/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include "internal.h" #include "../delocate.h" BIGNUM *BN_new(void) { BIGNUM *bn = OPENSSL_malloc(sizeof(BIGNUM)); if (bn == NULL) { OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE); return NULL; } OPENSSL_memset(bn, 0, sizeof(BIGNUM)); bn->flags = BN_FLG_MALLOCED; return bn; } void BN_init(BIGNUM *bn) { OPENSSL_memset(bn, 0, sizeof(BIGNUM)); } void BN_free(BIGNUM *bn) { if (bn == NULL) { return; } if ((bn->flags & BN_FLG_STATIC_DATA) == 0) { OPENSSL_free(bn->d); } if (bn->flags & BN_FLG_MALLOCED) { OPENSSL_free(bn); } else { bn->d = NULL; } } void BN_clear_free(BIGNUM *bn) { char should_free; if (bn == NULL) { return; } if (bn->d != NULL) { if ((bn->flags & BN_FLG_STATIC_DATA) == 0) { OPENSSL_free(bn->d); } else { OPENSSL_cleanse(bn->d, bn->dmax * sizeof(bn->d[0])); } } should_free = (bn->flags & BN_FLG_MALLOCED) != 0; if (should_free) { OPENSSL_free(bn); } else { OPENSSL_cleanse(bn, sizeof(BIGNUM)); } } BIGNUM *BN_dup(const BIGNUM *src) { BIGNUM *copy; if (src == NULL) { return NULL; } copy = BN_new(); if (copy == NULL) { return NULL; } if (!BN_copy(copy, src)) { BN_free(copy); return NULL; } return copy; } BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src) { if (src == dest) { return dest; } if (!bn_wexpand(dest, src->width)) { return NULL; } OPENSSL_memcpy(dest->d, src->d, sizeof(src->d[0]) * src->width); dest->width = src->width; dest->neg = src->neg; return dest; } void BN_clear(BIGNUM *bn) { if (bn->d != NULL) { OPENSSL_memset(bn->d, 0, bn->dmax * sizeof(bn->d[0])); } bn->width = 0; bn->neg = 0; } DEFINE_METHOD_FUNCTION(BIGNUM, BN_value_one) { static const BN_ULONG kOneLimbs[1] = { 1 }; out->d = (BN_ULONG*) kOneLimbs; out->width = 1; out->dmax = 1; out->neg = 0; out->flags = BN_FLG_STATIC_DATA; } // BN_num_bits_word returns the minimum number of bits needed to represent the // value in |l|. unsigned BN_num_bits_word(BN_ULONG l) { // |BN_num_bits| is often called on RSA prime factors. These have public bit // lengths, but all bits beyond the high bit are secret, so count bits in // constant time. BN_ULONG x, mask; int bits = (l != 0); #if BN_BITS2 > 32 // Look at the upper half of |x|. |x| is at most 64 bits long. x = l >> 32; // Set |mask| to all ones if |x| (the top 32 bits of |l|) is non-zero and all // all zeros otherwise. mask = 0u - x; mask = (0u - (mask >> (BN_BITS2 - 1))); // If |x| is non-zero, the lower half is included in the bit count in full, // and we count the upper half. Otherwise, we count the lower half. bits += 32 & mask; l ^= (x ^ l) & mask; // |l| is |x| if |mask| and remains |l| otherwise. #endif // The remaining blocks are analogous iterations at lower powers of two. x = l >> 16; mask = 0u - x; mask = (0u - (mask >> (BN_BITS2 - 1))); bits += 16 & mask; l ^= (x ^ l) & mask; x = l >> 8; mask = 0u - x; mask = (0u - (mask >> (BN_BITS2 - 1))); bits += 8 & mask; l ^= (x ^ l) & mask; x = l >> 4; mask = 0u - x; mask = (0u - (mask >> (BN_BITS2 - 1))); bits += 4 & mask; l ^= (x ^ l) & mask; x = l >> 2; mask = 0u - x; mask = (0u - (mask >> (BN_BITS2 - 1))); bits += 2 & mask; l ^= (x ^ l) & mask; x = l >> 1; mask = 0u - x; mask = (0u - (mask >> (BN_BITS2 - 1))); bits += 1 & mask; return bits; } unsigned BN_num_bits(const BIGNUM *bn) { const int width = bn_minimal_width(bn); if (width == 0) { return 0; } return (width - 1) * BN_BITS2 + BN_num_bits_word(bn->d[width - 1]); } unsigned BN_num_bytes(const BIGNUM *bn) { return (BN_num_bits(bn) + 