/* Originally written by Bodo Moeller for the OpenSSL project. * ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the OpenSSL open source * license provided above. * * The elliptic curve binary polynomial software is originally written by * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems * Laboratories. */ #ifndef OPENSSL_HEADER_EC_H #define OPENSSL_HEADER_EC_H #include #if defined(__cplusplus) extern "C" { #endif // Low-level operations on elliptic curves. // point_conversion_form_t enumerates forms, as defined in X9.62 (ECDSA), for // the encoding of a elliptic curve point (x,y) typedef enum { // POINT_CONVERSION_COMPRESSED indicates that the point is encoded as z||x, // where the octet z specifies which solution of the quadratic equation y // is. POINT_CONVERSION_COMPRESSED = 2, // POINT_CONVERSION_UNCOMPRESSED indicates that the point is encoded as // z||x||y, where z is the octet 0x04. POINT_CONVERSION_UNCOMPRESSED = 4, // POINT_CONVERSION_HYBRID indicates that the point is encoded as z||x||y, // where z specifies which solution of the quadratic equation y is. This is // not supported by the code and has never been observed in use. // // TODO(agl): remove once node.js no longer references this. POINT_CONVERSION_HYBRID = 6, } point_conversion_form_t; // Elliptic curve groups. // EC_GROUP_new_by_curve_name returns a fresh EC_GROUP object for the elliptic // curve specified by |nid|, or NULL on unsupported NID or allocation failure. // // The supported NIDs are: // NID_secp224r1 (P-224), // NID_X9_62_prime256v1 (P-256), // NID_secp384r1 (P-384), // NID_secp521r1 (P-521) // // If in doubt, use |NID_X9_62_prime256v1|, or see the curve25519.h header for // more modern primitives. OPENSSL_EXPORT EC_GROUP *EC_GROUP_new_by_curve_name(int nid); // EC_GROUP_free releases a reference to |group|. OPENSSL_EXPORT void EC_GROUP_free(EC_GROUP *group); // EC_GROUP_dup takes a reference to |a| and returns it. OPENSSL_EXPORT EC_GROUP *EC_GROUP_dup(const EC_GROUP *a); // EC_GROUP_cmp returns zero if |a| and |b| are the same group and non-zero // otherwise. OPENSSL_EXPORT int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ignored); // EC_GROUP_get0_generator returns a pointer to the internal |EC_POINT| object // in |group| that specifies the generator for the group. OPENSSL_EXPORT const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group); // EC_GROUP_get0_order returns a pointer to the internal |BIGNUM| object in // |group| that specifies the order of the group. OPENSSL_EXPORT const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group); // EC_GROUP_order_bits returns the number of bits of the order of |group|. OPENSSL_EXPORT int EC_GROUP_order_bits(const EC_GROUP *group); // EC_GROUP_get_cofactor sets |*cofactor| to the cofactor of |group| using // |ctx|, if it's not NULL. It returns one on success and zero otherwise. OPENSSL_EXPORT int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx); // EC_GROUP_get_curve_GFp gets various parameters about a group. It sets // |*out_p| to the order of the coordinate field and |*out_a| and |*out_b| to // the parameters of the curve when expressed as y² = x³ + ax + b. Any of the // output parameters can be NULL. It returns one on success and zero on // error. OPENSSL_EXPORT int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *out_p, BIGNUM *out_a, BIGNUM *out_b, BN_CTX *ctx); // EC_GROUP_get_curve_name returns a NID that identifies |group|. OPENSSL_EXPORT int EC_GROUP_get_curve_name(const EC_GROUP *group); // EC_GROUP_get_degree returns the number of bits needed to represent an // element of the field underlying |group|. OPENSSL_EXPORT unsigned EC_GROUP_get_degree(const EC_GROUP *group); // EC_curve_nid2nist returns the NIST name of the elliptic curve specified by // |nid|, or NULL if |nid| is not a NIST curve. For example, it returns "P-256" // for |NID_X9_62_prime256v1|. OPENSSL_EXPORT const char *EC_curve_nid2nist(int nid); // EC_curve_nist2nid returns the NID of the elliptic curve specified by the NIST // name |name|, or |NID_undef| if |name| is not a recognized name. For example, // it returns |NID_X9_62_prime256v1| for "P-256". OPENSSL_EXPORT int EC_curve_nist2nid(const char *name); // Points on elliptic curves. // EC_POINT_new returns a fresh |EC_POINT| object in the given group, or NULL // on