/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(OPENSSL_WINDOWS) OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include OPENSSL_MSVC_PRAGMA(warning(pop)) #elif defined(OPENSSL_APPLE) #include #else #include #endif #include "../crypto/internal.h" #include "internal.h" // TimeResults represents the results of benchmarking a function. struct TimeResults { // num_calls is the number of function calls done in the time period. unsigned num_calls; // us is the number of microseconds that elapsed in the time period. unsigned us; void Print(const std::string &description) { printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls, description.c_str(), us, (static_cast(num_calls) / us) * 1000000); } void PrintWithBytes(const std::string &description, size_t bytes_per_call) { printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n", num_calls, description.c_str(), us, (static_cast(num_calls) / us) * 1000000, static_cast(bytes_per_call * num_calls) / us); } }; #if defined(OPENSSL_WINDOWS) static uint64_t time_now() { return GetTickCount64() * 1000; } #elif defined(OPENSSL_APPLE) static uint64_t time_now() { struct timeval tv; uint64_t ret; gettimeofday(&tv, NULL); ret = tv.tv_sec; ret *= 1000000; ret += tv.tv_usec; return ret; } #else static uint64_t time_now() { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); uint64_t ret = ts.tv_sec; ret *= 1000000; ret += ts.tv_nsec / 1000; return ret; } #endif static uint64_t g_timeout_seconds = 1; static std::vector g_chunk_lengths = {16, 256, 1350, 8192, 16384}; static bool TimeFunction(TimeResults *results, std::function func) { // total_us is the total amount of time that we'll aim to measure a function // for. const uint64_t total_us = g_timeout_seconds * 1000000; uint64_t start = time_now(), now, delta; unsigned done = 0, iterations_between_time_checks; if (!func()) { return false; } now = time_now(); delta = now - start; if (delta == 0) { iterations_between_time_checks = 250; } else { // Aim for about 100ms between time checks. iterations_between_time_checks = static_cast(100000) / static_cast(delta); if (iterations_between_time_checks > 1000) { iterations_between_time_checks = 1000; } else if (iterations_between_time_checks < 1) { iterations_between_time_checks = 1; } } for (;;) { for (unsigned i = 0; i < iterations_between_time_checks; i++) { if (!func()) { return false; } done++; } now = time_now(); if (now - start > total_us) { break; } } results->us = now - start; results->num_calls = done; return true; } static bool SpeedRSA(const std::string &selected) { if (!selected.empty() && selected.find("RSA") == std::string::npos) { return true; } static const struct { const char *name; const uint8_t *key; const size_t key_len; } kRSAKeys[] = { {"RSA 2048", kDERRSAPrivate2048, kDERRSAPrivate2048Len}, {"RSA 4096", kDERRSAPrivate4096, kDERRSAPrivate4096Len}, }; for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kRSAKeys); i++) { const std::string name = kRSAKeys[i].name; bssl::UniquePtr key( RSA_private_key_from_bytes(kRSAKeys[i].key, kRSAKeys[i].key_len)); if (key == nullptr) { fprintf(stderr, "Failed to parse %s key.\n", name.c_str()); ERR_print_errors_fp(stderr); return false; } std::unique_ptr sig(new uint8_t[RSA_size(key.get())]); const uint8_t fake_sha256_hash[32] = {0}; unsigned sig_len; TimeResults results; if (!TimeFunction(&results, [&key, &sig, &fake_sha256_hash, &sig_len]() -> bool { // Usually during RSA signing we're using a long-lived |RSA| that has // already had all of its |BN_MONT_CTX|s constructed, so it makes // sense to use |key| directly here. return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), sig.get(), &sig_len, key.get()); })) { fprintf(stderr, "RSA_sign failed.\n"); ERR_print_errors_fp(stderr); return false; } results.Print(name + " signing"); if (!TimeFunction(&results, [&key, &fake_sha256_hash, &sig, sig_len]() -> bool { return RSA_verify( NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), sig.get(), sig_len, key.get()); })) { fprintf(stderr, "RSA_verify failed.