/* ==================================================================== * Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "../internal.h" #include "../modes/internal.h" #if defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) #include #endif OPENSSL_MSVC_PRAGMA(warning(disable: 4702)) /* Unreachable code. */ typedef struct { union { double align; AES_KEY ks; } ks; block128_f block; union { cbc128_f cbc; ctr128_f ctr; } stream; } EVP_AES_KEY; typedef struct { union { double align; AES_KEY ks; } ks; /* AES key schedule to use */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ GCM128_CONTEXT gcm; uint8_t *iv; /* Temporary IV store */ int ivlen; /* IV length */ int taglen; int iv_gen; /* It is OK to generate IVs */ ctr128_f ctr; } EVP_AES_GCM_CTX; #if !defined(OPENSSL_NO_ASM) && \ (defined(OPENSSL_X86_64) || defined(OPENSSL_X86)) #define VPAES static char vpaes_capable(void) { return (OPENSSL_ia32cap_P[1] & (1 << (41 - 32))) != 0; } #if defined(OPENSSL_X86_64) #define BSAES static char bsaes_capable(void) { return vpaes_capable(); } #endif #elif !defined(OPENSSL_NO_ASM) && \ (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) #if defined(OPENSSL_ARM) && __ARM_MAX_ARCH__ >= 7 #define BSAES static char bsaes_capable(void) { return CRYPTO_is_NEON_capable(); } #endif #define HWAES static int hwaes_capable(void) { return CRYPTO_is_ARMv8_AES_capable(); } #elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_PPC64LE) #define HWAES static int hwaes_capable(void) { return CRYPTO_is_PPC64LE_vcrypto_capable(); } #endif /* OPENSSL_PPC64LE */ #if defined(BSAES) /* On platforms where BSAES gets defined (just above), then these functions are * provided by asm. */ void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, uint8_t ivec[16], int enc); void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, const uint8_t ivec[16]); #else static char bsaes_capable(void) { return 0; } /* On other platforms, bsaes_capable() will always return false and so the * following will never be called. */ static void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, uint8_t ivec[16], int enc) { abort(); } static void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, const uint8_t ivec[16]) { abort(); } #endif #if defined(VPAES) /* On platforms where VPAES gets defined (just above), then these functions are * provided by asm. */ int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, uint8_t *ivec, int enc); #else static char vpaes_capable(void) { return 0; } /* On other platforms, vpaes_capable() will always return false and so the * following will never be called. */ static int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) { abort(); } static int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) { abort(); } static void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { abort(); } static void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { abort(); } static void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, uint8_t *ivec, int enc) { abort(); } #endif #if defined(HWAES) int aes_hw_set_encrypt_key(const uint8_t *user_key, const int bits, AES_KEY *key); int aes_hw_set_decrypt_key(const uint8_t *user_key, const int bits, AES_KEY *key); void aes_hw_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); void aes_hw_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); void aes_hw_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, uint8_t *ivec, const int enc); void aes_hw_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, const uint8_t ivec[16]); #else /* If HWAES isn't defined then we provide dummy functions for each of the hwaes * functions. */ static int hwaes_capable(void) { return 0; } static int aes_hw_set_encrypt_key(const uint8_t *user_key, int bits, AES_KEY *key) { abort(); } static int aes_hw_set_decrypt_key(const uint8_t *user_key, int bits, AES_KEY *key) { abort(); } static void aes_hw_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { abort(); } static void aes_hw_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { abort(); } static void aes_hw_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, uint8_t *ivec, int enc) { abort(); } static void aes_hw_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, const uint8_t ivec[16]) { abort(); } #endif #if !defined(OPENSSL_NO_ASM) && \ (defined(OPENSSL_X86_64) || defined(OPENSSL_X86)) int aesni_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); int aesni_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); void aesni_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); void aesni_ecb_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, int enc); void aesni_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, uint8_t *ivec, int enc); #else /* On other platforms, aesni_capable() will always return false and so the * following will never be called. */ static void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { abort(); } static int aesni_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) { abort(); } static void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks, const void *key, const uint8_t *ivec) { abort(); } #endif static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, const uint8_t *iv, int enc) { int