// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runner import ( "crypto/ecdsa" "crypto/elliptic" "crypto/rand" "crypto/rsa" "crypto/subtle" "crypto/x509" "errors" "fmt" "io" "math/big" "./curve25519" "./newhope" ) type keyType int const ( keyTypeRSA keyType = iota + 1 keyTypeECDSA ) var errClientKeyExchange = errors.New("tls: invalid ClientKeyExchange message") var errServerKeyExchange = errors.New("tls: invalid ServerKeyExchange message") // rsaKeyAgreement implements the standard TLS key agreement where the client // encrypts the pre-master secret to the server's public key. type rsaKeyAgreement struct { version uint16 clientVersion uint16 exportKey *rsa.PrivateKey } func (ka *rsaKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) { // Save the client version for comparison later. ka.clientVersion = versionToWire(clientHello.vers, clientHello.isDTLS) if !config.Bugs.RSAEphemeralKey { return nil, nil } // Generate an ephemeral RSA key to use instead of the real // one, as in RSA_EXPORT. key, err := rsa.GenerateKey(config.rand(), 512) if err != nil { return nil, err } ka.exportKey = key modulus := key.N.Bytes() exponent := big.NewInt(int64(key.E)).Bytes() serverRSAParams := make([]byte, 0, 2+len(modulus)+2+len(exponent)) serverRSAParams = append(serverRSAParams, byte(len(modulus)>>8), byte(len(modulus))) serverRSAParams = append(serverRSAParams, modulus...) serverRSAParams = append(serverRSAParams, byte(len(exponent)>>8), byte(len(exponent))) serverRSAParams = append(serverRSAParams, exponent...) var sigAlg signatureAlgorithm if ka.version >= VersionTLS12 { sigAlg, err = selectSignatureAlgorithm(ka.version, cert.PrivateKey, clientHello.signatureAlgorithms, config.signatureAlgorithmsForServer()) if err != nil { return nil, err } } sig, err := signMessage(ka.version, cert.PrivateKey, config, sigAlg, serverRSAParams) if err != nil { return nil, errors.New("failed to sign RSA parameters: " + err.Error()) } skx := new(serverKeyExchangeMsg) sigAlgsLen := 0 if ka.version >= VersionTLS12 { sigAlgsLen = 2 } skx.key = make([]byte, len(serverRSAParams)+sigAlgsLen+2+len(sig)) copy(skx.key, serverRSAParams) k := skx.key[len(serverRSAParams):] if ka.version >= VersionTLS12 { k[0] = byte(sigAlg >> 8) k[1] = byte(sigAlg) k = k[2:] } k[0] = byte(len(sig) >> 8) k[1] = byte(len(sig)) copy(k[2:], sig) return skx, nil } func (ka *rsaKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { preMasterSecret := make([]byte, 48) _, err := io.ReadFull(config.rand(), preMasterSecret[2:]) if err != nil { return nil, err } if len(ckx.ciphertext) < 2 { return nil, errClientKeyExchange } ciphertext := ckx.ciphertext if version != VersionSSL30 { ciphertextLen := int(ckx.ciphertext[0])<<8 | int(ckx.ciphertext[1]) if ciphertextLen != len(ckx.ciphertext)-2 { return nil, errClientKeyExchange } ciphertext = ckx.ciphertext[2:] } key := cert.PrivateKey.(*rsa.PrivateKey) if ka.exportKey != nil { key = ka.exportKey } err = rsa.DecryptPKCS1v15SessionKey(config.rand(), key, ciphertext, preMasterSecret) if err != nil { return nil, err } // This check should be done in constant-time, but this is a testing // implementation. See the discussion at the end of section 7.4.7.1 of // RFC 4346. vers := uint16(preMasterSecret[0])<<8 | uint16(preMasterSecret[1]) if ka.clientVersion != vers { return nil, errors.New("tls: invalid version in RSA premaster") } return preMasterSecret, nil } func (ka *rsaKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error { return errors.New("tls: unexpected ServerKeyExchange") } func (ka *rsaKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { bad := config.Bugs.BadRSAClientKeyExchange preMasterSecret := make([]byte, 