\n"); ERR_print_errors_fp(stderr); return false; } results.Print(name + " verify (same key)"); if (!TimeFunction(&results, [&key, &fake_sha256_hash, &sig, sig_len]() -> bool { // Usually during RSA verification we have to parse an RSA key from a // certificate or similar, in which case we'd need to construct a new // RSA key, with a new |BN_MONT_CTX| for the public modulus. If we // were to use |key| directly instead, then these costs wouldn't be // accounted for. bssl::UniquePtr verify_key(RSA_new()); if (!verify_key) { return false; } verify_key->n = BN_dup(key->n); verify_key->e = BN_dup(key->e); if (!verify_key->n || !verify_key->e) { return false; } return RSA_verify(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), sig.get(), sig_len, verify_key.get()); })) { fprintf(stderr, "RSA_verify failed.\n"); ERR_print_errors_fp(stderr); return false; } results.Print(name + " verify (fresh key)"); } return true; } static bool SpeedRSAKeyGen(const std::string &selected) { // Don't run this by default because it's so slow. if (selected != "RSAKeyGen") { return true; } bssl::UniquePtr e(BN_new()); if (!BN_set_word(e.get(), 65537)) { return false; } const std::vector kSizes = {2048, 3072, 4096}; for (int size : kSizes) { const uint64_t start = time_now(); unsigned num_calls = 0; unsigned us; std::vector durations; for (;;) { bssl::UniquePtr rsa(RSA_new()); const uint64_t iteration_start = time_now(); if (!RSA_generate_key_ex(rsa.get(), size, e.get(), nullptr)) { fprintf(stderr, "RSA_generate_key_ex failed.\n"); ERR_print_errors_fp(stderr); return false; } const uint64_t iteration_end = time_now(); num_calls++; durations.push_back(iteration_end - iteration_start); us = iteration_end - start; if (us > 30 * 1000000 /* 30 secs */) { break; } } std::sort(durations.begin(), durations.end()); printf("Did %u RSA %d key-gen operations in %uus (%.1f ops/sec)\n", num_calls, size, us, (static_cast(num_calls) / us) * 1000000); const size_t n = durations.size(); assert(n > 0); // |min| and |max| must be stored in temporary variables to avoid an MSVC // bug on x86. There, size_t is a typedef for unsigned, but MSVC's printf // warning tries to retain the distinction and suggest %zu for size_t // instead of %u. It gets confused if std::vector and // std::vector are both instantiated. Being typedefs, the two // instantiations are identical, which somehow breaks the size_t vs unsigned // metadata. unsigned min = durations[0]; unsigned median = n & 1 ? durations[n / 2] : (durations[n / 2 - 1] + durations[n / 2]) / 2; unsigned max = durations[n - 1]; printf(" min: %uus, median: %uus, max: %uus\n", min, median, max); } return true; } static uint8_t *align(uint8_t *in, unsigned alignment) { return reinterpret_cast( (reinterpret_cast(in) + alignment) & ~static_cast(alignment - 1)); } static std::string ChunkLenSuffix(size_t chunk_len) { char buf[32]; snprintf(buf, sizeof(buf), " (%zu byte%s)", chunk_len, chunk_len != 1 ? "s" : ""); return buf; } static bool SpeedAEADChunk(const EVP_AEAD *aead, std::string name, size_t chunk_len, size_t ad_len, evp_aead_direction_t direction) { static const unsigned kAlignment = 16; name += ChunkLenSuffix(chunk_len); bssl::ScopedEVP_AEAD_CTX ctx; const size_t key_len = EVP_AEAD_key_length(aead); const size_t nonce_len = EVP_AEAD_nonce_length(aead); const size_t overhead_len = EVP_AEAD_max_overhead(aead); std::unique_ptr key(new uint8_t[key_len]); OPENSSL_memset(key.get(), 0, key_len); std::unique_ptr nonce(new uint8_t[nonce_len]); OPENSSL_memset(nonce.get(), 0, nonce_len); std::unique_ptr in_storage(new uint8_t[chunk_len + kAlignment]); // N.B. for EVP_AEAD_CTX_seal_scatter the input and output buffers may be the // same size. However, in the direction == evp_aead_open case we still use // non-scattering seal, hence we add overhead_len to the size of this buffer. std::unique_ptr out_storage( new uint8_t[chunk_len + overhead_len + kAlignment]); std::unique_ptr in2_storage( new uint8_t[chunk_len + overhead_len + kAlignment]); std::unique_ptr ad(new uint8_t[ad_len]); OPENSSL_memset(ad.get(), 0, ad_len); std::unique_ptr tag_storage( new uint8_t[overhead_len + kAlignment]); uint8_t *const in = align(in_storage.get(), kAlignment); OPENSSL_memset(in, 0, chunk_len); uint8_t *const out = align(out_storage.get(), kAlignment); OPENSSL_memset(out, 0, chunk_len + overhead_len); uint8_t *const tag = align(tag_storage.get(), kAlignment); OPENSSL_memset(tag, 0, overhead_len); uint8_t *const in2 = align(in2_storage.get(), kAlignment); if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len, EVP_AEAD_DEFAULT_TAG_LENGTH, evp_aead_seal)) { fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n"); ERR_print_errors_fp(stderr); return false; } TimeResults results; if (direction == evp_aead_seal) { if (!TimeFunction(&results, [chunk_len, nonce_len, ad_len, overhead_len, in, out, tag, &ctx, &nonce, &ad]() -> bool { size_t tag_len; return EVP_AEAD_CTX_seal_scatter( ctx.get(), out, tag, &tag_len, overhead_len, nonce.get(), nonce_len, in, chunk_len, nullptr, 0, ad.get(), ad_len); })) { fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n"); ERR_print_errors_fp(stderr); return false; } } else { size_t out_len; EVP_AEAD_CTX_seal(ctx.get(), out, &out_len, chunk_len + overhead_len, nonce.get(), nonce_len, in, chunk_len, ad.get(), ad_len); ctx.Reset(); if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len, EVP_AEAD_DEFAULT_TAG_LENGTH, evp_aead_open)) { fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n"); ERR_print_errors_fp(stderr); return false; } if (!TimeFunction(&results, [chunk_len, overhead_len, nonce_len, ad_len, in2, out, out_len, &ctx, &nonce, &ad]() -> bool { size_t in2_len; // N.B. EVP_AEAD_CTX_open_gather is not implemented for // all AEADs. return EVP_AEAD_CTX_open(ctx.get(), in2, &in2_len, chunk_len + overhead_len, nonce.get(), nonce_len, out, out_len, ad.get(), ad_len); })) { fprintf(stderr, "EVP_AEAD_CTX_open failed.\n"); ERR_print_errors_fp(stderr); return false; } } results.PrintWithBytes( name + (direction == evp_aead_seal ? " seal" : " open"), chunk_len); return true; } static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name, size_t ad_len, const std::string &selected) { if (!selected.empty() && name.find(selected) == std::string::npos) { return true; } for (size_t chunk_len : g_chunk_lengths) { if (!SpeedAEADChunk(aead, name, chunk_len, ad_len, evp_aead_seal)) { return false; } } return true; } static bool SpeedAEADOpen(const EVP_AEAD *aead, const std::string &name, size_t ad_len, const std::string &selected) { if (!selected.empty() && name.find(selected) == std::string::npos) { return true; } for (size_t chunk_len : g_chunk_lengths) { if (!SpeedAEADChunk(aead, name, chunk_len, ad_len, evp_aead_open)) { return false; } } return true; } static bool SpeedHashChunk(const EVP_MD *md, std::string name, size_t chunk_len) { bssl::ScopedEVP_MD_CTX ctx; uint8_t scratch[8192]; if (chunk_len > sizeof(scratch)) { return false; } name += ChunkLenSuffix(chunk_len); TimeResults results; if (!TimeFunction(&results, [&ctx, md, chunk_len, &scratch]() -> bool { uint8_t digest[EVP_MAX_MD_SIZE]; unsigned int md_len; return EVP_DigestInit_ex(ctx.get(), md, NULL /* ENGINE */) && EVP_DigestUpdate(ctx.get(), scratch, chunk_len) && EVP_DigestFinal_ex(ctx.get(), digest, &md_len); })) { fprintf(stderr, "EVP_DigestInit_ex failed.\n"); ERR_print_errors_fp(stderr); return false; } results.PrintWithBytes(name, chunk_len); return true; } static bool SpeedHash(const EVP_MD *md, const std::string &name, const std::string &selected) { if (!selected.empty() && name.find(selected) == std::string::npos) { return true; } for (size_t chunk_len : g_chunk_lengths) { if (!SpeedHashChunk(md, name, chunk_len)) { return false; } } return true; } static bool SpeedRandomChunk(std::string name, size_t chunk_len) { uint8_t scratch[8192]; if (chunk_len > sizeof(scratch)) { return false; } name += ChunkLenSuffix(chunk_len); TimeResults results; if (!TimeFunction(&results, [chunk_len, &scratch]() -> bool { RAND_bytes(scratch, chunk_len); return true; })) { return false; } results.PrintWithBytes(name, chunk_len); return true; } static bool SpeedRandom(const std::string &selected) { if (!selected.empty() && selected != "RNG") { return true; } for (size_t chunk_len : g_chunk_lengths) { if (!SpeedRandomChunk("RNG", chunk_len)) { return false; } } return true; } static bool SpeedECDHCurve(const std::string &name, int nid, const std::string &selected) { if (!selected.empty() && name.find(selected) == std::string::npos) { return true; } bssl::UniquePtr peer_key(EC_KEY_new_by_curve_name(nid)); if (!peer_key || !EC_KEY_generate_key(peer_key.get())) { return false; } size_t peer_value_len = EC_POINT_point2oct( EC_KEY_get0_group(peer_key.get()), EC_KEY_get0_public_key(peer_key.get()), POINT_CONVERSION_UNCOMPRESSED, nullptr, 0, nullptr); if (peer_value_len == 0) { return false; } std::unique_ptr peer_value(new uint8_t[peer_value_len]); peer_value_len = EC_POINT_point2oct( EC_KEY_get0_group(peer_key.get()), EC_KEY_get0_public_key(peer_key.get()), POINT_CONVERSION_UNCOMPRESSED, peer_value.get(), peer_value_len, nullptr); if (peer_value_len == 0) { return false; } TimeResults results; if (!TimeFunction(&results, [nid, peer_value_len, &peer_value]() -> bool { bssl::UniquePtr key(EC_KEY_new_by_curve_name(nid)); if (!key || !EC_KEY_generate_key(key.get())) { return false; } const EC_GROUP *const group = EC_KEY_get0_group(key.get()); bssl::UniquePtr point(EC_POINT_new(group)); bssl::UniquePtr peer_point(EC_POINT_new(group)); bssl::UniquePtr ctx(BN_CTX_new()); bssl::UniquePtr x(BN_new()); bssl::UniquePtr y(BN_new()); if (!point || !peer_point || !ctx || !x || !y || !EC_POINT_oct2point(group, peer_point.get(), peer_value.get(), peer_value_len, ctx.get()) || !EC_POINT_mul(group, point.get(), NULL, peer_point.get(), EC_KEY_get0_private_key(key.get()), ctx.get()) || !EC_POINT_get_affine_coordinates_GFp(group, point.get(), x.get(), y.get(), ctx.get())) { return false; } return true; })) { return false; } results.Print(name); return true; } static bool SpeedECDSACurve(const std::string &name, int nid, const std::string &selected) { if (!selected.empty() && name.find(selected) == std::string::npos) { return true; } bssl::UniquePtr key(EC_KEY_new_by_curve_name(nid)); if (!key || !EC_KEY_generate_key(key.get())) { return false; } uint8_t signature[256]; if (ECDSA_size(key.get()) > sizeof(signature)) { return false; } uint8_t digest[20]; OPENSSL_memset(digest, 42, sizeof(digest)); unsigned sig_len; TimeResults results; if (!TimeFunction(&results, [&key, &signature, &digest, &sig_len]() -> bool { return ECDSA_sign(0, digest, sizeof(digest), signature, &sig_len, key.get()) == 1; })) { return false; } results.Print(name + " signing"); if (!TimeFunction(&results, [&key, &signature, &digest, sig_len]() -> bool { return ECDSA_verify(0, digest, sizeof(digest), signature, sig_len, key.get()) == 1; })) { return false; } results.Print(name + " verify"); return true; } static bool SpeedECDH(const std::string &selected) { return SpeedECDHCurve("ECDH P-224", NID_secp224r1, selected) && SpeedECDHCurve("ECDH P-256", NID_X9_62_prime256v1, selected) && SpeedECDHCurve("ECDH P-384", NID_secp384r1, selected) && SpeedECDHCurve("ECDH P-521", NID_secp521r1, selected); } static bool SpeedECDSA(const std::string &selected) { return SpeedECDSACurve("ECDSA P-224", NID_secp224r1, selected) && SpeedECDSACurve("ECDSA P-256", NID_X9_62_prime256v1, selected) && SpeedECDSACurve("ECDSA P-384", NID_secp384r1, selected) && SpeedECDSACurve("ECDSA P-521", NID_secp521r1, selected); } static bool Speed25519(const std::string &selected) { if (!selected.empty() && selected.find("25519") == std::string::npos) { return true; } TimeResults results; uint8_t public_key[32], private_key[64]; if (!TimeFunction(&results, [&public_key, &private_key]() -> bool { ED25519_keypair(public_key, private_key); return true; })) { return false; } results.Print("Ed25519 key generation"); static const uint8_t kMessage[] = {0, 1, 2, 3, 4, 5}; uint8_t signature[64]; if (!TimeFunction(&results, [&private_key, &signature]() -> bool { return ED25519_sign(signature, kMessage, sizeof(kMessage), private_key) == 1; })) { return false; } results.Print("Ed25519 signing"); if (!TimeFunction(&results, [&public_key, &signature]() -> bool { return ED25519_verify(kMessage, sizeof(kMessage), signature, public_key) == 1; })) { fprintf(stderr, "Ed25519 verify failed.