ret, mode; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK; if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { if (hwaes_capable()) { ret = aes_hw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)aes_hw_decrypt; dat->stream.cbc = NULL; if (mode == EVP_CIPH_CBC_MODE) { dat->stream.cbc = (cbc128_f)aes_hw_cbc_encrypt; } } else if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) { ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)AES_decrypt; dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt; } else if (vpaes_capable()) { ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)vpaes_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL; } else { ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)AES_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL; } } else if (hwaes_capable()) { ret = aes_hw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)aes_hw_encrypt; dat->stream.cbc = NULL; if (mode == EVP_CIPH_CBC_MODE) { dat->stream.cbc = (cbc128_f)aes_hw_cbc_encrypt; } else if (mode == EVP_CIPH_CTR_MODE) { dat->stream.ctr = (ctr128_f)aes_hw_ctr32_encrypt_blocks; } } else if (bsaes_capable() && mode == EVP_CIPH_CTR_MODE) { ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)AES_encrypt; dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks; } else if (vpaes_capable()) { ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)vpaes_encrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL; } else { ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)AES_encrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL; } if (ret < 0) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (dat->stream.cbc) { (*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv, ctx->encrypt); } else if (ctx->encrypt) { CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, dat->block); } else { CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, dat->block); } return 1; } static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { size_t bl = ctx->cipher->block_size; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (len < bl) { return 1; } len -= bl; for (size_t i = 0; i <= len; i += bl) { (*dat->block)(in + i, out + i, &dat->ks); } return 1; } static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (dat->stream.ctr) { CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, ctx->iv, ctx->buf, &ctx->num, dat->stream.ctr); } else { CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, ctx->iv, ctx->buf, &ctx->num, dat->block); } return 1; } static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, dat->block); return 1; } static char aesni_capable(void); static ctr128_f aes_ctr_set_key(AES_KEY *aes_key, GCM128_CONTEXT *gcm_ctx, block128_f *out_block, const uint8_t *key, size_t key_len) { if (aesni_capable()) { aesni_set_encrypt_key(key, key_len * 8, aes_key); if (gcm_ctx != NULL) { CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)aesni_encrypt); } if (out_block) { *out_block = (block128_f) aesni_encrypt; } return (ctr128_f)aesni_ctr32_encrypt_blocks; } if (hwaes_capable()) { aes_hw_set_encrypt_key(key, key_len * 8, aes_key); if (gcm_ctx != NULL) { CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)aes_hw_encrypt); } if (out_block) { *out_block = (block128_f) aes_hw_encrypt; } return (ctr128_f)aes_hw_ctr32_encrypt_blocks; } if (bsaes_capable()) { AES_set_encrypt_key(key, key_len * 8, aes_key); if (gcm_ctx != NULL) { CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt); } if (out_block) { *out_block = (block128_f) AES_encrypt; } return (ctr128_f)bsaes_ctr32_encrypt_blocks; } if (vpaes_capable()) { vpaes_set_encrypt_key(key, key_len * 8, aes_key); if (out_block) { *out_block = (block128_f) vpaes_encrypt; } if (gcm_ctx != NULL) { CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)vpaes_encrypt); } return NULL; } AES_set_encrypt_key(key, key_len * 8, aes_key); if (gcm_ctx != NULL) { CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt); } if (out_block) { *out_block = (block128_f) AES_encrypt; } return NULL; } static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, const uint8_t *iv, int enc) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; if (!iv && !key) { return 1; } if (key) { gctx->ctr = aes_ctr_set_key(&gctx->ks.ks, &gctx->gcm, NULL, key, ctx->key_len); /* If we have an iv can set it directly, otherwise use saved IV. */ if (iv == NULL && gctx->iv_set) { iv = gctx->iv; } if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) { CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); } else { memcpy(gctx->iv, iv, gctx->ivlen); } gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } static void aes_gcm_cleanup(EVP_CIPHER_CTX *c) { EVP_AES_GCM_CTX *gctx = c->cipher_data; OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); if (gctx->iv != c->iv) { OPENSSL_free(gctx->iv); } } /* increment counter (64-bit int) by 1 */ static void ctr64_inc(uint8_t *counter) { int n = 8; uint8_t c; do { --n; c = counter[n]; ++c; counter[n] = c; if (c) { return; } } while (n); } static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_GCM_CTX *gctx = c->cipher_data; switch (type) { case EVP_CTRL_INIT: gctx->key_set = 0; gctx->iv_set = 0; gctx->ivlen = c->cipher->iv_len; gctx->iv = c->iv; gctx->taglen = -1; gctx->iv_gen = 0; return 1; case EVP_CTRL_GCM_SET_IVLEN: if (arg <= 0) { return 0; } /* Allocate