error. OPENSSL_EXPORT EC_POINT *EC_POINT_new(const EC_GROUP *group); // EC_POINT_free frees |point| and the data that it points to. OPENSSL_EXPORT void EC_POINT_free(EC_POINT *point); // EC_POINT_copy sets |*dest| equal to |*src|. It returns one on success and // zero otherwise. OPENSSL_EXPORT int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src); // EC_POINT_dup returns a fresh |EC_POINT| that contains the same values as // |src|, or NULL on error. OPENSSL_EXPORT EC_POINT *EC_POINT_dup(const EC_POINT *src, const EC_GROUP *group); // EC_POINT_set_to_infinity sets |point| to be the "point at infinity" for the // given group. OPENSSL_EXPORT int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point); // EC_POINT_is_at_infinity returns one iff |point| is the point at infinity and // zero otherwise. OPENSSL_EXPORT int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point); // EC_POINT_is_on_curve returns one if |point| is an element of |group| and // and zero otherwise or when an error occurs. This is different from OpenSSL, // which returns -1 on error. If |ctx| is non-NULL, it may be used. OPENSSL_EXPORT int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx); // EC_POINT_cmp returns zero if |a| is equal to |b|, greater than zero if // not equal and -1 on error. If |ctx| is not NULL, it may be used. OPENSSL_EXPORT int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx); // Point conversion. // EC_POINT_get_affine_coordinates_GFp sets |x| and |y| to the affine value of // |point| using |ctx|, if it's not NULL. It returns one on success and zero // otherwise. // // Either |x| or |y| may be NULL to skip computing that coordinate. This is // slightly faster in the common case where only the x-coordinate is needed. OPENSSL_EXPORT int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx); // EC_POINT_set_affine_coordinates_GFp sets the value of |point| to be // (|x|, |y|). The |ctx| argument may be used if not NULL. It returns one // on success or zero on error. Note that, unlike with OpenSSL, it's // considered an error if the point is not on the curve. OPENSSL_EXPORT int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx); // EC_POINT_point2oct serialises |point| into the X9.62 form given by |form| // into, at most, |len| bytes at |buf|. It returns the number of bytes written // or zero on error if |buf| is non-NULL, else the number of bytes needed. The // |ctx| argument may be used if not NULL. OPENSSL_EXPORT size_t EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, uint8_t *buf, size_t len, BN_CTX *ctx); // EC_POINT_point2cbb behaves like |EC_POINT_point2oct| but appends the // serialised point to |cbb|. It returns one on success and zero on error. OPENSSL_EXPORT int EC_POINT_point2cbb(CBB *out, const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, BN_CTX *ctx); // EC_POINT_oct2point sets |point| from |len| bytes of X9.62 format // serialisation in |buf|. It returns one on success and zero otherwise. The // |ctx| argument may be used if not NULL. OPENSSL_EXPORT int EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *point, const uint8_t *buf, size_t len, BN_CTX *ctx); // EC_POINT_set_compressed_coordinates_GFp sets |point| to equal the point with // the given |x| coordinate and the y coordinate specified by |y_bit| (see // X9.62). It returns one on success and zero otherwise. OPENSSL_EXPORT int EC_POINT_set_compressed_coordinates_GFp( const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, int y_bit, BN_CTX *ctx); // Group operations. // EC_POINT_add sets |r| equal to |a| plus |b|. It returns one on success and // zero otherwise. If |ctx| is not NULL, it may be used. OPENSSL_EXPORT int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx); // EC_POINT_dbl sets |r| equal to |a| plus |a|. It returns one on success and // zero otherwise. If |ctx| is not NULL, it may be used. OPENSSL_EXPORT int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx); // EC_POINT_invert sets |a| equal to minus |a|. It returns one on success and // zero otherwise. If |ctx| is not NULL, it may be used. OPENSSL_EXPORT int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx); // EC_POINT_mul sets r = generator*n + q*m. It returns one on success and zero // otherwise. If |ctx| is not NULL, it may be used. OPENSSL_EXPORT int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *n, const