/* Originally written by Bodo Moeller for the OpenSSL project. * ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the OpenSSL open source * license provided above. * * The elliptic curve binary polynomial software is originally written by * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems * Laboratories. */ #include #include #include #include "internal.h" static size_t ec_GFp_simple_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, uint8_t *buf, size_t len, BN_CTX *ctx) { size_t ret; BN_CTX *new_ctx = NULL; int used_ctx = 0; BIGNUM *x, *y; size_t field_len, i; if ((form != POINT_CONVERSION_COMPRESSED) && (form != POINT_CONVERSION_UNCOMPRESSED) && (form != POINT_CONVERSION_HYBRID)) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_point2oct, EC_R_INVALID_FORM); goto err; } if (EC_POINT_is_at_infinity(group, point)) { /* encodes to a single 0 octet */ if (buf != NULL) { if (len < 1) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_point2oct, EC_R_BUFFER_TOO_SMALL); return 0; } buf[0] = 0; } return 1; } /* ret := required output buffer length */ field_len = BN_num_bytes(&group->field); ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2 * field_len; /* if 'buf' is NULL, just return required length */ if (buf != NULL) { if (len < ret) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_point2oct, EC_R_BUFFER_TOO_SMALL); goto err; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } BN_CTX_start(ctx); used_ctx = 1; x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) { goto err; } if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) { goto err; } if ((form == POINT_CONVERSION_COMPRESSED || form == POINT_CONVERSION_HYBRID) && BN_is_odd(y)) { buf[0] = form + 1; } else { buf[0] = form; } i = 1; if (!BN_bn2bin_padded(buf + i, field_len, x)) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_point2oct, ERR_R_INTERNAL_ERROR); goto err; } i += field_len; if (form == POINT_CONVERSION_UNCOMPRESSED || form == POINT_CONVERSION_HYBRID) { if (!BN_bn2bin_padded(buf + i, field_len, y)) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_point2oct, ERR_R_INTERNAL_ERROR); goto err; } i += field_len; } if (i != ret) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_point2oct, ERR_R_INTERNAL_ERROR); goto err; } } if (used_ctx) { BN_CTX_end(ctx); } if (new_ctx != NULL) { BN_CTX_free(new_ctx); } return ret; err: if (used_ctx) { BN_CTX_end(ctx); } if (new_ctx != NULL) { BN_CTX_free(new_ctx); } return 0; } static int ec_GFp_simple_oct2point(const EC_GROUP *group, EC_POINT *point, const uint8_t *buf, size_t len, BN_CTX *ctx) { point_conversion_form_t form; int y_bit; BN_CTX *new_ctx = NULL; BIGNUM *x, *y; size_t field_len, enc_len; int ret = 0; if (len == 0) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_BUFFER_TOO_SMALL); return 0; } form = buf[0]; y_bit = form & 1; form = form & ~1U; if ((form != 0) && (form != POINT_CONVERSION_COMPRESSED) && (form != POINT_CONVERSION_UNCOMPRESSED) && (form != POINT_CONVERSION_HYBRID)) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_INVALID_ENCODING); return 0; } if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_INVALID_ENCODING); return 0; } if (form == 0) { if (len != 1) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_INVALID_ENCODING); return 0; } return EC_POINT_set_to_infinity(group, point); } field_len = BN_num_bytes(&group->field); enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2 * field_len; if (len != enc_len) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_INVALID_ENCODING); return 0; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) goto err; if (!BN_bin2bn(buf + 1, field_len, x)) goto err; if (BN_ucmp(x, &group->field) >= 0) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_INVALID_ENCODING); goto err; } if (form == POINT_CONVERSION_COMPRESSED) { if (!EC_POINT_set_compressed_coordinates_GFp(group, point, x, y_bit, ctx)) goto err; } else { if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) goto err; if (BN_ucmp(y, &group->field) >= 0) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_INVALID_ENCODING); goto err; } if (form == POINT_CONVERSION_HYBRID) { if (y_bit != BN_is_odd(y)) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_INVALID_ENCODING); goto err; } } if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; } if (!EC_POINT_is_on_curve(group, point, ctx)) /* test required by X9.62 */ { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_POINT_IS_NOT_ON_CURVE); goto err; } ret = 1; err: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; } int EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *point, const uint8_t *buf, size_t len, BN_CTX *ctx) { if (group->meth->oct2point == 0 && !