/* ==================================================================== * Copyright (c) 2008 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #ifndef OPENSSL_HEADER_MODES_INTERNAL_H #define OPENSSL_HEADER_MODES_INTERNAL_H #include #include #include #include #include #include "../../internal.h" #if defined(__cplusplus) extern "C" { #endif static inline uint32_t GETU32(const void *in) { uint32_t v; OPENSSL_memcpy(&v, in, sizeof(v)); return CRYPTO_bswap4(v); } static inline void PUTU32(void *out, uint32_t v) { v = CRYPTO_bswap4(v); OPENSSL_memcpy(out, &v, sizeof(v)); } static inline size_t load_word_le(const void *in) { size_t v; OPENSSL_memcpy(&v, in, sizeof(v)); return v; } static inline void store_word_le(void *out, size_t v) { OPENSSL_memcpy(out, &v, sizeof(v)); } // block128_f is the type of an AES block cipher implementation. // // Unlike upstream OpenSSL, it and the other functions in this file hard-code // |AES_KEY|. It is undefined in C to call a function pointer with anything // other than the original type. Thus we either must match |block128_f| to the // type signature of |AES_encrypt| and friends or pass in |void*| wrapper // functions. // // These functions are called exclusively with AES, so we use the former. typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16], const AES_KEY *key); // CTR. // ctr128_f is the type of a function that performs CTR-mode encryption. typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks, const AES_KEY *key, const uint8_t ivec[16]); // CRYPTO_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode) // |len| bytes from |in| to |out| using |block| in counter mode. There's no // requirement that |len| be a multiple of any value and any partial blocks are // stored in |ecount_buf| and |*num|, which must be zeroed before the initial // call. The counter is a 128-bit, big-endian value in |ivec| and is // incremented by this function. void CRYPTO_ctr128_encrypt(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, uint8_t ivec[16], uint8_t ecount_buf[16], unsigned *num, block128_f block); // CRYPTO_ctr128_encrypt_ctr32 acts like |CRYPTO_ctr128_encrypt| but takes // |ctr|, a function that performs CTR mode but only deals with the lower 32 // bits of the counter. This is useful when |ctr| can be an optimised // function. void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, uint8_t ivec[16], uint8_t ecount_buf[16], unsigned *num, ctr128_f ctr); // GCM. // // This API differs from the upstream API slightly. The |GCM128_CONTEXT| does // not have a |key| pointer that points to the key as upstream's version does. // Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT| // can be safely copied. Additionally, |gcm_key| is split into a separate // struct. typedef struct { uint64_t hi,lo; } u128; // gmult_func multiplies |Xi| by the GCM key and writes the result back to // |Xi|. typedef void (*gmult_func)(uint64_t Xi[2], const u128 Htable[16]); // ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from // |inp|. The result is written back to |Xi| and the |len| argument must be a // multiple of 16. typedef void (*ghash_func)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len); typedef struct gcm128_key_st { // Note the MOVBE-based, x86-64, GHASH assembly requires |H| and |Htable| to // be the first two elements of this struct. Additionally, some assembly // routines require a 16-byte-aligned |Htable| when hashing data, but not // initialization. |GCM128_KEY| is not itself aligned to simplify embedding in // |EVP_AEAD_CTX|, but |Htable|'s offset must be a multiple of 16. u128 H; u128 Htable[16]; gmult_func gmult; ghash_func ghash; block128_f block; // use_aesni_gcm_crypt is true if this context should use the assembly // functions |aesni_gcm_encrypt| and |aesni_gcm_decrypt| to process data. unsigned use_aesni_gcm_crypt:1; } GCM128_KEY; // GCM128_CONTEXT contains state for a single GCM operation. The structure // should be zero-initialized before use. typedef struct { // The following 5 names follow names in GCM specification union { uint64_t u[2]; uint32_t d[4]; uint8_t c[16]; size_t t[16 / sizeof(size_t)]; } Yi, EKi, EK0, len, Xi; // Note that the order of |Xi| and |gcm_key| is fixed by the MOVBE-based, // x86-64, GHASH assembly. Additionally, some assembly routines require // |gcm_key| to be 16-byte aligned. |GCM128_KEY| is not itself aligned to // simplify embedding in |EVP_AEAD_CTX|. alignas(16) GCM128_KEY gcm_key; unsigned mres, ares; } GCM128_CONTEXT; #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) // crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is // used. int crypto_gcm_clmul_enabled(void); #endif // CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to // |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware // accelerated) functions for performing operations in the GHASH field. If the // AVX implementation was used |*out_is_avx| will be true. void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash, u128 *out_key, u128 out_table[16], int *out_is_avx, const uint8_t gcm_key[16]); // CRYPTO_gcm128_init_key initialises |gcm_key| to use |block| (typically AES) // with the given key. |block_is_hwaes| is one if |block| is |aes_hw_encrypt|. OPENSSL_EXPORT void CRYPTO_gcm128_init_key(GCM128_KEY *gcm_key, const AES_KEY *key, block128_f block, int block_is_hwaes); // CRYPTO_gcm128_setiv sets the IV (nonce) for |ctx|. The |key| must be the // same key that was passed to |CRYPTO_gcm128_init|. OPENSSL_EXPORT void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const AES_KEY *key, const uint8_t *iv, size_t iv_len); // CRYPTO_gcm128_aad sets the authenticated data for an instance of GCM. // This must be called before and data is encrypted. It returns one on success // and zero otherwise. OPENSSL_EXPORT int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, size_t len); // CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. The |key| // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one // on success and zero otherwise. OPENSSL_EXPORT int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const AES_KEY *key, const uint8_t *in, uint8_t *out, size_t len); // CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. The |key| // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one // on success and zero otherwise. OPENSSL_EXPORT int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const AES_KEY *key, const uint8_t *in, uint8_t *out, size_t len); // CRYPTO_gcm128_encrypt_ctr32 encrypts |len| bytes from |in| to |out| using // a CTR function that only handles the bottom 32 bits of the nonce, like // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was // passed to |CRYPTO_gcm128_init|. It returns one on success and zero // otherwise. OPENSSL_EXPORT int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, const AES_KEY *key, const uint8_t *in, uint8_t *out, size_t len, ctr128_f stream); // CRYPTO_gcm128_decrypt_ctr32 decrypts |len| bytes from |in| to |out| using // a CTR function that only handles the bottom 32 bits of the nonce, like // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was // passed to |CRYPTO_gcm128_init|. It returns one on success and zero // otherwise. OPENSSL_EXPORT int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, const AES_KEY *key, const uint8_t *in, uint8_t *out, size_t len, ctr128_f stream); // CRYPTO_gcm128_finish calculates the authenticator and compares it against // |len| bytes of |tag|. It returns one on success and zero otherwise. OPENSSL_EXPORT int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, size_t len); // CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|. // The minimum of |len| and 16 bytes are copied into |tag|. OPENSSL_EXPORT void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, uint8_t *tag, size_t len); // GCM assembly. #if !defined(OPENSSL_NO_ASM) && \ (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \ defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) || \ defined(OPENSSL_PPC64LE)) #define GHASH_ASM #endif void gcm_init_4bit(u128 Htable[16], const uint64_t H[2]); void gcm_gmult_4bit(uint64_t Xi[2], const u128 Htable[16]); void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len); #if defined(GHASH_ASM) #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) #define GCM_FUNCREF_4BIT void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]); void gcm_gmult_clmul(uint64_t Xi[2], const u128 Htable[16]); void gcm_ghash_clmul(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len); OPENSSL_INLINE char gcm_ssse3_capable(void) { return (OPENSSL_ia32cap_get()[1] & (1 << (41 - 32))) != 0; } // |gcm_gmult_ssse3| and |gcm_ghash_ssse3| require |Htable| to be // 16-byte-aligned, but |gcm_init_ssse3| does not. void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]); void gcm_gmult_ssse3(uint64_t Xi[2], const u128 Htable[16]); void gcm_ghash_ssse3(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in, size_t len); #if defined(OPENSSL_X86_64) #define GHASH_ASM_X86_64 void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]); void gcm_gmult_avx(uint64_t Xi[2], const u128 Htable[16]); void gcm_ghash_avx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in, size_t len); #define AESNI_GCM size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, uint8_t ivec[16], uint64_t *Xi); size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, uint8_t ivec[16], uint64_t *Xi); #endif // OPENSSL_X86_64 #if defined(OPENSSL_X86) #define GHASH_ASM_X86 void gcm_gmult_4bit_mmx(uint64_t Xi[2], const u128 Htable[16]); void gcm_ghash_4bit_mmx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len); #endif // OPENSSL_X86 #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) #define GHASH_ASM_ARM #define GCM_FUNCREF_4BIT OPENSSL_INLINE int gcm_pmull_capable(void) { return CRYPTO_is_ARMv8_PMULL_capable(); } void gcm_init_v8(u128 Htable[16], const uint64_t Xi[2]); void gcm_gmult_v8(uint64_t Xi[2], const u128 Htable[16]); void gcm_ghash_v8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len); OPENSSL_INLINE int gcm_neon_capable(void) { return CRYPTO_is_NEON_capable(); } void gcm_init_neon(u128 Htable[16], const uint64_t Xi[2]); void gcm_gmult_neon(uint64_t Xi[2], const u128 Htable[16]); void gcm_ghash_neon(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len); #elif defined(OPENSSL_PPC64LE) #define GHASH_ASM_PPC64LE #define GCM_FUNCREF_4BIT