48) vers := clientHello.vers if bad == RSABadValueWrongVersion { vers ^= 1 } vers = versionToWire(vers, clientHello.isDTLS) preMasterSecret[0] = byte(vers >> 8) preMasterSecret[1] = byte(vers) _, err := io.ReadFull(config.rand(), preMasterSecret[2:]) if err != nil { return nil, nil, err } sentPreMasterSecret := preMasterSecret if bad == RSABadValueTooLong { sentPreMasterSecret = make([]byte, len(sentPreMasterSecret)+1) copy(sentPreMasterSecret, preMasterSecret) } else if bad == RSABadValueTooShort { sentPreMasterSecret = sentPreMasterSecret[:len(sentPreMasterSecret)-1] } encrypted, err := rsa.EncryptPKCS1v15(config.rand(), cert.PublicKey.(*rsa.PublicKey), sentPreMasterSecret) if err != nil { return nil, nil, err } if bad == RSABadValueCorrupt { encrypted[len(encrypted)-1] ^= 1 // Clear the high byte to ensure |encrypted| is still below the RSA modulus. encrypted[0] = 0 } ckx := new(clientKeyExchangeMsg) if clientHello.vers != VersionSSL30 { ckx.ciphertext = make([]byte, len(encrypted)+2) ckx.ciphertext[0] = byte(len(encrypted) >> 8) ckx.ciphertext[1] = byte(len(encrypted)) copy(ckx.ciphertext[2:], encrypted) } else { ckx.ciphertext = encrypted } return preMasterSecret, ckx, nil } func (ka *rsaKeyAgreement) peerSignatureAlgorithm() signatureAlgorithm { return 0 } // A ecdhCurve is an instance of ECDH-style key agreement for TLS. type ecdhCurve interface { // offer generates a keypair using rand. It returns the encoded |publicKey|. offer(rand io.Reader) (publicKey []byte, err error) // accept responds to the |peerKey| generated by |offer| with the acceptor's // |publicKey|, and returns agreed-upon |preMasterSecret| to the acceptor. accept(rand io.Reader, peerKey []byte) (publicKey []byte, preMasterSecret []byte, err error) // finish returns the computed |preMasterSecret|, given the |peerKey| // generated by |accept|. finish(peerKey []byte) (preMasterSecret []byte, err error) } // ellipticECDHCurve implements ecdhCurve with an elliptic.Curve. type ellipticECDHCurve struct { curve elliptic.Curve privateKey []byte } func (e *ellipticECDHCurve) offer(rand io.Reader) (publicKey []byte, err error) { var x, y *big.Int e.privateKey, x, y, err = elliptic.GenerateKey(e.curve, rand) if err != nil { return nil, err } return elliptic.Marshal(e.curve, x, y), nil } func (e *ellipticECDHCurve) accept(rand io.Reader, peerKey []byte) (publicKey []byte, preMasterSecret []byte, err error) { publicKey, err = e.offer(rand) if err != nil { return nil, nil, err } preMasterSecret, err = e.finish(peerKey) if err != nil { return nil, nil, err } return } func (e *ellipticECDHCurve) finish(peerKey []byte) (preMasterSecret []byte, err error) { x, y := elliptic.Unmarshal(e.curve, peerKey) if x == nil { return nil, errors.New("tls: invalid peer key") } x, _ = e.curve.ScalarMult(x, y, e.privateKey) preMasterSecret = make([]byte, (e.curve.Params().BitSize+7)>>3) xBytes := x.Bytes() copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes) return preMasterSecret, nil } // x25519ECDHCurve implements ecdhCurve with X25519. type x25519ECDHCurve struct { privateKey [32]byte } func (e *x25519ECDHCurve) offer(rand io.Reader) (publicKey []byte, err error) { _, err = io.ReadFull(rand, e.privateKey[:]) if err != nil { return } var out [32]byte curve25519.ScalarBaseMult(&out, &e.privateKey) return out[:], nil } func (e *x25519ECDHCurve) accept(rand io.Reader, peerKey []byte) (publicKey []byte, preMasterSecret []byte, err error) { publicKey, err = e.offer(rand) if err != nil { return nil, nil, err } preMasterSecret, err = e.finish(peerKey) if err != nil { return nil, nil, err } return } func (e *x25519ECDHCurve) finish(peerKey []byte) (preMasterSecret []byte, err error) { if len(peerKey) != 32 { return nil, errors.New("tls: invalid peer key") } var out, peerKeyCopy [32]byte copy(peerKeyCopy[:], peerKey) curve25519.ScalarMult(&out, &e.privateKey, &peerKeyCopy) // Per RFC 7748, reject the all-zero value in constant time. var zeros [32]byte if subtle.ConstantTimeCompare(zeros[:], out[:]) == 1 { return nil, errors.New("tls: X25519 value with wrong order") } return out[:], nil } // cecpq1Curve is combined elliptic curve (X25519) and post-quantum (new hope) key // agreement. type cecpq1Curve struct { x25519 *x25519ECDHCurve newhope *newhope.Poly } func (e *cecpq1Curve) offer(rand io.Reader) (publicKey []byte, err error) { var x25519OfferMsg, newhopeOfferMsg []byte e.x25519 = new(x25519ECDHCurve) if x25519OfferMsg, err = e.x25519.offer(rand); err != nil { return nil, err } newhopeOfferMsg, e.newhope = newhope.Offer(rand) return append(x25519OfferMsg, newhopeOfferMsg[:]...), nil } func (e *cecpq1Curve) accept(rand io.Reader, peerKey []byte) (publicKey []byte, preMasterSecret []byte, err error) { if len(peerKey) != 32+newhope.OfferMsgLen { return nil, nil, errors.New("cecpq1: invalid offer message") } var x25519AcceptMsg, newhopeAcceptMsg []byte var x25519Secret []byte var newhopeSecret newhope.Key x25519 := new(x25519ECDHCurve) if x25519AcceptMsg, x25519Secret, err = x25519.accept(rand, peerKey[:32]); err != nil { return nil, nil, err } if newhopeSecret, newhopeAcceptMsg, err = newhope.Accept(rand, peerKey[32:]); err != nil { return nil, nil, err } return append(x25519AcceptMsg, newhopeAcceptMsg[:]...), append(x25519Secret, newhopeSecret[:]...), nil } func (e *cecpq1Curve) finish(peerKey []byte) (preMasterSecret []byte, err error) { if len(peerKey) != 32+newhope.AcceptMsgLen { return nil, errors.New("cecpq1: invalid accept message") } var x25519Secret []byte var newhopeSecret newhope.Key if x25519Secret, err = e.x25519.finish(peerKey[:32]); err != nil { return nil, err } if newhopeSecret, err = e.newhope.Finish(peerKey[32:]); err != nil { return nil, err } return append(x25519Secret, newhopeSecret[:]...), nil } func curveForCurveID(id CurveID) (ecdhCurve, bool) { switch id { case CurveP224: return &ellipticECDHCurve{curve: elliptic.P224()}, true case CurveP256: return &ellipticECDHCurve{curve: elliptic.P256()}, true case CurveP384: return &ellipticECDHCurve{curve: elliptic.P384()}, true case CurveP521: return &ellipticECDHCurve{curve: elliptic.P521()}, true case CurveX25519: return &x25519ECDHCurve{}, true default: return nil, false } } // keyAgreementAuthentication is a helper interface that specifies how // to authenticate the ServerKeyExchange parameters. type keyAgreementAuthentication interface { signParameters(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, params []byte) (*serverKeyExchangeMsg, error) verifyParameters(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, params []byte, sig []byte) error } // nilKeyAgreementAuthentication does not authenticate the key // agreement parameters. type nilKeyAgreementAuthentication struct{} func (ka *nilKeyAgreementAuthentication) signParameters(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, params []byte) (*serverKeyExchangeMsg, error) { skx := new(serverKeyExchangeMsg) skx.key = params return skx, nil } func (ka *nilKeyAgreementAuthentication) verifyParameters(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, params []byte, sig []byte) error { return nil } // signedKeyAgreement signs the ServerKeyExchange parameters with the // server's private key. type signedKeyAgreement struct { keyType keyType version uint16 peerSignatureAlgorithm signatureAlgorithm } func (ka *signedKeyAgreement) signParameters(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, params []byte) (*serverKeyExchangeMsg, error) { // The message to be signed is prepended by the randoms. var msg []byte msg = append(msg, clientHello.random...) msg = append(msg, hello.random...) msg = append(msg, params...) if config.Bugs.InvalidSKXSignature { msg[0] ^= 0x80 } var sigAlg signatureAlgorithm var err error if ka.version >= VersionTLS12 { sigAlg, err = selectSignatureAlgorithm(ka.version, cert.PrivateKey, clientHello.signatureAlgorithms, config.signatureAlgorithmsForServer()) if err != nil { return nil, err } } sig, err := signMessage(ka.version, cert.PrivateKey, config, sigAlg, msg) if err != nil { return nil, err } skx := new(serverKeyExchangeMsg) if config.Bugs.UnauthenticatedECDH { skx.key = params } else { sigAlgsLen := 0 if ka.version >= VersionTLS12 { sigAlgsLen = 2 } skx.key = make([]byte, len(params)+sigAlgsLen+2+len(sig)) copy(skx.key, params) k := skx.key[len(params):] if ka.version >= VersionTLS12 { k[0] = byte(sigAlg >> 8) k[1] = byte(sigAlg) k = k[2:] } k[0] = byte(len(sig) >> 8) k[1] = byte(len(sig)) copy(k[2:], sig) } return skx, nil } func (ka *signedKeyAgreement) verifyParameters(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, params []byte, sig []byte) error { // The peer's key must match the cipher type. switch ka.keyType { case keyTypeECDSA: _, ok := cert.PublicKey.(*ecdsa.PublicKey) if !ok { return errors.New("tls: ECDHE ECDSA requires a ECDSA server public key") } case keyTypeRSA: _, ok := cert.PublicKey.(*rsa.PublicKey) if !ok { return errors.New("tls: ECDHE RSA requires a RSA server public key") } default: return errors.New("tls: unknown key type") } // The message to be signed is prepended by the randoms. var msg []byte msg = append(msg, clientHello.random...) msg = append(msg, serverHello.random...) msg = append(msg, params...) var sigAlg signatureAlgorithm if ka.version >= VersionTLS12 { if len(sig) < 2 { return errServerKeyExchange } sigAlg = signatureAlgorithm(sig[0])<<8 | signatureAlgorithm(sig[1]) sig = sig[2:] if !isSupportedSignatureAlgorithm(sigAlg, config.signatureAlgorithmsForClient()) { return errors.New("tls: unsupported signature algorithm for ServerKeyExchange") } // Stash the signature algorithm to be extracted by the handshake. ka.peerSignatureAlgorithm = sigAlg } if len(sig) < 2 { return errServerKeyExchange } sigLen := int(sig[0])<<8 | int(sig[1]) if sigLen+2 != len(sig) { return errServerKeyExchange } sig = sig[2:] return verifyMessage(ka.version, cert.PublicKey, sigAlg, msg, sig) } // ecdheRSAKeyAgreement implements a TLS key agreement where the server // generates a ephemeral EC public/private key pair and signs it. The // pre-master secret is then calculated using ECDH. The signature may // either be ECDSA or RSA. type ecdheKeyAgreement struct { auth keyAgreementAuthentication curve ecdhCurve peerKey []byte } func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) { var curveid CurveID preferredCurves := config.curvePreferences() NextCandidate: for _, candidate := range preferredCurves { for _, c := range clientHello.supportedCurves { if candidate == c { curveid = c break NextCandidate } } } if curveid == 0 { return nil, errors.New("tls: no supported elliptic curves offered") } var ok bool if ka.curve, ok = curveForCurveID(curveid); !ok { return nil, errors.New("tls: preferredCurves includes unsupported curve") } publicKey, err := ka.curve.offer(config.rand()) if err != nil { return nil, err } // http://tools.ietf.org/html/rfc4492#section-5.4 serverECDHParams := make([]byte, 1+2+1+len(publicKey)) serverECDHParams[0] = 3 // named curve if config.Bugs.SendCurve != 0 { curveid = config.Bugs.SendCurve } serverECDHParams[1] = byte(curveid >> 8) serverECDHParams[2] = byte(curveid) serverECDHParams[3] = byte(len(publicKey)) copy(serverECDHParams[4:], publicKey) if config.Bugs.InvalidECDHPoint { serverECDHParams[4] ^= 0xff } return ka.auth.signParameters(config, cert, clientHello, hello, serverECDHParams) } func (ka *ecdheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { if len(ckx.ciphertext) == 0 || int(ckx.ciphertext[0]) != len(ckx.ciphertext)-1 { return nil, errClientKeyExchange } return ka.curve.finish(ckx.ciphertext[1:]) } func (ka *ecdheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error { if len(skx.key) < 4 { return errServerKeyExchange } if skx.key[0] != 3 { // named curve return errors.New("tls: server selected unsupported curve") } curveid := CurveID(skx.key[1])<<8 | CurveID(skx.key[2]) var ok bool if ka.curve, ok = curveForCurveID(curveid); !ok { return errors.New("tls: server selected unsupported curve") } publicLen := int(skx.key[3]) if publicLen+4 > len(skx.key) { return errServerKeyExchange } // Save the peer key for later. ka.peerKey = skx.key[4 : 4+publicLen] // Check the signature. serverECDHParams := skx.key[:4+publicLen] sig := skx.key[4+publicLen:] return ka.auth.verifyParameters(config, clientHello, serverHello, cert, serverECDHParams, sig) } func (ka *ecdheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { if ka.curve == nil { return nil, nil, errors.New("missing ServerKeyExchange message") } publicKey, preMasterSecret, err := ka.curve.accept(config.rand(), ka.peerKey) if err != nil { return nil, nil, err } ckx := new(clientKeyExchangeMsg) ckx.ciphertext = make([]byte, 1+len(publicKey)) ckx.ciphertext[0] = byte(len(publicKey)) copy(ckx.ciphertext[1:], publicKey) if config.Bugs.InvalidECDHPoint { ckx.ciphertext[1] ^= 0xff } return preMasterSecret, ckx, nil } func (ka *ecdheKeyAgreement) peerSignatureAlgorithm() signatureAlgorithm { if auth, ok := ka.auth.(*signedKeyAgreement); ok { return auth.peerSignatureAlgorithm } return 0 } // cecpq1RSAKeyAgreement is like an ecdheKeyAgreement, but using the cecpq1Curve // pseudo-curve, and without any parameters (e.g. curve name) other than the // keys being exchanged. The signature may either be ECDSA or RSA. type cecpq1KeyAgreement struct { auth keyAgreementAuthentication curve ecdhCurve peerKey []byte } func (ka *cecpq1KeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) { ka.curve = &cecpq1Curve{} publicKey, err := ka.curve.offer(config.rand()) if err != nil { return nil, err } if config.Bugs.CECPQ1BadX25519Part { publicKey[0] ^= 1 } if config.Bugs.CECPQ1BadNewhopePart { publicKey[32] ^= 1 publicKey[33] ^= 1 publicKey[34] ^= 1 publicKey[35] ^= 1 } var params []byte params = append(params, byte(len(publicKey)>>8)) params = append(params, byte(len(publicKey)&0xff)) params = append(params, publicKey[:]...) return ka.auth.signParameters(config, cert, clientHello, hello, params) } func (ka *cecpq1KeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { if len(ckx.ciphertext) < 2 { return nil, errClientKeyExchange } peerKeyLen := int(ckx.ciphertext[0])<<8 + int(ckx.ciphertext[1]) peerKey := ckx.ciphertext[2:] if peerKeyLen != len(peerKey) { return nil, errClientKeyExchange } return ka.curve.finish(peerKey) } func (ka *cecpq1KeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error { if len(skx.key) < 2 { return errServerKeyExchange } peerKeyLen := int(skx.key[0])<<8 + int(skx.key[1]) // Save the peer key for later. if len(skx.key) < 2+peerKeyLen { return errServerKeyExchange } ka.peerKey = skx.key[2 : 2+peerKeyLen] if peerKeyLen != len(ka.peerKey) { return errServerKeyExchange } // Check the