed portion and a variable portion. */ if (variable_iv_len < fixed_iv_len) { OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_INTERNAL_ERROR); return 0; } variable_iv_len -= fixed_iv_len; } } else { if (!ssl_cipher_get_evp(s->session, &c, &hash, &mac_type, &mac_secret_len)) { goto cipher_unavailable_err; } key_len = EVP_CIPHER_key_length(c); fixed_iv_len = EVP_CIPHER_iv_length(c); variable_iv_len = 0; } assert(mac_secret_len < 256); assert(fixed_iv_len < 256); assert(variable_iv_len < 256); s->s3->tmp.new_aead = aead; s->s3->tmp.new_sym_enc = c; s->s3->tmp.new_hash = hash; s->s3->tmp.new_mac_pkey_type = mac_type; s->s3->tmp.new_mac_secret_len = (uint8_t)mac_secret_len; s->s3->tmp.new_fixed_iv_len = (uint8_t)fixed_iv_len; s->s3->tmp.new_variable_iv_len = (uint8_t)variable_iv_len; num = key_len + mac_secret_len + fixed_iv_len; num *= 2; ssl3_cleanup_key_block(s); p = (uint8_t *)OPENSSL_malloc(num); if (p == NULL) { OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_MALLOC_FAILURE); goto err; } s->s3->tmp.key_block_length = num; s->s3->tmp.key_block = p; if (!tls1_generate_key_block(s, p, num)) { goto err; } if (!SSL_USE_EXPLICIT_IV(s) && (s->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0) { /* enable vulnerability countermeasure for CBC ciphers with known-IV * problem (http://www.openssl.org/~bodo/tls-cbc.txt). */ s->s3->need_record_splitting = 1; if (s->session->cipher != NULL && s->session->cipher->algorithm_enc == SSL_RC4) { s->s3->need_record_splitting = 0; } } ret = 1; err: return ret; cipher_unavailable_err: OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, SSL_R_CIPHER_OR_HASH_UNAVAILABLE); return 0; } /* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, * respectively. * * Returns: * 0: (in non-constant time) if the record is publically invalid (i.e. too * short etc). * 1: if the record's padding is valid / the encryption was successful. * -1: if the record's padding/AEAD-authenticator is invalid or, if sending, * an internal error occured. */ int tls1_enc(SSL *s, int send) { SSL3_RECORD *rec; EVP_CIPHER_CTX *ds; unsigned long l; int bs, i, j, k, pad = 0, ret, mac_size = 0; const EVP_CIPHER *enc; const SSL_AEAD_CTX *aead; if (send) { rec = &s->s3->wrec; aead = s->aead_write_ctx; } else { rec = &s->s3->rrec; aead = s->aead_read_ctx; } if (aead) { uint8_t ad[13], *seq, *in, *out, nonce[EVP_AEAD_MAX_NONCE_LENGTH]; unsigned nonce_used; size_t n, ad_len; seq = send ? s->s3->write_sequence : s->s3->read_sequence; if (SSL_IS_DTLS(s)) { uint8_t dtlsseq[9], *p = dtlsseq; s2n(send ? s->d1->w_epoch : s->d1->r_epoch, p); memcpy(p, &seq[2], 6); memcpy(ad, dtlsseq, 8); } else { memcpy(ad, seq, 8); for (i = 7; i >= 0; i--) { ++seq[i]; if (seq[i] != 0) { break; } } } ad[8] = rec->type; ad[9] = (uint8_t)(s->version >> 8); ad[10] = (uint8_t)(s->version); if (aead->fixed_nonce_len + aead->variable_nonce_len > sizeof(nonce)) { OPENSSL_PUT_ERROR(SSL, tls1_enc, ERR_R_INTERNAL_ERROR); return -1; /* internal error - should never happen. */ } memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len); nonce_used = aead->fixed_nonce_len; if (send) { size_t len = rec->length; size_t eivlen = 0; in = rec->input; out = rec->data; uint8_t *variable_nonce = nonce + nonce_used; if (aead->random_variable_nonce) { assert(aead->variable_nonce_included_in_record); if (!RAND_bytes(nonce + nonce_used, aead->variable_nonce_len)) { return -1; } } else { /* When sending we use the sequence number as the variable part of the * nonce. */ if (aead->variable_nonce_len != 8) { OPENSSL_PUT_ERROR(SSL, tls1_enc, ERR_R_INTERNAL_ERROR); return -1; } memcpy(nonce + nonce_used, ad, aead->variable_nonce_len); } nonce_used += aead->variable_nonce_len; /* in do_ssl3_write, rec->input is moved forward by variable_nonce_len in * order to leave space for the variable nonce. Thus we can copy the * sequence number bytes into place without overwriting any of the * plaintext. */ if (aead->variable_nonce_included_in_record) { memcpy(out, variable_nonce, aead->variable_nonce_len); len -= aead->variable_nonce_len; eivlen = aead->variable_nonce_len; } if (aead->omit_length_in_ad) { ad_len = 11; } else { ad[11] = len >> 8; ad[12] = len & 0xff; ad_len = 13; } if (!EVP_AEAD_CTX_seal(&aead->ctx, out + eivlen, &n, len + aead->tag_len, nonce, nonce_used, in + eivlen, len, ad, ad_len)) { return -1; } if (aead->variable_nonce_included_in_record) { n += aead->variable_nonce_len; } } else { /* receive */ size_t len = rec->length; if (rec->data != rec->input) { OPENSSL_PUT_ERROR(SSL, tls1_enc, ERR_R_INTERNAL_ERROR); return -1; /* internal error - should never happen. */ } out = in = rec->input; if (len < aead->variable_nonce_len) { return 0; } memcpy(nonce + nonce_used, aead->variable_nonce_included_in_record ? in : ad, aead->variable_nonce_len); nonce_used += aead->variable_nonce_len; if (aead->variable_nonce_included_in_record) { in += aead->variable_nonce_len; len -= aead->variable_nonce_len; out += aead->variable_nonce_len; } if (aead->omit_length_in_ad) { ad_len = 11; } else { if (len < aead->tag_len) { return 0; } size_t plaintext_len = len - aead->tag_len; ad[11] = plaintext_len >> 8; ad[12] = plaintext_len & 0xff; ad_len = 13; } if (!EVP_AEAD_CTX_open(&aead->ctx, out, &n, rec->length, nonce, nonce_used, in, len, ad, ad_len)) { return -1; } rec->data = rec->input = out; } rec->length = n; return 1; } if (send) { ds = s->enc_write_ctx; rec = &(s->s3->wrec); if (s->enc_write_ctx == NULL) { enc = NULL; } else { int ivlen; enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx); /* For TLSv1.1 and later explicit IV */ if (SSL_USE_EXPLICIT_IV(s) && EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE) { ivlen = EVP_CIPHER_iv_length(enc); } else { ivlen = 0; } if (ivlen > 1) { if (rec->data != rec->input) { /* we can't write into the input stream: * Can this ever happen?? (steve) */ fprintf(stderr, "%s:%d: rec->data != rec->input\n", __FILE__, __LINE__); } else if (!RAND_bytes(rec->input, ivlen)) { return -1; } } } } else { ds = s->enc_read_ctx; rec = &(s->s3->rrec); if (s->enc_read_ctx == NULL) { enc = NULL; } else { enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx); } } if (s->session == NULL || ds == NULL || enc == NULL) { memmove(rec->data, rec->input, rec->length); rec->input = rec->data; ret = 1; } else { l = rec->length; bs = EVP_CIPHER_block_size(ds->cipher); if (bs != 1 && send) { i = bs - ((int)l % bs); /* Add weird padding of upto 256 bytes */ /* we need to add 'i' padding bytes of value j */ j = i - 1; for (k = (int)l; k < (int)(l + i); k++) { rec->input[k] = j; } l += i; rec->length += i; } if (!send && (l == 0 || l % bs != 0)) { return 0; } if (!EVP_Cipher(ds, rec->data, rec->input, l)) { return -1; } ret = 1; if (EVP_MD_CTX_md(s->read_hash) != NULL) { mac_size = EVP_MD_CTX_size(s->read_hash); } if (bs != 1 && !send) { ret = tls1_cbc_remove_padding(s, rec, bs, mac_size); } if (pad && !send) { rec->length -= pad; } } return ret; } int tls1_cert_verify_mac(SSL *s, int md_nid, uint8_t *out) { unsigned int ret; EVP_MD_CTX ctx, *d = NULL; int i; if (s->s3->handshake_buffer && !ssl3_digest_cached_records(s, free_handshake_buffer)) { return 0; } for (i = 0; i < SSL_MAX_DIGEST; i++) { if (s->s3->handshake_dgst[i] && EVP_MD_CTX_type(s->s3->handshake_dgst[i]) == md_nid) { d = s->s3->handshake_dgst[i]; break; } } if (!d) { OPENSSL_PUT_ERROR(SSL, tls1_cert_verify_mac, SSL_R_NO_REQUIRED_DIGEST); return 0; } EVP_MD_CTX_init(&ctx); EVP_MD_CTX_copy_ex(&ctx, d); EVP_DigestFinal_ex(&ctx, out, &ret); EVP_MD_CTX_cleanup(&ctx); return ret; } /* tls1_handshake_digest calculates the current handshake hash and writes it to * |out|, which has space for |out_len| bytes. It returns the number of bytes * written or -1 in the event of an error. This function works on a copy of the * underlying digests so can be called multiple times and prior to the final * update etc. */ int tls1_handshake_digest(SSL *s, uint8_t *out, size_t out_len) { const EVP_MD *md; EVP_MD_CTX ctx; int i, err = 0, len = 0; long mask; EVP_MD_CTX_init(&ctx); for (i = 0; ssl_get_handshake_digest(i, &mask, &md); i++) { int hash_size; unsigned int digest_len; EVP_MD_CTX *hdgst = s->s3->handshake_dgst[i]; if ((mask & ssl_get_algorithm2(s)) == 0) { continue; } hash_size = EVP_MD_size(md); if (!hdgst || hash_size < 0 || (size_t)hash_size > out_len || !EVP_MD_CTX_copy_ex(&ctx, hdgst) || !EVP_DigestFinal_ex(&ctx, out, &digest_len) || digest_len != (unsigned int)hash_size /* internal error */) { err = 1; break; } out += digest_len; out_len -= digest_len; len += digest_len; } EVP_MD_CTX_cleanup(&ctx); if (err != 0) { return -1; } return len; } int tls1_final_finish_mac(SSL *s, const char *str, int slen, uint8_t *out) { uint8_t buf[2 * EVP_MAX_MD_SIZE]; int err = 0; int digests_len; if (s->s3->handshake_buffer && !ssl3_digest_cached_records(s, free_handshake_buffer)) { return 0; } digests_len = tls1_handshake_digest(s, buf, sizeof(buf)); if (digests_len < 0) { err = 1; digests_len = 0; } if (!tls1_PRF(ssl_get_algorithm2(s), str, slen, buf, digests_len, NULL, 0, s->session->master_key, s->session->master_key_length, out, 12)) { err = 1; } if (err) { return 0; } else { return 12; } } int tls1_mac(SSL *ssl, uint8_t *md, int send) { SSL3_RECORD *rec; uint8_t *seq; EVP_MD_CTX *hash; size_t md_size, orig_len; int i, ok; EVP_MD_CTX hmac, *mac_ctx; uint8_t header[13]; int t; if (send) { rec = &ssl->s3->wrec; seq = &ssl->s3->write_sequence[0]; hash = ssl->write_hash; } else { rec = &ssl->s3->rrec; seq = &ssl->s3->read_sequence[0]; hash = ssl->read_hash; } t = EVP_MD_CTX_size(hash); assert(t >= 0); md_size = t; mac_ctx = &hmac; if (!EVP_MD_CTX_copy(mac_ctx, hash)) { return -1; } if (SSL_IS_DTLS(ssl)) { uint8_t dtlsseq[8], *p = dtlsseq; s2n(send ? ssl->d1->w_epoch : ssl->d1->r_epoch, p); memcpy(p, &seq[2], 6); memcpy(header, dtlsseq, 8); } else { memcpy(header, seq, 8); } /* kludge: tls1_cbc_remove_padding passes