\n"); return false; } results.Print("Ed25519 verify"); if (!TimeFunction(&results, []() -> bool { uint8_t out[32], in[32]; OPENSSL_memset(in, 0, sizeof(in)); X25519_public_from_private(out, in); return true; })) { fprintf(stderr, "Curve25519 base-point multiplication failed.\n"); return false; } results.Print("Curve25519 base-point multiplication"); if (!TimeFunction(&results, []() -> bool { uint8_t out[32], in1[32], in2[32]; OPENSSL_memset(in1, 0, sizeof(in1)); OPENSSL_memset(in2, 0, sizeof(in2)); in1[0] = 1; in2[0] = 9; return X25519(out, in1, in2) == 1; })) { fprintf(stderr, "Curve25519 arbitrary point multiplication failed.\n"); return false; } results.Print("Curve25519 arbitrary point multiplication"); return true; } static bool SpeedSPAKE2(const std::string &selected) { if (!selected.empty() && selected.find("SPAKE2") == std::string::npos) { return true; } TimeResults results; static const uint8_t kAliceName[] = {'A'}; static const uint8_t kBobName[] = {'B'}; static const uint8_t kPassword[] = "password"; bssl::UniquePtr alice(SPAKE2_CTX_new(spake2_role_alice, kAliceName, sizeof(kAliceName), kBobName, sizeof(kBobName))); uint8_t alice_msg[SPAKE2_MAX_MSG_SIZE]; size_t alice_msg_len; if (!SPAKE2_generate_msg(alice.get(), alice_msg, &alice_msg_len, sizeof(alice_msg), kPassword, sizeof(kPassword))) { fprintf(stderr, "SPAKE2_generate_msg failed.\n"); return false; } if (!TimeFunction(&results, [&alice_msg, alice_msg_len]() -> bool { bssl::UniquePtr bob(SPAKE2_CTX_new(spake2_role_bob, kBobName, sizeof(kBobName), kAliceName, sizeof(kAliceName))); uint8_t bob_msg[SPAKE2_MAX_MSG_SIZE], bob_key[64]; size_t bob_msg_len, bob_key_len; if (!SPAKE2_generate_msg(bob.get(), bob_msg, &bob_msg_len, sizeof(bob_msg), kPassword, sizeof(kPassword)) || !SPAKE2_process_msg(bob.get(), bob_key, &bob_key_len, sizeof(bob_key), alice_msg, alice_msg_len)) { return false; } return true; })) { fprintf(stderr, "SPAKE2 failed.\n"); } results.Print("SPAKE2 over Ed25519"); return true; } static bool SpeedScrypt(const std::string &selected) { if (!selected.empty() && selected.find("scrypt") == std::string::npos) { return true; } TimeResults results; static const char kPassword[] = "password"; static const uint8_t kSalt[] = "NaCl"; if (!TimeFunction(&results, [&]() -> bool { uint8_t out[64]; return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt, sizeof(kSalt) - 1, 1024, 8, 16, 0 /* max_mem */, out, sizeof(out)); })) { fprintf(stderr, "scrypt failed.\n"); return false; } results.Print("scrypt (N = 1024, r = 8, p = 16)"); if (!TimeFunction(&results, [&]() -> bool { uint8_t out[64]; return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt, sizeof(kSalt) - 1, 16384, 8, 1, 0 /* max_mem */, out, sizeof(out)); })) { fprintf(stderr, "scrypt failed.\n"); return false; } results.Print("scrypt (N = 16384, r = 8, p = 1)"); return true; } static bool SpeedHRSS(const std::string &selected) { if (!selected.empty() && selected != "HRSS") { return true; } TimeResults results; if (!TimeFunction(&results, []() -> bool { struct HRSS_public_key pub; struct HRSS_private_key priv; uint8_t entropy[HRSS_GENERATE_KEY_BYTES]; RAND_bytes(entropy, sizeof(entropy)); HRSS_generate_key(&pub, &priv, entropy); return true; })) { fprintf(stderr, "Failed to time HRSS_generate_key.