signature. params := skx.key[:2+peerKeyLen] sig := skx.key[2+peerKeyLen:] return ka.auth.verifyParameters(config, clientHello, serverHello, cert, params, sig) } func (ka *cecpq1KeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { curve := &cecpq1Curve{} publicKey, preMasterSecret, err := curve.accept(config.rand(), ka.peerKey) if err != nil { return nil, nil, err } if config.Bugs.CECPQ1BadX25519Part { publicKey[0] ^= 1 } if config.Bugs.CECPQ1BadNewhopePart { publicKey[32] ^= 1 publicKey[33] ^= 1 publicKey[34] ^= 1 publicKey[35] ^= 1 } ckx := new(clientKeyExchangeMsg) ckx.ciphertext = append(ckx.ciphertext, byte(len(publicKey)>>8)) ckx.ciphertext = append(ckx.ciphertext, byte(len(publicKey)&0xff)) ckx.ciphertext = append(ckx.ciphertext, publicKey[:]...) return preMasterSecret, ckx, nil } func (ka *cecpq1KeyAgreement) peerSignatureAlgorithm() signatureAlgorithm { if auth, ok := ka.auth.(*signedKeyAgreement); ok { return auth.peerSignatureAlgorithm } return 0 } // dheRSAKeyAgreement implements a TLS key agreement where the server generates // an ephemeral Diffie-Hellman public/private key pair and signs it. The // pre-master secret is then calculated using Diffie-Hellman. type dheKeyAgreement struct { auth keyAgreementAuthentication p, g *big.Int yTheirs *big.Int xOurs *big.Int } func (ka *dheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) { var q *big.Int if p := config.Bugs.DHGroupPrime; p != nil { ka.p = p ka.g = big.NewInt(2) q = p } else { // 2048-bit MODP Group with 256-bit Prime Order Subgroup (RFC // 5114, Section 2.3) ka.p, _ = new(big.Int).SetString("87A8E61DB4B6663CFFBBD19C651959998CEEF608660DD0F25D2CEED4435E3B00E00DF8F1D61957D4FAF7DF4561B2AA3016C3D91134096FAA3BF4296D830E9A7C209E0C6497517ABD5A8A9D306BCF67ED91F9E6725B4758C022E0B1EF4275BF7B6C5BFC11D45F9088B941F54EB1E59BB8BC39A0BF12307F5C4FDB70C581B23F76B63ACAE1CAA6B7902D52526735488A0EF13C6D9A51BFA4AB3AD8347796524D8EF6A167B5A41825D967E144E5140564251CCACB83E6B486F6B3CA3F7971506026C0B857F689962856DED4010ABD0BE621C3A3960A54E710C375F26375D7014103A4B54330C198AF126116D2276E11715F693877FAD7EF09CADB094AE91E1A1597", 16) ka.g, _ = new(big.Int).SetString("3FB32C9B73134D0B2E77506660EDBD484CA7B18F21EF205407F4793A1A0BA12510DBC15077BE463FFF4FED4AAC0BB555BE3A6C1B0C6B47B1BC3773BF7E8C6F62901228F8C28CBB18A55AE31341000A650196F931C77A57F2DDF463E5E9EC144B777DE62AAAB8A8628AC376D282D6ED3864E67982428EBC831D14348F6F2F9193B5045AF2767164E1DFC967C1FB3F2E55A4BD1BFFE83B9C80D052B985D182EA0ADB2A3B7313D3FE14C8484B1E052588B9B7D2BBD2DF016199ECD06E1557CD0915B3353BBB64E0EC377FD028370DF92B52C7891428CDC67EB6184B523D1DB246C32F63078490F00EF8D647D148D47954515E2327CFEF98C582664B4C0F6CC41659", 16) q, _ = new(big.Int).SetString("8CF83642A709A097B447997640129DA299B1A47D1EB3750BA308B0FE64F5FBD3", 16) } var err error ka.xOurs, err = rand.Int(config.rand(), q) if err != nil { return nil, err } yOurs := new(big.Int).Exp(ka.g, ka.xOurs, ka.p) // http://tools.ietf.org/html/rfc5246#section-7.4.3 pBytes := ka.p.Bytes() gBytes := ka.g.Bytes() yBytes := yOurs.Bytes() serverDHParams := make([]byte, 0, 2+len(pBytes)+2+len(gBytes)+2+len(yBytes)) serverDHParams = append(serverDHParams, byte(len(pBytes)>>8), byte(len(pBytes))) serverDHParams = append(serverDHParams, pBytes...) serverDHParams = append(serverDHParams, byte(len(gBytes)>>8), byte(len(gBytes))) serverDHParams = append(serverDHParams, gBytes...) serverDHParams = append(serverDHParams, byte(len(yBytes)>>8), byte(len(yBytes))) serverDHParams = append(serverDHParams, yBytes...) return ka.auth.signParameters(config, cert, clientHello, hello, serverDHParams) } func (ka *dheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { if len(ckx.ciphertext) < 