(group->meth->flags & EC_FLAGS_DEFAULT_OCT)) { OPENSSL_PUT_ERROR(EC, EC_POINT_oct2point, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (group->meth != point->meth) { OPENSSL_PUT_ERROR(EC, EC_POINT_oct2point, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (group->meth->flags & EC_FLAGS_DEFAULT_OCT) { return ec_GFp_simple_oct2point(group, point, buf, len, ctx); } return group->meth->oct2point(group, point, buf, len, ctx); } size_t EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, uint8_t *buf, size_t len, BN_CTX *ctx) { if (group->meth->point2oct == 0 && !(group->meth->flags & EC_FLAGS_DEFAULT_OCT)) { OPENSSL_PUT_ERROR(EC, EC_POINT_point2oct, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (group->meth != point->meth) { OPENSSL_PUT_ERROR(EC, EC_POINT_point2oct, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (group->meth->flags & EC_FLAGS_DEFAULT_OCT) { return ec_GFp_simple_point2oct(group, point, form, buf, len, ctx); } return group->meth->point2oct(group, point, form, buf, len, ctx); } int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x_, int y_bit, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; BIGNUM *tmp1, *tmp2, *x, *y; int ret = 0; ERR_clear_error(); if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } y_bit = (y_bit != 0); BN_CTX_start(ctx); tmp1 = BN_CTX_get(ctx); tmp2 = BN_CTX_get(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) { goto err; } /* Recover y. We have a Weierstrass equation * y^2 = x^3 + a*x + b, * so y is one of the square roots of x^3 + a*x + b. */ /* tmp1 := x^3 */ if (!BN_nnmod(x, x_, &group->field, ctx)) { goto err; } if (group->meth->field_decode == 0) { /* field_{sqr,mul} work on standard representation */ if (!group->meth->field_sqr(group, tmp2, x_, ctx) || !group->meth->field_mul(group, tmp1, tmp2, x_, ctx)) { goto err; } } else { if (!BN_mod_sqr(tmp2, x_, &group->field, ctx) || !BN_mod_mul(tmp1, tmp2, x_, &group->field, ctx)) { goto err; } } /* tmp1 := tmp1 + a*x */ if (group->a_is_minus3) { if (!BN_mod_lshift1_quick(tmp2, x, &group->field) || !BN_mod_add_quick(tmp2, tmp2, x, &group->field) || !BN_mod_sub_quick(tmp1, tmp1, tmp2, &group->field)) { goto err; } } else { if (group->meth->field_decode) { if (!group->meth->field_decode(group, tmp2, &group->a, ctx) || !BN_mod_mul(tmp2, tmp2, x, &group->field, ctx)) { goto err; } } else { /* field_mul works on standard representation */ if (!group->meth->field_mul(group, tmp2, &group->a, x, ctx)) { goto err; } } if (!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) { goto err; } } /* tmp1 := tmp1 + b */ if (group->meth->field_decode) { if (!group->meth->field_decode(group, tmp2, &group->b, ctx) || !BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) { goto err; } } else { if (!BN_mod_add_quick(tmp1, tmp1, &group->b, &group->field)) { goto err; } } if (!BN_mod_sqrt(y, tmp1, &group->field, ctx)) { unsigned long err = ERR_peek_last_error(); if (ERR_GET_LIB(err) == ERR_LIB_BN && ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) { ERR_clear_error(); OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, EC_R_INVALID_COMPRESSED_POINT); } else { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, ERR_R_BN_LIB); } goto err; } if (y_bit != BN_is_odd(y)) { if (BN_is_zero(y)) { int kron; kron = BN_kronecker(x, &group->field, ctx); if (kron == -2) { goto err; } if (kron == 1) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, EC_R_INVALID_COMPRESSION_BIT); } else { /* BN_mod_sqrt() should have cought this error (not a square) */ OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, EC_R_INVALID_COMPRESSED_POINT); } goto err; } if (!BN_usub(y, &group->field, y)) { goto err; } } if (y_bit != BN_is_odd(y)) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, ERR_R_INTERNAL_ERROR); goto err; } if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; } int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, int y_bit, BN_CTX *ctx) { if (group->meth->point_set_compressed_coordinates == 0 && !(group->meth->flags & EC_FLAGS_DEFAULT_OCT)) { OPENSSL_PUT_ERROR(EC, EC_POINT_set_compressed_coordinates_GFp, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (group->meth != point->meth) { OPENSSL_PUT_ERROR(EC, EC_POINT_set_compressed_coordinates_GFp, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (group->meth->flags & EC_FLAGS_DEFAULT_OCT) { return ec_GFp_simple_set_compressed_coordinates(group, point, x, y_bit, ctx); } return group->meth->point_set_compressed_coordinates(group, point, x, y_bit, ctx); }