EC_POINT *q, const BIGNUM *m, BN_CTX *ctx); // Deprecated functions. // EC_GROUP_new_curve_GFp creates a new, arbitrary elliptic curve group based // on the equation y² = x³ + a·x + b. It returns the new group or NULL on // error. // // This new group has no generator. It is an error to use a generator-less group // with any functions except for |EC_GROUP_free|, |EC_POINT_new|, // |EC_POINT_set_affine_coordinates_GFp|, and |EC_GROUP_set_generator|. // // |EC_GROUP|s returned by this function will always compare as unequal via // |EC_GROUP_cmp| (even to themselves). |EC_GROUP_get_curve_name| will always // return |NID_undef|. // // Avoid using arbitrary curves and use |EC_GROUP_new_by_curve_name| instead. OPENSSL_EXPORT EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); // EC_GROUP_set_generator sets the generator for |group| to |generator|, which // must have the given order and cofactor. It may only be used with |EC_GROUP| // objects returned by |EC_GROUP_new_curve_GFp| and may only be used once on // each group. |generator| must have been created using |group|. OPENSSL_EXPORT int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, const BIGNUM *order, const BIGNUM *cofactor); // EC_GROUP_get_order sets |*order| to the order of |group|, if it's not // NULL. It returns one on success and zero otherwise. |ctx| is ignored. Use // |EC_GROUP_get0_order| instead. OPENSSL_EXPORT int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx); // EC_GROUP_set_asn1_flag does nothing. OPENSSL_EXPORT void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag); #define OPENSSL_EC_NAMED_CURVE 0 typedef struct ec_method_st EC_METHOD; // EC_GROUP_method_of returns a dummy non-NULL pointer. OPENSSL_EXPORT const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group); // EC_METHOD_get_field_type returns NID_X9_62_prime_field. OPENSSL_EXPORT int EC_METHOD_get_field_type(const EC_METHOD *meth); // EC_GROUP_set_point_conversion_form aborts the process if |form| is not // |POINT_CONVERSION_UNCOMPRESSED| and otherwise does nothing. OPENSSL_EXPORT void EC_GROUP_set_point_conversion_form( EC_GROUP *group, point_conversion_form_t form); // EC_builtin_curve describes a supported elliptic curve. typedef struct { int nid; const char *comment; } EC_builtin_curve; // EC_get_builtin_curves writes at most |max_num_curves| elements to // |out_curves| and returns the total number that it would have written, had // |max_num_curves| been large enough. // // The |EC_builtin_curve| items describe the supported elliptic curves. OPENSSL_EXPORT size_t EC_get_builtin_curves(EC_builtin_curve *out_curves, size_t max_num_curves); // EC_POINT_clear_free calls |EC_POINT_free|. OPENSSL_EXPORT void EC_POINT_clear_free(EC_POINT *point); #if defined(__cplusplus) } // extern C #endif // Old code expects to get EC_KEY from ec.h. #include #if defined(__cplusplus) extern "C++" { BSSL_NAMESPACE_BEGIN BORINGSSL_MAKE_DELETER(EC_POINT, EC_POINT_free) BORINGSSL_MAKE_DELETER(EC_GROUP, EC_GROUP_free) BSSL_NAMESPACE_END } // extern C++ #endif #define EC_R_BUFFER_TOO_SMALL 100 #define EC_R_COORDINATES_OUT_OF_RANGE 101 #define EC_R_D2I_ECPKPARAMETERS_FAILURE 102 #define EC_R_EC_GROUP_NEW_BY_NAME_FAILURE 103 #define EC_R_GROUP2PKPARAMETERS_FAILURE 104 #define EC_R_I2D_ECPKPARAMETERS_FAILURE 105 #define EC_R_INCOMPATIBLE_OBJECTS 106 #define EC_R_INVALID_COMPRESSED_POINT 107 #define EC_R_INVALID_COMPRESSION_BIT 108 #define EC_R_INVALID_ENCODING 109 #define EC_R_INVALID_FIELD 110 #define EC_R_INVALID_FORM 111 #define EC_R_INVALID_GROUP_ORDER 112 #define EC_R_INVALID_PRIVATE_KEY 113 #define EC_R_MISSING_PARAMETERS 114 #define EC_R_MISSING_PRIVATE_KEY 115 #define EC_R_NON_NAMED_CURVE 116 #define EC_R_NOT_INITIALIZED 117 #define EC_R_PKPARAMETERS2GROUP_FAILURE 118 #define EC_R_POINT_AT_INFINITY 119 #define EC_R_POINT_IS_NOT_ON_CURVE 120 #define EC_R_SLOT_FULL 121 #define EC_R_UNDEFINED_GENERATOR 122 #define EC_R_UNKNOWN_GROUP 123 #define EC_R_UNKNOWN_ORDER 124 #define EC_R_WRONG_ORDER 125 #define EC_R_BIGNUM_OUT_OF_RANGE 126 #define EC_R_WRONG_CURVE_PARAMETERS 127 #define EC_R_DECODE_ERROR 128 #define EC_R_ENCODE_ERROR 129 #define EC_R_GROUP_MISMATCH 130 #define EC_R_INVALID_COFACTOR 131 #define EC_R_PUBLIC_KEY_VALIDATION_FAILED 132 #define EC_R_INVALID_SCALAR 133 #endif // OPENSSL_HEADER_EC_H