memory for IV if needed */ if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) { if (gctx->iv != c->iv) { OPENSSL_free(gctx->iv); } gctx->iv = OPENSSL_malloc(arg); if (!gctx->iv) { return 0; } } gctx->ivlen = arg; return 1; case EVP_CTRL_GCM_SET_TAG: if (arg <= 0 || arg > 16 || c->encrypt) { return 0; } memcpy(c->buf, ptr, arg); gctx->taglen = arg; return 1; case EVP_CTRL_GCM_GET_TAG: if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) { return 0; } memcpy(ptr, c->buf, arg); return 1; case EVP_CTRL_GCM_SET_IV_FIXED: /* Special case: -1 length restores whole IV */ if (arg == -1) { memcpy(gctx->iv, ptr, gctx->ivlen); gctx->iv_gen = 1; return 1; } /* Fixed field must be at least 4 bytes and invocation field * at least 8. */ if (arg < 4 || (gctx->ivlen - arg) < 8) { return 0; } if (arg) { memcpy(gctx->iv, ptr, arg); } if (c->encrypt && !RAND_bytes(gctx->iv + arg, gctx->ivlen - arg)) { return 0; } gctx->iv_gen = 1; return 1; case EVP_CTRL_GCM_IV_GEN: if (gctx->iv_gen == 0 || gctx->key_set == 0) { return 0; } CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen); if (arg <= 0 || arg > gctx->ivlen) { arg = gctx->ivlen; } memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); /* Invocation field will be at least 8 bytes in size and * so no need to check wrap around or increment more than * last 8 bytes. */ ctr64_inc(gctx->iv + gctx->ivlen - 8); gctx->iv_set = 1; return 1; case EVP_CTRL_GCM_SET_IV_INV: if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) { return 0; } memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen); gctx->iv_set = 1; return 1; case EVP_CTRL_COPY: { EVP_CIPHER_CTX *out = ptr; EVP_AES_GCM_CTX *gctx_out = out->cipher_data; if (gctx->iv == c->iv) { gctx_out->iv = out->iv; } else { gctx_out->iv = OPENSSL_malloc(gctx->ivlen); if (!gctx_out->iv) { return 0; } memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); } return 1; } default: return -1; } } static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; /* If not set up, return error */ if (!gctx->key_set) { return -1; } if (!gctx->iv_set) { return -1; } if (in) { if (out == NULL) { if (!CRYPTO_gcm128_aad(&gctx->gcm, in, len)) { return -1; } } else if (ctx->encrypt) { if (gctx->ctr) { if (!CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len, gctx->ctr)) { return -1; } } else { if (!CRYPTO_gcm128_encrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) { return -1; } } } else { if (gctx->ctr) { if (!CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len, gctx->ctr)) { return -1; } } else { if (!CRYPTO_gcm128_decrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) { return -1; } } } return len; } else { if (!ctx->encrypt) { if (gctx->taglen < 0 || !CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen)) { return -1; } gctx->iv_set = 0; return 0; } CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); gctx->taglen = 16; /* Don't reuse the IV */ gctx->iv_set = 0; return 0; } } static const EVP_CIPHER aes_128_cbc = { NID_aes_128_cbc, 16 /* block_size */, 16 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, NULL /* app_data */, aes_init_key, aes_cbc_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_128_ctr = { NID_aes_128_ctr, 1 /* block_size */, 16 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, NULL /* app_data */, aes_init_key, aes_ctr_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_128_ecb = { NID_aes_128_ecb, 16 /* block_size */, 16 /* key_size */, 0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, NULL /* app_data */, aes_init_key, aes_ecb_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_128_ofb = { NID_aes_128_ofb128, 1 /* block_size */, 16 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_OFB_MODE, NULL /* app_data */, aes_init_key, aes_ofb_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_128_gcm = { NID_aes_128_gcm, 1 /* block_size */, 16 /* key_size */, 12 /* iv_len */, sizeof(EVP_AES_GCM_CTX), EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER, NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, aes_gcm_ctrl}; static const EVP_CIPHER aes_192_cbc = { NID_aes_192_cbc, 16 /* block_size */, 24 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, NULL /* app_data */, aes_init_key, aes_cbc_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_192_ctr = { NID_aes_192_ctr, 1 /* block_size */, 24 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, NULL /* app_data */, aes_init_key, aes_ctr_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_192_ecb = { NID_aes_192_ecb, 16 /* block_size */, 24 /* key_size */, 0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, NULL /* app_data */, aes_init_key, aes_ecb_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_192_gcm = { NID_aes_192_gcm, 1 /* block_size */, 24 /* key_size */, 12 /* iv_len */, sizeof(EVP_AES_GCM_CTX), EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER, NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, aes_gcm_ctrl}; static const EVP_CIPHER aes_256_cbc = { NID_aes_256_cbc, 16 /* block_size */, 32 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, NULL /* app_data */, aes_init_key, aes_cbc_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_256_ctr = { NID_aes_256_ctr, 1 /* block_size */, 32 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, NULL /* app_data */, aes_init_key, aes_ctr_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_256_ecb = { NID_aes_256_ecb, 16 /* block_size */, 32 /* key_size */, 0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, NULL /* app_data */, aes_init_key, aes_ecb_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_256_ofb = { NID_aes_256_ofb128, 1 /* block_size */, 32 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_OFB_MODE, NULL /* app_data */, aes_init_key, aes_ofb_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_256_gcm = { NID_aes_256_gcm, 1 /* block_size */, 32 /* key_size */, 12 /* iv_len */, sizeof(EVP_AES_GCM_CTX), EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER, NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, aes_gcm_ctrl}; #if !defined(OPENSSL_NO_ASM) && \ (defined(OPENSSL_X86_64) || defined(OPENSSL_X86)) /* AES-NI section. */ static char aesni_capable(void) { return (OPENSSL_ia32cap_P[1] & (1 << (57 - 32))) != 0; } static int aesni_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, const uint8_t *iv, int enc) { int ret, mode; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK; if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { ret = aesni_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data); dat->block = (block128_f)aesni_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)aesni_cbc_encrypt : NULL; } else { ret = aesni_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data); dat->block = (block128_f)aesni_encrypt; if (mode == EVP_CIPH_CBC_MODE) { dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt; } else if (mode == EVP_CIPH_CTR_MODE) { dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; } else { dat->stream.cbc = NULL; } } if (ret < 0) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv, ctx->encrypt); return 1; } static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { size_t bl = ctx->cipher->block_size; if (len < bl) { return 1; } aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt); return 1; } static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, const uint8_t *iv, int enc) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; if (!iv && !key) { return 1; } if (key) { aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)aesni_encrypt); gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; /* If we have an iv can set it directly, otherwise use * saved IV. */ if (iv == NULL && gctx->iv_set) { iv = gctx->iv; } if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) { CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); } else { memcpy(gctx->iv, iv, gctx->ivlen); } gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } static const EVP_CIPHER aesni_128_cbc = { NID_aes_128_cbc, 16 /* block_size */, 16 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, NULL /* app_data */, aesni_init_key, aesni_cbc_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_128_ctr = { NID_aes_128_ctr, 1 /* block_size */, 16 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, NULL /* app_data */, aesni_init_key, aes_ctr_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_128_ecb = { NID_aes_128_ecb, 16 /* block_size */, 16 /* key_size */, 0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, NULL /* app_data */, aesni_init_key, aesni_ecb_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_128_ofb = { NID_aes_128_ofb128, 1 /* block_size */, 16 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_OFB_MODE, NULL /* app_data */, aesni_init_key, aes_ofb_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_128_gcm = { NID_aes_128_gcm, 1 /* block_size */, 16 /* key_size */, 12 /* iv_len */, sizeof(EVP_AES_GCM_CTX), EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER, NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, aes_gcm_ctrl}; static const EVP_CIPHER aesni_192_cbc = { NID_aes_192_cbc, 16 /* block_size */, 24 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, NULL /* app_data */, aesni_init_key, aesni_cbc_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_192_ctr = { NID_aes_192_ctr, 1 /* block_size */, 24 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, NULL /* app_data */, aesni_init_key, aes_ctr_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_192_ecb = { NID_aes_192_ecb, 16 /* block_size */, 24 /* key_size */, 0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, NULL /* app_data */, aesni_init_key, aesni_ecb_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_192_gcm = { NID_aes_192_gcm, 1 /* block_size */, 24 /* key_size */, 12 /* iv_len */, sizeof(EVP_AES_GCM_CTX), EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER, NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, aes_gcm_ctrl}; static const EVP_CIPHER aesni_256_cbc = { NID_aes_256_cbc, 16 /* block_size */, 32 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, NULL /* app_data */, aesni_init_key, aesni_cbc_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_256_ctr = { NID_aes_256_ctr, 1 /* block_size */, 32 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, NULL /* app_data */, aesni_init_key, aes_ctr_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_256_ecb = { NID_aes_256_ecb, 16 /* block_size */, 32 /* key_size */, 0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, NULL /* app_data */, aesni_init_key, aesni_ecb_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_256_ofb = { NID_aes_256_ofb128, 1 /* block_size */, 32 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_OFB_MODE, NULL /* app_data */, aesni_init_key, aes_ofb_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_256_gcm = { NID_aes_256_gcm, 1 /* block_size */, 32 /* key_size */, 12 /* iv_len */, sizeof(EVP_AES_GCM_CTX), EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_FLAG_AEAD_CIPHER, NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, aes_gcm_ctrl}; #define EVP_CIPHER_FUNCTION(keybits, mode) \ const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \ if (aesni_capable()) { \ return &aesni_##keybits##_##mode; \ } else { \ return &aes_##keybits##_##mode; \ } \ } #else /* ^^^ OPENSSL_X86_64 || OPENSSL_X86 */ static char aesni_capable(void) { return 0; } #define EVP_CIPHER_FUNCTION(keybits, mode) \ const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \ return &aes_##keybits##_##mode; \ } #endif EVP_CIPHER_FUNCTION(128, cbc) EVP_CIPHER_FUNCTION(128, ctr) EVP_CIPHER_FUNCTION(128, ecb) EVP_CIPHER_FUNCTION(128, ofb) EVP_CIPHER_FUNCTION(128, gcm) EVP_CIPHER_FUNCTION(192, cbc) EVP_CIPHER_FUNCTION(192, ctr) EVP_CIPHER_FUNCTION(192, ecb) EVP_CIPHER_FUNCTION(192, gcm) EVP_CIPHER_FUNCTION(256, cbc) EVP_CIPHER_FUNCTION(256, ctr) EVP_CIPHER_FUNCTION(256, ecb) EVP_CIPHER_FUNCTION(256, ofb) EVP_CIPHER_FUNCTION(256, gcm) #define EVP_AEAD_AES_GCM_TAG_LEN 16 struct aead_aes_gcm_ctx { union { double align; AES_KEY ks; } ks; GCM128_CONTEXT gcm; ctr128_f ctr; uint8_t tag_len; }; static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len) { struct aead_aes_gcm_ctx *gcm_ctx; const size_t key_bits = key_len * 8; if (key_bits != 128 && key_bits != 256) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); return 0; /* EVP_AEAD_CTX_init should catch this. */ } if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { tag_len = EVP_AEAD_AES_GCM_TAG_LEN; } if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); return 0; } gcm_ctx = OPENSSL_malloc(sizeof(struct aead_aes_gcm_ctx)); if (gcm_ctx == NULL) { return 0; } gcm_ctx->ctr = aes_ctr_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm, NULL, key, key_len); gcm_ctx->tag_len = tag_len; ctx->aead_state = gcm_ctx; return 1; } static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) { struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; OPENSSL_cleanse(gcm_ctx, sizeof(struct aead_aes_gcm_ctx)); OPENSSL_free(gcm_ctx); } static int aead_aes_gcm_seal(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len) { const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; GCM128_CONTEXT gcm; if (in_len + gcm_ctx->tag_len < in_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } if (max_out_len < in_len + gcm_ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); return 0; } const AES_KEY *key = &gcm_ctx->ks.ks; memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm)); CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len); if (ad_len > 0 && !CRYPTO_gcm128_aad(&gcm, ad, ad_len)) { return 0; } if (gcm_ctx->ctr) { if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, in, out, in_len, gcm_ctx->ctr)) { return 0; } } else { if (!CRYPTO_gcm128_encrypt(&gcm, key, in, out, in_len)) { return 0; } } CRYPTO_gcm128_tag(&gcm, out + in_len, gcm_ctx->tag_len); *out_len = in_len + gcm_ctx->tag_len; return 1; } static int aead_aes_gcm_open(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len) { const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN]; size_t plaintext_len; GCM128_CONTEXT gcm; if (in_len < gcm_ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } plaintext_len = in_len - gcm_ctx->tag_len; if (max_out_len < plaintext_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); return 0; } const AES_KEY *key = &gcm_ctx->ks.ks; memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm)); CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len); if (!CRYPTO_gcm128_aad(&gcm, ad, ad_len)) { return 0; } if (gcm_ctx->ctr) { if (!CRYPTO_gcm128_decrypt_ctr32(&gcm, key, in, out, in_len - gcm_ctx->tag_len, gcm_ctx->ctr)) { return 0; } } else { if (!CRYPTO_gcm128_decrypt(&gcm, key, in, out, in_len - gcm_ctx->tag_len)) { return 0; } } CRYPTO_gcm128_tag(&gcm, tag, gcm_ctx->tag_len); if (CRYPTO_memcmp(tag, in + plaintext_len, gcm_ctx->tag_len) != 0) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } *out_len = plaintext_len; return 1; } static const EVP_AEAD aead_aes_128_gcm = { 16, /* key len */ 12, /* nonce len */ EVP_AEAD_AES_GCM_TAG_LEN, /* overhead */ EVP_AEAD_AES_GCM_TAG_LEN, /* max tag length */ aead_aes_gcm_init, NULL, /* init_with_direction */ aead_aes_gcm_cleanup, aead_aes_gcm_seal, aead_aes_gcm_open, NULL, /* get_iv */ }; static const EVP_AEAD aead_aes_256_gcm = { 32, /* key len */ 12, /* nonce len */ EVP_AEAD_AES_GCM_TAG_LEN, /* overhead */ EVP_AEAD_AES_GCM_TAG_LEN, /* max tag length */ aead_aes_gcm_init, NULL, /* init_with_direction */ aead_aes_gcm_cleanup, aead_aes_gcm_seal, aead_aes_gcm_open, NULL, /* get_iv */ }; const EVP_AEAD *EVP_aead_aes_128_gcm(void) { return &aead_aes_128_gcm; } const EVP_AEAD *EVP_aead_aes_256_gcm(void) { return &aead_aes_256_gcm; } #define EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN SHA256_DIGEST_LENGTH #define EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN 12 struct aead_aes_ctr_hmac_sha256_ctx { union { double align; AES_KEY ks; } ks; ctr128_f ctr; block128_f block; SHA256_CTX inner_init_state; SHA256_CTX outer_init_state; uint8_t tag_len; }; static void hmac_init(SHA256_CTX *out_inner, SHA256_CTX *out_outer, const uint8_t hmac_key[32]) { static const size_t hmac_key_len = 32; uint8_t block[SHA256_CBLOCK]; memcpy(block, hmac_key, hmac_key_len); memset(block + hmac_key_len, 0x36, sizeof(block) - hmac_key_len); unsigned i; for (i = 0; i < hmac_key_len; i++) { block[i] ^= 0x36; } SHA256_Init(out_inner); SHA256_Update(out_inner, block, sizeof(block)); memset(block + hmac_key_len, 0x5c, sizeof(block) - hmac_key_len); for (i = 0; i < hmac_key_len; i++) { block[i] ^= (0x36 ^ 0x5c); } SHA256_Init(out_outer); SHA256_Update(out_outer, block, sizeof(block)); } static int aead_aes_ctr_hmac_sha256_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len) { struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx; static const size_t hmac_key_len = 32; if (key_len < hmac_key_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); return 0; /* EVP_AEAD_CTX_init should catch this. */ } const size_t aes_key_len = key_len - hmac_key_len; if (aes_key_len != 16 && aes_key_len != 32) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); return 0; /* EVP_AEAD_CTX_init should catch this. */ } if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { tag_len = EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN; } if (tag_len > EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); return 0; } aes_ctx = OPENSSL_malloc(sizeof(struct aead_aes_ctr_hmac_sha256_ctx)); if (aes_ctx == NULL) { OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE); return 0; } aes_ctx->ctr = aes_ctr_set_key(&aes_ctx->ks.ks, NULL, &aes_ctx->block, key, aes_key_len); aes_ctx->tag_len = tag_len; hmac_init(&aes_ctx->inner_init_state, &aes_ctx->outer_init_state, key + aes_key_len); ctx->aead_state = aes_ctx; return 1; } static void aead_aes_ctr_hmac_sha256_cleanup(EVP_AEAD_CTX *ctx) { struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = ctx->aead_state; OPENSSL_cleanse(aes_ctx, sizeof(struct aead_aes_ctr_hmac_sha256_ctx)); OPENSSL_free(aes_ctx); } static void hmac_update_uint64(SHA256_CTX *sha256, uint64_t value) { unsigned i; uint8_t bytes[8]; for (i = 0; i < sizeof(bytes); i++) { bytes[i] = value & 0xff; value >>= 8; } SHA256_Update(sha256, bytes, sizeof(bytes)); } static void hmac_calculate(uint8_t out[SHA256_DIGEST_LENGTH], const SHA256_CTX *inner_init_state, const SHA256_CTX *outer_init_state, const uint8_t *ad, size_t ad_len, const uint8_t *nonce, const uint8_t *ciphertext, size_t ciphertext_len) { SHA256_CTX sha256; memcpy(&sha256, inner_init_state, sizeof(sha256)); hmac_update_uint64(&sha256, ad_len); hmac_update_uint64(&sha256, ciphertext_len); SHA256_Update(&sha256, nonce, EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN); SHA256_Update(&sha256, ad, ad_len); /* Pad with zeros to the end of the SHA-256 block. */ const unsigned num_padding = (SHA256_CBLOCK - ((sizeof(uint64_t)*2 + EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN + ad_len) % SHA256_CBLOCK)) % SHA256_CBLOCK; uint8_t padding[SHA256_CBLOCK]; memset(padding, 0, num_padding); SHA256_Update(&sha256, padding, num_padding); SHA256_Update(&sha256, ciphertext, ciphertext_len); uint8_t inner_digest[SHA256_DIGEST_LENGTH]; SHA256_Final(inner_digest, &sha256); memcpy(&sha256, outer_init_state, sizeof(sha256)); SHA256_Update(&sha256, inner_digest, sizeof(inner_digest)); SHA256_Final(out, &sha256); } static void aead_aes_ctr_hmac_sha256_crypt( const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx, uint8_t *out, const uint8_t *in, size_t len, const uint8_t *nonce) { /* Since the AEAD operation is one-shot, keeping a buffer of unused keystream * bytes is pointless. However, |CRYPTO_ctr128_encrypt| requires it. */ uint8_t partial_block_buffer[AES_BLOCK_SIZE]; unsigned partial_block_offset = 0; memset(partial_block_buffer, 0, sizeof(partial_block_buffer)); uint8_t counter[AES_BLOCK_SIZE]; memcpy(counter, nonce, EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN); memset(counter + EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN, 0, 4); if (aes_ctx->ctr) { CRYPTO_ctr128_encrypt_ctr32(in, out, len, &aes_ctx->ks.ks, counter, partial_block_buffer, &partial_block_offset, aes_ctx->ctr); } else { CRYPTO_ctr128_encrypt(in, out, len, &aes_ctx->ks.ks, counter, partial_block_buffer, &partial_block_offset, aes_ctx->block); } } static int aead_aes_ctr_hmac_sha256_seal(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len) { const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = ctx->aead_state; const uint64_t in_len_64 = in_len; if (in_len + aes_ctx->tag_len < in_len || /* This input is so large it would overflow the 32-bit block counter. */ in_len_64 >= (UINT64_C(1) << 32) * AES_BLOCK_SIZE) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } if (max_out_len < in_len + aes_ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); return 0; } if (nonce_len != EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); return 0; } aead_aes_ctr_hmac_sha256_crypt(aes_ctx, out, in, in_len, nonce); uint8_t