void gcm_init_p8(u128 Htable[16], const uint64_t Xi[2]); void gcm_gmult_p8(uint64_t Xi[2], const u128 Htable[16]); void gcm_ghash_p8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len); #endif #endif // GHASH_ASM // CCM. typedef struct ccm128_context { block128_f block; ctr128_f ctr; unsigned M, L; } CCM128_CONTEXT; // CRYPTO_ccm128_init initialises |ctx| to use |block| (typically AES) with the // specified |M| and |L| parameters. It returns one on success and zero if |M| // or |L| is invalid. int CRYPTO_ccm128_init(CCM128_CONTEXT *ctx, const AES_KEY *key, block128_f block, ctr128_f ctr, unsigned M, unsigned L); // CRYPTO_ccm128_max_input returns the maximum input length accepted by |ctx|. size_t CRYPTO_ccm128_max_input(const CCM128_CONTEXT *ctx); // CRYPTO_ccm128_encrypt encrypts |len| bytes from |in| to |out| writing the tag // to |out_tag|. |key| must be the same key that was passed to // |CRYPTO_ccm128_init|. It returns one on success and zero otherwise. int CRYPTO_ccm128_encrypt(const CCM128_CONTEXT *ctx, const AES_KEY *key, uint8_t *out, uint8_t *out_tag, size_t tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t len, const uint8_t *aad, size_t aad_len); // CRYPTO_ccm128_decrypt decrypts |len| bytes from |in| to |out|, writing the // expected tag to |out_tag|. |key| must be the same key that was passed to // |CRYPTO_ccm128_init|. It returns one on success and zero otherwise. int CRYPTO_ccm128_decrypt(const CCM128_CONTEXT *ctx, const AES_KEY *key, uint8_t *out, uint8_t *out_tag, size_t tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t len, const uint8_t *aad, size_t aad_len); // CBC. // cbc128_f is the type of a function that performs CBC-mode encryption. typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, uint8_t ivec[16], int enc); // CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the // given IV and block cipher in CBC mode. The input need not be a multiple of // 128 bits long, but the output will round up to the nearest 128 bit multiple, // zero padding the input if needed. The IV will be updated on return. void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, uint8_t ivec[16], block128_f block); // CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the // given IV and block cipher in CBC mode. If |len| is not a multiple of 128 // bits then only that many bytes will be written, but a multiple of 128 bits // is always read from |in|. The IV will be updated on return. void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, uint8_t ivec[16], block128_f block); // OFB. // CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode) // |len| bytes from |in| to |out| using |block| in OFB mode. There's no // requirement that |len| be a multiple of any value and any partial blocks are // stored in |ivec| and |*num|, the latter must be zero before the initial // call. void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, uint8_t ivec[16], unsigned *num, block128_f block); // CFB. // CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes // from |in| to |out| using |block| in CFB mode. There's no requirement that // |len| be a multiple of any value and any partial blocks are stored in |ivec| // and |*num|, the latter must be zero before the initial call. void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, uint8_t ivec[16], unsigned *num, int enc, block128_f block); // CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes // from |in| to |out| using |block| in CFB-8 mode. Prior to the first call // |num| should be set to zero. void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, uint8_t ivec[16], unsigned *num, int enc, block128_f block); // CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes // from |in| to |out| using |block| in CFB-1 mode. Prior to the first call // |num| should be set to zero. void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits, const AES_KEY *key, uint8_t ivec[16], unsigned *num, int enc, block128_f block); size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, uint8_t ivec[16], block128_f block); // POLYVAL. // // POLYVAL is a polynomial authenticator that operates over a field very // similar to the one that GHASH uses. See // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02#section-3. typedef union { uint64_t u[2]; uint8_t c[16]; } polyval_block; struct polyval_ctx { // Note that the order of |S|, |H| and |Htable| is fixed by the MOVBE-based, // x86-64, GHASH assembly. Additionally, some assembly routines require // |Htable| to be 16-byte aligned. polyval_block S; u128 H; alignas(16) u128 Htable[16]; gmult_func gmult; ghash_func ghash; }; // CRYPTO_POLYVAL_init initialises |ctx| using |key|. void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]); // CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the // blocks from |in|. Only a whole number of blocks can be processed so |in_len| // must be a multiple of 16. void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in, size_t in_len); // CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|. void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]); #if defined(__cplusplus) } // extern C #endif #endif // OPENSSL_HEADER_MODES_INTERNAL_H