\n"); return false; } results.Print("HRSS generate"); struct HRSS_public_key pub; struct HRSS_private_key priv; uint8_t key_entropy[HRSS_GENERATE_KEY_BYTES]; RAND_bytes(key_entropy, sizeof(key_entropy)); HRSS_generate_key(&pub, &priv, key_entropy); uint8_t ciphertext[HRSS_CIPHERTEXT_BYTES]; if (!TimeFunction(&results, [&pub, &ciphertext]() -> bool { uint8_t entropy[HRSS_ENCAP_BYTES]; uint8_t shared_key[HRSS_KEY_BYTES]; RAND_bytes(entropy, sizeof(entropy)); HRSS_encap(ciphertext, shared_key, &pub, entropy); return true; })) { fprintf(stderr, "Failed to time HRSS_encap.\n"); return false; } results.Print("HRSS encap"); if (!TimeFunction(&results, [&priv, &ciphertext]() -> bool { uint8_t shared_key[HRSS_KEY_BYTES]; HRSS_decap(shared_key, &priv, ciphertext, sizeof(ciphertext)); return true; })) { fprintf(stderr, "Failed to time HRSS_encap.\n"); return false; } results.Print("HRSS decap"); return true; } static const struct argument kArguments[] = { { "-filter", kOptionalArgument, "A filter on the speed tests to run", }, { "-timeout", kOptionalArgument, "The number of seconds to run each test for (default is 1)", }, { "-chunks", kOptionalArgument, "A comma-separated list of input sizes to run tests at (default is " "16,256,1350,8192,16384)", }, { "", kOptionalArgument, "", }, }; bool Speed(const std::vector &args) { std::map args_map; if (!ParseKeyValueArguments(&args_map, args, kArguments)) { PrintUsage(kArguments); return false; } std::string selected; if (args_map.count("-filter") != 0) { selected = args_map["-filter"]; } if (args_map.count("-timeout") != 0) { g_timeout_seconds = atoi(args_map["-timeout"].c_str()); } if (args_map.count("-chunks") != 0) { g_chunk_lengths.clear(); const char *start = args_map["-chunks"].data(); const char *end = start + args_map["-chunks"].size(); while (start != end) { errno = 0; char *ptr; unsigned long long val = strtoull(start, &ptr, 10); if (ptr == start /* no numeric characters found */ || errno == ERANGE /* overflow */ || static_cast(val) != val) { fprintf(stderr, "Error parsing -chunks argument\n"); return false; } g_chunk_lengths.push_back(static_cast(val)); start = ptr; if (start != end) { if (*start != ',') { fprintf(stderr, "Error parsing -chunks argument\n"); return false; } start++; } } } // kTLSADLen is the number of bytes of additional data that TLS passes to // AEADs. static const size_t kTLSADLen = 13; // kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs. // These are AEADs that weren't originally defined as AEADs, but which we use // via the AEAD interface. In order for that to work, they have some TLS // knowledge in them and construct a couple of the AD bytes internally. static const size_t kLegacyADLen = kTLSADLen - 2; if (!SpeedRSA(selected) || !SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen, selected) || !SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen, selected) || !SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen, selected) || !SpeedAEAD(EVP_aead_des_ede3_cbc_sha1_tls(), "DES-EDE3-CBC-SHA1", kLegacyADLen, selected) || !SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1", kLegacyADLen, selected) || !SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1", kLegacyADLen, selected) || !SpeedAEADOpen(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1", kLegacyADLen, selected) || !SpeedAEADOpen(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1", kLegacyADLen, selected) || !SpeedAEAD(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen, selected) || !SpeedAEAD(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen, selected) || !SpeedAEADOpen(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen, selected) || !SpeedAEADOpen(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen, selected) || !SpeedAEAD(EVP_aead_aes_128_ccm_bluetooth(), "AES-128-CCM-Bluetooth", kTLSADLen, selected) || !SpeedHash(EVP_sha1(), "SHA-1", selected) || !SpeedHash(EVP_sha256(), "SHA-256", selected) || !SpeedHash(EVP_sha512(), "SHA-512", selected) || !SpeedRandom(selected) || !SpeedECDH(selected) || !SpeedECDSA(selected) || !Speed25519(selected) || !SpeedSPAKE2(selected) || !SpeedScrypt(selected) || !SpeedRSAKeyGen(selected) || !SpeedHRSS(selected)) { return false; } return true; }