hmac_result[SHA256_DIGEST_LENGTH]; hmac_calculate(hmac_result, &aes_ctx->inner_init_state, &aes_ctx->outer_init_state, ad, ad_len, nonce, out, in_len); memcpy(out + in_len, hmac_result, aes_ctx->tag_len); *out_len = in_len + aes_ctx->tag_len; return 1; } static int aead_aes_ctr_hmac_sha256_open(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len) { const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = ctx->aead_state; size_t plaintext_len; if (in_len < aes_ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } plaintext_len = in_len - aes_ctx->tag_len; if (max_out_len < plaintext_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); return 0; } if (nonce_len != EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); return 0; } uint8_t hmac_result[SHA256_DIGEST_LENGTH]; hmac_calculate(hmac_result, &aes_ctx->inner_init_state, &aes_ctx->outer_init_state, ad, ad_len, nonce, in, plaintext_len); if (CRYPTO_memcmp(hmac_result, in + plaintext_len, aes_ctx->tag_len) != 0) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } aead_aes_ctr_hmac_sha256_crypt(aes_ctx, out, in, plaintext_len, nonce); *out_len = plaintext_len; return 1; } static const EVP_AEAD aead_aes_128_ctr_hmac_sha256 = { 16 /* AES key */ + 32 /* HMAC key */, 12, /* nonce length */ EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, /* overhead */ EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, /* max tag length */ aead_aes_ctr_hmac_sha256_init, NULL /* init_with_direction */, aead_aes_ctr_hmac_sha256_cleanup, aead_aes_ctr_hmac_sha256_seal, aead_aes_ctr_hmac_sha256_open, NULL /* get_iv */, }; static const EVP_AEAD aead_aes_256_ctr_hmac_sha256 = { 32 /* AES key */ + 32 /* HMAC key */, 12, /* nonce length */ EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, /* overhead */ EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, /* max tag length */ aead_aes_ctr_hmac_sha256_init, NULL /* init_with_direction */, aead_aes_ctr_hmac_sha256_cleanup, aead_aes_ctr_hmac_sha256_seal, aead_aes_ctr_hmac_sha256_open, NULL /* get_iv */, }; const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void) { return &aead_aes_128_ctr_hmac_sha256; } const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void) { return &aead_aes_256_ctr_hmac_sha256; } #if !defined(OPENSSL_SMALL) #define EVP_AEAD_AES_GCM_SIV_TAG_LEN 16 struct aead_aes_gcm_siv_ctx { union { double align; AES_KEY ks; } ks; block128_f kgk_block; unsigned is_256:1; }; static int aead_aes_gcm_siv_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len) { const size_t key_bits = key_len * 8; if (key_bits != 128 && key_bits != 256) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); return 0; /* EVP_AEAD_CTX_init should catch this. */ } if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN; } if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); return 0; } struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = OPENSSL_malloc(sizeof(struct aead_aes_gcm_siv_ctx)); if (gcm_siv_ctx == NULL) { return 0; } memset(gcm_siv_ctx, 0, sizeof(struct aead_aes_gcm_siv_ctx)); if (aesni_capable()) { aesni_set_encrypt_key(key, key_len * 8, &gcm_siv_ctx->ks.ks); gcm_siv_ctx->kgk_block = (block128_f)aesni_encrypt; } else if (hwaes_capable()) { aes_hw_set_encrypt_key(key, key_len * 8, &gcm_siv_ctx->ks.ks); gcm_siv_ctx->kgk_block = (block128_f)aes_hw_encrypt; } else if (vpaes_capable()) { vpaes_set_encrypt_key(key, key_len * 8, &gcm_siv_ctx->ks.ks); gcm_siv_ctx->kgk_block = (block128_f)vpaes_encrypt; } else { AES_set_encrypt_key(key, key_len * 8, &gcm_siv_ctx->ks.ks); gcm_siv_ctx->kgk_block = (block128_f)AES_encrypt; } gcm_siv_ctx->is_256 = (key_len == 32); ctx->aead_state = gcm_siv_ctx; return 1; } static void aead_aes_gcm_siv_cleanup(EVP_AEAD_CTX *ctx) { struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = ctx->aead_state; OPENSSL_cleanse(gcm_siv_ctx, sizeof(struct aead_aes_gcm_siv_ctx)); OPENSSL_free(gcm_siv_ctx); } /* gcm_siv_crypt encrypts (or decrypts—it's the same thing) |in_len| bytes from * |in| to |out|, using the block function |enc_block| with |key| in counter * mode, starting at |initial_counter|. This differs from the traditional * counter mode code in that the counter is handled little-endian, only the * first four bytes are used and the GCM-SIV tweak to the final byte is * applied. The |in| and |out| pointers may be equal but otherwise must not * alias. */ static void gcm_siv_crypt(uint8_t *out, const uint8_t *in, size_t in_len, const uint8_t initial_counter[AES_BLOCK_SIZE], block128_f enc_block, const AES_KEY *key) { union { uint32_t w[4]; uint8_t c[16]; } counter; memcpy(counter.c, initial_counter, AES_BLOCK_SIZE); counter.c[15] |= 0x80; for (size_t done = 0; done < in_len;) { uint8_t keystream[AES_BLOCK_SIZE]; enc_block(counter.c, keystream, key); counter.w[0]++; size_t todo = AES_BLOCK_SIZE; if (in_len - done < todo) { todo = in_len - done; } for (size_t i = 0; i < todo; i++) { out[done + i] = keystream[i] ^ in[done + i]; } done += todo; } } /* gcm_siv_polyval evaluates POLYVAL at |auth_key| on the given plaintext and * AD. The result is written to |out_tag|. */ static void gcm_siv_polyval(uint8_t out_tag[16], const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len, const uint8_t auth_key[16]) { struct polyval_ctx