7) / 8; } void BN_zero(BIGNUM *bn) { bn->width = bn->neg = 0; } int BN_one(BIGNUM *bn) { return BN_set_word(bn, 1); } int BN_set_word(BIGNUM *bn, BN_ULONG value) { if (value == 0) { BN_zero(bn); return 1; } if (!bn_wexpand(bn, 1)) { return 0; } bn->neg = 0; bn->d[0] = value; bn->width = 1; return 1; } int BN_set_u64(BIGNUM *bn, uint64_t value) { #if BN_BITS2 == 64 return BN_set_word(bn, value); #elif BN_BITS2 == 32 if (value <= BN_MASK2) { return BN_set_word(bn, (BN_ULONG)value); } if (!bn_wexpand(bn, 2)) { return 0; } bn->neg = 0; bn->d[0] = (BN_ULONG)value; bn->d[1] = (BN_ULONG)(value >> 32); bn->width = 2; return 1; #else #error "BN_BITS2 must be 32 or 64." #endif } int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num) { if (!bn_wexpand(bn, num)) { return 0; } OPENSSL_memmove(bn->d, words, num * sizeof(BN_ULONG)); // |bn_wexpand| verified that |num| isn't too large. bn->width = (int)num; bn->neg = 0; return 1; } int bn_fits_in_words(const BIGNUM *bn, size_t num) { // All words beyond |num| must be zero. BN_ULONG mask = 0; for (size_t i = num; i < (size_t)bn->width; i++) { mask |= bn->d[i]; } return mask == 0; } int bn_copy_words(BN_ULONG *out, size_t num, const BIGNUM *bn) { if (bn->neg) { OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); return 0; } size_t width = (size_t)bn->width; if (width > num) { if (!bn_fits_in_words(bn, num)) { OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); return 0; } width = num; } OPENSSL_memset(out, 0, sizeof(BN_ULONG) * num); OPENSSL_memcpy(out, bn->d, sizeof(BN_ULONG) * width); return 1; } int BN_is_negative(const BIGNUM *bn) { return bn->neg != 0; } void BN_set_negative(BIGNUM *bn, int sign) { if (sign && !BN_is_zero(bn)) { bn->neg = 1; } else { bn->neg = 0; } } int bn_wexpand(BIGNUM *bn, size_t words) { BN_ULONG *a; if (words <= (size_t)bn->dmax) { return 1; } if (words > (INT_MAX / (4 * BN_BITS2))) { OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); return 0; } if (bn->flags & BN_FLG_STATIC_DATA) { OPENSSL_PUT_ERROR(BN, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA); return 0; } a = OPENSSL_malloc(sizeof(BN_ULONG) * words); if (a == NULL) { OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE); return 0; } OPENSSL_memcpy(a, bn->d, sizeof(BN_ULONG) * bn->width); OPENSSL_free(bn->d); bn->d = a; bn->dmax = (int)words; return 1; } int bn_expand(BIGNUM *bn, size_t bits) { if (bits + BN_BITS2 - 1 < bits) { OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); return 0; } return bn_wexpand(bn, (bits+BN_BITS2-1)/BN_BITS2); } int bn_resize_words(BIGNUM *bn, size_t words) { if ((size_t)bn->width <= words) { if (!bn_wexpand(bn, words)) { return 0; } OPENSSL_memset(bn->d + bn->width, 0, (words - bn->width) * sizeof(BN_ULONG)); bn->width = words; return 1; } // All words beyond the new width must be zero. if (!bn_fits_in_words(bn, words)) { OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); return 0; } bn->width = words; return 1; } void bn_select_words(BN_ULONG *r, BN_ULONG mask, const BN_ULONG *a, const BN_ULONG *b, size_t num) { for (size_t i = 0; i < num; i++) { OPENSSL_COMPILE_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t), crypto_word_t_too_small); r[i] = constant_time_select_w(mask, a[i], b[i]); } } int bn_minimal_width(const BIGNUM *bn) { int ret = bn->width; while (ret > 0 && bn->d[ret - 1] == 0) { ret--; } return ret; } void bn_set_minimal_width(BIGNUM *bn) { bn->width = bn_minimal_width(bn); if (bn->width == 0) { bn->neg = 0; } }