/* * Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2012, Intel Corporation. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1) * (1) Intel Corporation, Israel Development Center, Haifa, Israel * (2) University of Haifa, Israel */ #include #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) #include "rsaz_exp.h" #include #include "internal.h" #include "../../internal.h" // See crypto/bn/asm/rsaz-avx2.pl for further details. void rsaz_1024_norm2red_avx2(void *red, const void *norm); void rsaz_1024_mul_avx2(void *ret, const void *a, const void *b, const void *n, BN_ULONG k); void rsaz_1024_sqr_avx2(void *ret, const void *a, const void *n, BN_ULONG k, int cnt); void rsaz_1024_scatter5_avx2(void *tbl, const void *val, int i); void rsaz_1024_gather5_avx2(void *val, const void *tbl, int i); void rsaz_1024_red2norm_avx2(void *norm, const void *red); // one is 1 in RSAZ's representation. alignas(64) static const BN_ULONG one[40] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // two80 is 2^80 in RSAZ's representation. Note RSAZ uses base 2^29, so this is // 2^(29*2 + 22) = 2^80, not 2^(64*2 + 22). alignas(64) static const BN_ULONG two80[40] = { 0, 0, 1 << 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; void RSAZ_1024_mod_exp_avx2(BN_ULONG result_norm[16], const BN_ULONG base_norm[16], const BN_ULONG exponent[16], const BN_ULONG m_norm[16], const BN_ULONG RR[16], BN_ULONG k0, BN_ULONG storage_words[MOD_EXP_CTIME_STORAGE_LEN]) { OPENSSL_COMPILE_ASSERT(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH % 64 == 0, MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH_is_large_enough); unsigned char *storage = (unsigned char *)storage_words; assert((uintptr_t)storage % 64 == 0); unsigned char *a_inv, *m, *result, *table_s = storage + (320 * 3), *R2 = table_s; // borrow if (((((uintptr_t)storage & 4095) + 320) >> 12) != 0) { result = storage; a_inv = storage + 320; m = storage + (320 * 2); // should not cross page } else { m = storage; // should not cross page result = storage + 320; a_inv = storage + (320 * 2); } rsaz_1024_norm2red_avx2(m, m_norm); rsaz_1024_norm2red_avx2(a_inv, base_norm); rsaz_1024_norm2red_avx2(R2, RR); // Convert |R2| from the usual radix, giving R = 2^1024, to RSAZ's radix, // giving R = 2^(36*29) = 2^1044. rsaz_1024_mul_avx2(R2, R2, R2, m, k0); // R2 = 2^2048 * 2^2048 / 2^1044 = 2^3052 rsaz_1024_mul_avx2(R2, R2, two80, m, k0); // R2 = 2^3052 * 2^80 / 2^1044 = 2^2088 = (2^1044)^2 // table[0] = 1 rsaz_1024_mul_avx2(result, R2, one, m, k0); // table[1] = a_inv^1 rsaz_1024_mul_avx2(a_inv, a_inv, R2, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 0); rsaz_1024_scatter5_avx2(table_s, a_inv, 1); // table[2] = a_inv^2 rsaz_1024_sqr_avx2(result, a_inv, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 2); #if 0 // This is almost 2x smaller and less than 1% slower. for (int index = 3; index < 32; index++) { rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, index); } #else // table[4] = a_inv^4 rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 4); // table[8] = a_inv^8 rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 8); // table[16] = a_inv^16 rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 16); // table[17] = a_inv^17 rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 17); // table[3] rsaz_1024_gather5_avx2(result, table_s, 2); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 3); // table[6] rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 6); // table[12] rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 12); // table[24] rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 24); // table[25] rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 25); // table[5] rsaz_1024_gather5_avx2(result, table_s, 4); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 5); // table[10] rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 10); // table[20] rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 20); // table[21] rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 21); // table[7] rsaz_1024_gather5_avx2(result, table_s, 6); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 7); // table[14] rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 14); // table[28] rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 28); // table[29] rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 29); // table[9] rsaz_1024_gather5_avx2(result, table_s, 8); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 9); // table[18] rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 18); // table[19] rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 19); // table[11] rsaz_1024_gather5_avx2(result, table_s, 10); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 11); // table[22] rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 22); // table[23] rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 23); // table[13] rsaz_1024_gather5_avx2(result, table_s, 12); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 13); // table[26] rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 26); // table[27] rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 27); // table[15] rsaz_1024_gather5_avx2(result, table_s, 14); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 15); // table[30] rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 30); // table[31] rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 31); #endif const uint8_t *p_str = (const uint8_t *)exponent; // load first window int wvalue = p_str[127] >> 3; rsaz_1024_gather5_avx2(result, table_s, wvalue); int index = 1014; while (index > -1) { // Loop for the remaining 127 windows. rsaz_1024_sqr_avx2(result, result, m, k0, 5); uint16_t wvalue_16; memcpy(&wvalue_16, &p_str[index / 8], sizeof(wvalue_16)); wvalue = wvalue_16; wvalue = (wvalue >> (index % 8)) & 31; index -= 5; rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); // Borrow |a_inv|. rsaz_1024_mul_avx2(result, result, a_inv, m, k0); } // Square four times. rsaz_1024_sqr_avx2(result, result, m, k0, 4); wvalue = p_str[0] & 15; rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); // Borrow |a_inv|. rsaz_1024_mul_avx2(result, result, a_inv, m, k0); // Convert from Montgomery. rsaz_1024_mul_avx2(result, result, one, m, k0); rsaz_1024_red2norm_avx2(result_norm, result); OPENSSL_cleanse(storage, sizeof(storage)); } #endif // OPENSSL_X86_64