polyval_ctx; CRYPTO_POLYVAL_init(&polyval_ctx, auth_key); CRYPTO_POLYVAL_update_blocks(&polyval_ctx, ad, ad_len & ~15); uint8_t scratch[16]; if (ad_len & 15) { memset(scratch, 0, sizeof(scratch)); memcpy(scratch, &ad[ad_len & ~15], ad_len & 15); CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch)); } CRYPTO_POLYVAL_update_blocks(&polyval_ctx, in, in_len & ~15); if (in_len & 15) { memset(scratch, 0, sizeof(scratch)); memcpy(scratch, &in[in_len & ~15], in_len & 15); CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch)); } union { uint8_t c[16]; struct { uint64_t ad; uint64_t in; } bitlens; } length_block; length_block.bitlens.ad = ad_len * 8; length_block.bitlens.in = in_len * 8; CRYPTO_POLYVAL_update_blocks(&polyval_ctx, length_block.c, sizeof(length_block)); CRYPTO_POLYVAL_finish(&polyval_ctx, out_tag); out_tag[15] &= 0x7f; } /* gcm_siv_record_keys contains the keys used for a specific GCM-SIV record. */ struct gcm_siv_record_keys { uint8_t auth_key[16]; union { double align; AES_KEY ks; } enc_key; block128_f enc_block; }; /* gcm_siv_keys calculates the keys for a specific GCM-SIV record with the * given nonce and writes them to |*out_keys|. */ static void gcm_siv_keys( const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx, struct gcm_siv_record_keys *out_keys, const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_TAG_LEN]) { const AES_KEY *const key = &gcm_siv_ctx->ks.ks; gcm_siv_ctx->kgk_block(nonce, out_keys->auth_key, key); if (gcm_siv_ctx->is_256) { uint8_t record_enc_key[32]; gcm_siv_ctx->kgk_block(out_keys->auth_key, record_enc_key + 16, key); gcm_siv_ctx->kgk_block(record_enc_key + 16, record_enc_key, key); aes_ctr_set_key(&out_keys->enc_key.ks, NULL, &out_keys->enc_block, record_enc_key, sizeof(record_enc_key)); } else { uint8_t record_enc_key[16]; gcm_siv_ctx->kgk_block(out_keys->auth_key, record_enc_key, key); aes_ctr_set_key(&out_keys->enc_key.ks, NULL, &out_keys->enc_block, record_enc_key, sizeof(record_enc_key)); } } static int aead_aes_gcm_siv_seal(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len) { const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = ctx->aead_state; const uint64_t in_len_64 = in_len; const uint64_t ad_len_64 = ad_len; if (in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN < in_len || in_len_64 > (UINT64_C(1) << 36) || ad_len_64 >= (UINT64_C(1) << 61)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } if (max_out_len < in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); return 0; } if (nonce_len != AES_BLOCK_SIZE) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); return 0; } struct gcm_siv_record_keys keys; gcm_siv_keys(gcm_siv_ctx, &keys, nonce); uint8_t tag[16]; gcm_siv_polyval(tag, in, in_len, ad, ad_len, keys.auth_key); keys.enc_block(tag, tag, &keys.enc_key.ks); gcm_siv_crypt(out, in, in_len, tag, keys.enc_block, &keys.enc_key.ks); memcpy(&out[in_len], tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN); *out_len = in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN; return 1; } static int aead_aes_gcm_siv_open(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len) { const uint64_t ad_len_64 = ad_len; if (ad_len_64 >= (UINT64_C(1) << 61)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } const uint64_t in_len_64 = in_len; if (in_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN || in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = ctx->aead_state; const size_t plaintext_len = in_len - EVP_AEAD_AES_GCM_SIV_TAG_LEN; if (max_out_len < plaintext_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); return 0; } struct gcm_siv_record_keys keys; gcm_siv_keys(gcm_siv_ctx, &keys, nonce); gcm_siv_crypt(out, in, plaintext_len, &in[plaintext_len], keys.enc_block, &keys.enc_key.ks); uint8_t expected_tag[EVP_AEAD_AES_GCM_SIV_TAG_LEN]; gcm_siv_polyval(expected_tag, out, plaintext_len, ad, ad_len, keys.auth_key); keys.enc_block(expected_tag, expected_tag, &keys.enc_key.ks); if (CRYPTO_memcmp(expected_tag, &in[plaintext_len], sizeof(expected_tag)) != 0) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } *out_len = plaintext_len; return 1; } static const EVP_AEAD aead_aes_128_gcm_siv = { 16, /* key length */ AES_BLOCK_SIZE, /* nonce length */ EVP_AEAD_AES_GCM_SIV_TAG_LEN, /* overhead */ EVP_AEAD_AES_GCM_SIV_TAG_LEN, /* max tag length */ aead_aes_gcm_siv_init, NULL /* init_with_direction */, aead_aes_gcm_siv_cleanup, aead_aes_gcm_siv_seal, aead_aes_gcm_siv_open, NULL /* get_iv */, }; static const EVP_AEAD aead_aes_256_gcm_siv = { 32, /* key length */ AES_BLOCK_SIZE, /* nonce length */ EVP_AEAD_AES_GCM_SIV_TAG_LEN, /* overhead */ EVP_AEAD_AES_GCM_SIV_TAG_LEN, /* max tag length */ aead_aes_gcm_siv_init, NULL /* init_with_direction */, aead_aes_gcm_siv_cleanup, aead_aes_gcm_siv_seal, aead_aes_gcm_siv_open, NULL /* get_iv */, }; const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) { return &aead_aes_128_gcm_siv; } const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) { return &aead_aes_256_gcm_siv; } #endif /* !OPENSSL_SMALL */ int EVP_has_aes_hardware(void) { #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) return aesni_capable() && crypto_gcm_clmul_enabled(); #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) return hwaes_capable() && CRYPTO_is_ARMv8_PMULL_capable(); #else return 0; #endif }