/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project * 2006. */ /* ==================================================================== * Copyright (c) 2006 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include #include #include #include #include #include "internal.h" static int dsa_pub_decode(EVP_PKEY *out, CBS *params, CBS *key) { /* See RFC 3279, section 2.3.2. */ /* Parameters may or may not be present. */ DSA *dsa; if (CBS_len(params) == 0) { dsa = DSA_new(); if (dsa == NULL) { return 0; } } else { dsa = DSA_parse_parameters(params); if (dsa == NULL || CBS_len(params) != 0) { OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); goto err; } } dsa->pub_key = BN_new(); if (dsa->pub_key == NULL) { goto err; } if (!BN_parse_asn1_unsigned(key, dsa->pub_key) || CBS_len(key) != 0) { OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); goto err; } EVP_PKEY_assign_DSA(out, dsa); return 1; err: DSA_free(dsa); return 0; } static int dsa_pub_encode(CBB *out, const EVP_PKEY *key) { const DSA *dsa = key->pkey.dsa; const int has_params = dsa->p != NULL && dsa->q != NULL && dsa->g != NULL; /* See RFC 5480, section 2. */ CBB spki, algorithm, key_bitstring; if (!CBB_add_asn1(out, &spki, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&spki, &algorithm, CBS_ASN1_SEQUENCE) || !OBJ_nid2cbb(&algorithm, NID_dsa) || (has_params && !DSA_marshal_parameters(&algorithm, dsa)) || !CBB_add_asn1(&spki, &key_bitstring, CBS_ASN1_BITSTRING) || !CBB_add_u8(&key_bitstring, 0 /* padding */) || !BN_marshal_asn1(&key_bitstring, dsa->pub_key) || !CBB_flush(out)) { OPENSSL_PUT_ERROR(EVP, EVP_R_ENCODE_ERROR); return 0; } return 1; } static int dsa_priv_decode(EVP_PKEY *pkey, PKCS8_PRIV_KEY_INFO *p8) { const uint8_t *p, *pm; int pklen, pmlen; int ptype; void *pval; ASN1_STRING *pstr; X509_ALGOR *palg; ASN1_INTEGER *privkey = NULL; BN_CTX *ctx = NULL; /* In PKCS#8 DSA: you just get a private key integer and parameters in the * AlgorithmIdentifier the pubkey must be recalculated. */ STACK_OF(ASN1_TYPE) *ndsa = NULL; DSA *dsa = NULL; if (!PKCS8_pkey_get0(NULL, &p, &pklen, &palg, p8)) { return 0; } X509_ALGOR_get0(NULL, &ptype, &pval, palg); /* Check for broken DSA PKCS#8, UGH! */ if (*p == (V_ASN1_SEQUENCE | V_ASN1_CONSTRUCTED)) { ASN1_TYPE *t1, *t2; ndsa = d2i_ASN1_SEQUENCE_ANY(NULL, &p, pklen); if (ndsa == NULL) { goto decerr; } if (sk_ASN1_TYPE_num(ndsa) != 2) { goto decerr; } /* Handle Two broken types: * SEQUENCE {parameters, priv_key} * SEQUENCE {pub_key, priv_key}. */ t1 = sk_ASN1_TYPE_value(ndsa, 0); t2 = sk_ASN1_TYPE_value(ndsa, 1); if (t1->type == V_ASN1_SEQUENCE) { p8->broken = PKCS8_EMBEDDED_PARAM; pval = t1->value.ptr; } else if (ptype == V_ASN1_SEQUENCE) { p8->broken = PKCS8_NS_DB; } else { goto decerr; } if (t2->type != V_ASN1_INTEGER) { goto decerr; } privkey = t2->value.integer; } else { const uint8_t *q = p; privkey = d2i_ASN1_INTEGER(NULL, &p, pklen); if (privkey == NULL) { goto decerr; } if (privkey->type == V_ASN1_NEG_INTEGER) { p8->broken = PKCS8_NEG_PRIVKEY; ASN1_INTEGER_free(privkey); privkey = d2i_ASN1_UINTEGER(NULL, &q, pklen); if (privkey == NULL) { goto decerr; } } if (ptype != V_ASN1_SEQUENCE) { goto decerr; } } pstr = pval; pm = pstr->data; pmlen = pstr->length; dsa = d2i_DSAparams(NULL, &pm, pmlen); if (dsa == NULL) { goto decerr; } /* We have parameters. Now set private key */ dsa->priv_key = ASN1_INTEGER_to_BN(privkey, NULL); if (dsa->priv_key == NULL) { OPENSSL_PUT_ERROR(EVP, ERR_LIB_BN); goto dsaerr; } /* Calculate public key. */ dsa->pub_key = BN_new(); if (dsa->pub_key == NULL) { OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); goto dsaerr; } ctx = BN_CTX_new(); if (ctx == NULL) { OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); goto dsaerr; } if (!BN_mod_exp(dsa->pub_key, dsa->g, dsa->priv_key, dsa->p, ctx)) { OPENSSL_PUT_ERROR(EVP, ERR_LIB_BN); goto dsaerr; } EVP_PKEY_assign_DSA(pkey, dsa); BN_CTX_free(ctx); sk_ASN1_TYPE_pop_free(ndsa, ASN1_TYPE_free); ASN1_INTEGER_free(privkey); return 1; decerr: OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); dsaerr: BN_CTX_free(ctx); ASN1_INTEGER_free(privkey); sk_ASN1_TYPE_pop_free(ndsa, ASN1_TYPE_free); DSA_free(dsa); return 0; } static int dsa_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey) { ASN1_STRING *params = NULL; ASN1_INTEGER *prkey = NULL; uint8_t *dp = NULL; int dplen; if (!pkey->pkey.dsa || !pkey->pkey.dsa->priv_key) { OPENSSL_PUT_ERROR(EVP, EVP_R_MISSING_PARAMETERS); goto err; } params = ASN1_STRING_new(); if (!params) { OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); goto err; } params->length = i2d_DSAparams(pkey->pkey.dsa, ¶ms->data); if (params->length <= 0) { OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); goto err; } params->type = V_ASN1_SEQUENCE; /* Get private key into integer. */ prkey = BN_to_ASN1_INTEGER(pkey->pkey.dsa->priv_key, NULL); if (!prkey) { OPENSSL_PUT_ERROR(EVP, ERR_LIB_BN); goto err; } dplen = i2d_ASN1_INTEGER(prkey, &dp); ASN1_INTEGER_free(prkey); prkey = NULL; if (!PKCS8_pkey_set0(p8, (ASN1_OBJECT *)OBJ_nid2obj(NID_dsa), 0, V_ASN1_SEQUENCE, params, dp, dplen)) { goto err; } return 1; err: OPENSSL_free(dp); ASN1_STRING_free(params); ASN1_INTEGER_free(prkey); return 0; } static int int_dsa_size(const EVP_PKEY *pkey) { return DSA_size(pkey->pkey.dsa); } static int dsa_bits(const EVP_PKEY *pkey) { return BN_num_bits(pkey->pkey.dsa->p); } static int dsa_missing_parameters(const EVP_PKEY *pkey) { DSA *dsa; dsa = pkey->pkey.dsa; if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) { return 1; } return 0; } static int dup_bn_into(BIGNUM **out, BIGNUM *src) { BIGNUM *a; a = BN_dup(src); if (a == NULL) { return 0; } BN_free(*out); *out = a; return 1; } static int dsa_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from) { if (!dup_bn_into(&to->pkey.dsa->p, from->pkey.dsa->p) || !dup_bn_into(&to->pkey.dsa->q, from->pkey.dsa->q) || !dup_bn_into(&to->pkey.dsa->g, from->pkey.dsa->g)) { return 0; } return 1; } static int dsa_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b) { return BN_cmp(a->pkey.dsa->p, b->pkey.dsa->p) == 0 && BN_cmp(a->pkey.dsa->q, b->pkey.dsa->q) == 0 && BN_cmp(a->pkey.dsa->g, b->pkey.dsa->g) == 0; } static int dsa_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b) { return BN_cmp(b->pkey.dsa->pub_key, a->pkey.dsa->pub_key) == 0; } static void int_dsa_free(EVP_PKEY *pkey) { DSA_free(pkey->pkey.dsa); } static void update_buflen(const BIGNUM *b, size_t *pbuflen) { size_t i; if (!b) { return; } i = BN_num_bytes(b); if (*pbuflen < i) { *pbuflen = i; } } static int do_dsa_print(BIO *bp, const DSA *x, int off, int ptype) { uint8_t *m = NULL; int ret = 0; size_t buf_len = 0; const char *ktype = NULL; const BIGNUM *priv_key, *pub_key; priv_key = NULL; if (ptype == 2) { priv_key = x->priv_key; } pub_key = NULL; if (ptype > 0) { pub_key = x->pub_key; } ktype = "DSA-Parameters"; if (ptype == 2) { ktype = "Private-Key"; } else if (ptype == 1) { ktype = "Public-Key"; } update_buflen(x->p, &buf_len); update_buflen(x->q, &buf_len); update_buflen(x->g, &buf_len); update_buflen(priv_key, &buf_len); update_buflen(pub_key, &buf_len); m = OPENSSL_malloc(buf_len + 10); if (m == NULL) { OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); goto err; } if (priv_key) { if (!BIO_indent(bp, off, 128) || BIO_printf(bp, "%s: (%d bit)\n", ktype, BN_num_bits(x->p)) <= 0) { goto err; } } if (!ASN1_bn_print(bp, "priv:", priv_key, m, off) || !ASN1_bn_print(bp, "pub: ", pub_key, m, off) || !ASN1_bn_print(bp, "P: ", x->p, m, off) || !ASN1_bn_print(bp, "Q: ", x->q, m, off) || !ASN1_bn_print(bp, "G: ", x->g, m, off)) { goto err; } ret = 1; err: OPENSSL_free(m); return ret; } static int dsa_param_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_dsa_print(bp, pkey->pkey.dsa, indent, 0); } static int dsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_dsa_print(bp, pkey->pkey.dsa, indent, 1); } static int dsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_dsa_print(bp, pkey->pkey.dsa, indent, 2); } static int old_dsa_priv_decode(EVP_PKEY *pkey, const uint8_t **pder, int derlen) { DSA *dsa; dsa = d2i_DSAPrivateKey(NULL, pder, derlen); if (dsa == NULL) { OPENSSL_PUT_ERROR(EVP, ERR_R_DSA_LIB); return 0; } EVP_PKEY_assign_DSA(pkey, dsa); return 1; } static int old_dsa_priv_encode(const EVP_PKEY *pkey, uint8_t **pder) { return i2d_DSAPrivateKey(pkey->pkey.dsa, pder); } static int dsa_sig_print(BIO *bp, const X509_ALGOR *sigalg, const ASN1_STRING *sig, int indent, ASN1_PCTX *pctx) { DSA_SIG *dsa_sig; const uint8_t *p; if (!sig) { return BIO_puts(bp, "\n") > 0; } p = sig->data; dsa_sig = d2i_DSA_SIG(NULL, &p, sig->length); if (dsa_sig == NULL) { return X509_signature_dump(bp, sig, indent); } int rv = 0; size_t buf_len = 0; uint8_t *m = NULL; update_buflen(dsa_sig->r, &buf_len); update_buflen(dsa_sig->s, &buf_len); m = OPENSSL_malloc(buf_len + 10); if (m == NULL) { OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); goto err; } if (BIO_write(bp, "\n", 1) != 1 || !ASN1_bn_print(bp, "r: ", dsa_sig->r, m, indent) || !ASN1_bn_print(bp, "s: ", dsa_sig->s, m, indent)) { goto err; } rv = 1; err: OPENSSL_free(m); DSA_SIG_free(dsa_sig); return rv; } const EVP_PKEY_ASN1_METHOD dsa_asn1_meth = { EVP_PKEY_DSA, 0, "DSA", dsa_pub_decode, dsa_pub_encode, dsa_pub_cmp, dsa_pub_print, dsa_priv_decode, dsa_priv_encode, dsa_priv_print, NULL /* pkey_opaque */, NULL /* pkey_supports_digest */, int_dsa_size, dsa_bits, dsa_missing_parameters, dsa_copy_parameters, dsa_cmp_parameters, dsa_param_print, dsa_sig_print, int_dsa_free, old_dsa_priv_decode, old_dsa_priv_encode, NULL /* digest_verify_init_from_algorithm */, NULL /* digest_sign_algorithm */, };