padding length in rec->type */ orig_len = rec->length + md_size + ((unsigned int)rec->type >> 8); rec->type &= 0xff; header[8] = rec->type; header[9] = (uint8_t)(ssl->version >> 8); header[10] = (uint8_t)(ssl->version); header[11] = (rec->length) >> 8; header[12] = (rec->length) & 0xff; if (!send && EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && ssl3_cbc_record_digest_supported(mac_ctx)) { /* This is a CBC-encrypted record. We must avoid leaking any timing-side * channel information about how many blocks of data we are hashing because * that gives an attacker a timing-oracle. */ ok = ssl3_cbc_digest_record( mac_ctx, md, &md_size, header, rec->input, rec->length + md_size, orig_len, ssl->s3->read_mac_secret, ssl->s3->read_mac_secret_size, 0 /* not SSLv3 */); } else { EVP_DigestSignUpdate(mac_ctx, header, sizeof(header)); EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length); ok = EVP_DigestSignFinal(mac_ctx, md, &md_size); } EVP_MD_CTX_cleanup(mac_ctx); if (!ok) { return -1; } if (!SSL_IS_DTLS(ssl)) { for (i = 7; i >= 0; i--) { ++seq[i]; if (seq[i] != 0) { break; } } } return md_size; } int tls1_generate_master_secret(SSL *s, uint8_t *out, uint8_t *p, int len) { if (s->s3->tmp.extended_master_secret) { uint8_t digests[2 * EVP_MAX_MD_SIZE]; int digests_len; /* The master secret is based on the handshake hash just after sending the * ClientKeyExchange. However, we might have a client certificate to send, * in which case we might need different hashes for the verification and * thus still need the handshake buffer around. Keeping both a handshake * buffer *and* running hashes isn't yet supported so, when it comes to * calculating the Finished hash, we'll have to hash the handshake buffer * again. */ if (s->s3->handshake_buffer && !ssl3_digest_cached_records(s, dont_free_handshake_buffer)) { return 0; } digests_len = tls1_handshake_digest(s, digests, sizeof(digests)); if (digests_len == -1) { return 0; } if (!tls1_PRF(ssl_get_algorithm2(s), TLS_MD_EXTENDED_MASTER_SECRET_CONST, TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE, digests, digests_len, NULL, 0, p, len, s->session->master_key, SSL_MAX_MASTER_KEY_LENGTH)) { return 0; } } else { if (!tls1_PRF(ssl_get_algorithm2(s), TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE, s->s3->client_random, SSL3_RANDOM_SIZE, s->s3->server_random, SSL3_RANDOM_SIZE, p, len, s->session->master_key, SSL_MAX_MASTER_KEY_LENGTH)) { return 0; } } return SSL3_MASTER_SECRET_SIZE; } int tls1_export_keying_material(SSL *s, uint8_t *out, size_t olen, const char *label, size_t llen, const uint8_t *context, size_t contextlen, int use_context) { uint8_t *val = NULL; size_t vallen, currentvalpos; int ret; /* construct PRF arguments we construct the PRF argument ourself rather than * passing separate values into the TLS PRF to ensure that the concatenation * of values does not create a prohibited label. */ vallen = llen + SSL3_RANDOM_SIZE * 2; if (use_context) { vallen += 2 + contextlen; } val = OPENSSL_malloc(vallen); if (val == NULL) { goto err2; } currentvalpos = 0; memcpy(val + currentvalpos, (uint8_t *)label, llen); currentvalpos += llen; memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE); currentvalpos += SSL3_RANDOM_SIZE; memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE); currentvalpos += SSL3_RANDOM_SIZE; if (use_context) { val[currentvalpos] = (contextlen >> 8) & 0xff; currentvalpos++; val[currentvalpos] = contextlen & 0xff; currentvalpos++; if (contextlen > 0 || context != NULL) { memcpy(val + currentvalpos, context, contextlen); } } /* disallow prohibited labels note that SSL3_RANDOM_SIZE > max(prohibited * label len) = 15, so size of val > max(prohibited label len) = 15 and the * comparisons won't have buffer overflow. */ if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0 || memcmp(val, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE) == 0 || memcmp(val, TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE) == 0 || memcmp(val, TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) { goto err1; } ret = tls1_PRF(ssl_get_algorithm2(s), val, vallen, NULL, 0, NULL, 0, s->session->master_key, s->session->master_key_length, out, olen); goto out; err1: OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL); ret = 0; goto out; err2: OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, ERR_R_MALLOC_FAILURE); ret = 0; out: if (val != NULL) { OPENSSL_free(val); } return ret; } int tls1_alert_code(int code) { switch (code) { case SSL_AD_CLOSE_NOTIFY: return SSL3_AD_CLOSE_NOTIFY; case SSL_AD_UNEXPECTED_MESSAGE: return SSL3_AD_UNEXPECTED_MESSAGE; case SSL_AD_BAD_RECORD_MAC: return SSL3_AD_BAD_RECORD_MAC; case SSL_AD_DECRYPTION_FAILED: return TLS1_AD_DECRYPTION_FAILED; case SSL_AD_RECORD_OVERFLOW: return TLS1_AD_RECORD_OVERFLOW; case SSL_AD_DECOMPRESSION_FAILURE: return SSL3_AD_DECOMPRESSION_FAILURE; case SSL_AD_HANDSHAKE_FAILURE: return SSL3_AD_HANDSHAKE_FAILURE; case SSL_AD_NO_CERTIFICATE: return -1; case SSL_AD_BAD_CERTIFICATE: return SSL3_AD_BAD_CERTIFICATE; case SSL_AD_UNSUPPORTED_CERTIFICATE: return SSL3_AD_UNSUPPORTED_CERTIFICATE; case SSL_AD_CERTIFICATE_REVOKED: return SSL3_AD_CERTIFICATE_REVOKED; case SSL_AD_CERTIFICATE_EXPIRED: return SSL3_AD_CERTIFICATE_EXPIRED; case SSL_AD_CERTIFICATE_UNKNOWN: return SSL3_AD_CERTIFICATE_UNKNOWN; case SSL_AD_ILLEGAL_PARAMETER: return SSL3_AD_ILLEGAL_PARAMETER; case SSL_AD_UNKNOWN_CA: return TLS1_AD_UNKNOWN_CA; case SSL_AD_ACCESS_DENIED: return TLS1_AD_ACCESS_DENIED; case SSL_AD_DECODE_ERROR: return TLS1_AD_DECODE_ERROR; case SSL_AD_DECRYPT_ERROR: return TLS1_AD_DECRYPT_ERROR; case SSL_AD_EXPORT_RESTRICTION: return TLS1_AD_EXPORT_RESTRICTION; case SSL_AD_PROTOCOL_VERSION: return TLS1_AD_PROTOCOL_VERSION; case SSL_AD_INSUFFICIENT_SECURITY: return TLS1_AD_INSUFFICIENT_SECURITY; case SSL_AD_INTERNAL_ERROR: return TLS1_AD_INTERNAL_ERROR; case SSL_AD_USER_CANCELLED: return TLS1_AD_USER_CANCELLED; case SSL_AD_NO_RENEGOTIATION: return TLS1_AD_NO_RENEGOTIATION; case SSL_AD_UNSUPPORTED_EXTENSION: return TLS1_AD_UNSUPPORTED_EXTENSION; case SSL_AD_CERTIFICATE_UNOBTAINABLE: return TLS1_AD_CERTIFICATE_UNOBTAINABLE; case SSL_AD_UNRECOGNIZED_NAME: return TLS1_AD_UNRECOGNIZED_NAME; case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: return TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE; case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: return TLS1_AD_BAD_CERTIFICATE_HASH_VALUE; case SSL_AD_UNKNOWN_PSK_IDENTITY: return TLS1_AD_UNKNOWN_PSK_IDENTITY; case SSL_AD_INAPPROPRIATE_FALLBACK: return SSL3_AD_INAPPROPRIATE_FALLBACK; default: return -1; } }