2 { return nil, errClientKeyExchange } yLen := (int(ckx.ciphertext[0]) << 8) | int(ckx.ciphertext[1]) if yLen != len(ckx.ciphertext)-2 { return nil, errClientKeyExchange } yTheirs := new(big.Int).SetBytes(ckx.ciphertext[2:]) if yTheirs.Sign() <= 0 || yTheirs.Cmp(ka.p) >= 0 { return nil, errClientKeyExchange } return new(big.Int).Exp(yTheirs, ka.xOurs, ka.p).Bytes(), nil } func (ka *dheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error { // Read dh_p k := skx.key if len(k) < 2 { return errServerKeyExchange } pLen := (int(k[0]) << 8) | int(k[1]) k = k[2:] if len(k) < pLen { return errServerKeyExchange } ka.p = new(big.Int).SetBytes(k[:pLen]) k = k[pLen:] // Read dh_g if len(k) < 2 { return errServerKeyExchange } gLen := (int(k[0]) << 8) | int(k[1]) k = k[2:] if len(k) < gLen { return errServerKeyExchange } ka.g = new(big.Int).SetBytes(k[:gLen]) k = k[gLen:] // Read dh_Ys if len(k) < 2 { return errServerKeyExchange } yLen := (int(k[0]) << 8) | int(k[1]) k = k[2:] if len(k) < yLen { return errServerKeyExchange } ka.yTheirs = new(big.Int).SetBytes(k[:yLen]) k = k[yLen:] if ka.yTheirs.Sign() <= 0 || ka.yTheirs.Cmp(ka.p) >= 0 { return errServerKeyExchange } if l := config.Bugs.RequireDHPublicValueLen; l != 0 && l != yLen { return fmt.Errorf("RequireDHPublicValueLen set to %d, but server's public value was %d bytes on the wire and %d bytes if minimal", l, yLen, (ka.yTheirs.BitLen()+7)/8) } sig := k serverDHParams := skx.key[:len(skx.key)-len(sig)] return ka.auth.verifyParameters(config, clientHello, serverHello, cert, serverDHParams, sig) } func (ka *dheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { if ka.p == nil || ka.g == nil || ka.yTheirs == nil { return nil, nil, errors.New("missing ServerKeyExchange message") } xOurs, err := rand.Int(config.rand(), ka.p) if err != nil { return nil, nil, err } preMasterSecret := new(big.Int).Exp(ka.yTheirs, xOurs, ka.p).Bytes() yOurs := new(big.Int).Exp(ka.g, xOurs, ka.p) yBytes := yOurs.Bytes() ckx := new(clientKeyExchangeMsg) ckx.ciphertext = make([]byte, 2+len(yBytes)) ckx.ciphertext[0] = byte(len(yBytes) >> 8) ckx.ciphertext[1] = byte(len(yBytes)) copy(ckx.ciphertext[2:], yBytes) return preMasterSecret, ckx, nil } func (ka *dheKeyAgreement) peerSignatureAlgorithm() signatureAlgorithm { if auth, ok := ka.auth.(*signedKeyAgreement); ok { return auth.peerSignatureAlgorithm } return 0 } // nilKeyAgreement is a fake key agreement used to implement the plain PSK key // exchange. type nilKeyAgreement struct{} func (ka *nilKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) { return nil, nil } func (ka *nilKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { if len(ckx.ciphertext) != 0 { return nil, errClientKeyExchange } // Although in plain PSK, otherSecret is all zeros, the base key // agreement does not access to the length of the pre-shared // key. pskKeyAgreement instead interprets nil to mean to use all zeros // of the appropriate length. return nil, nil } func (ka *nilKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error { if len(skx.key) != 0 { return errServerKeyExchange } return nil } func (ka *nilKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { // Although in plain PSK, otherSecret is all zeros, the base key // agreement does not access to the length of the pre-shared // key. pskKeyAgreement instead interprets nil to mean to use all zeros // of the appropriate length. return nil, &clientKeyExchangeMsg{}, nil } func (ka *nilKeyAgreement) peerSignatureAlgorithm() signatureAlgorithm { return 0 } // makePSKPremaster formats a PSK pre-master secret based on otherSecret from // the base key exchange and psk. func makePSKPremaster(otherSecret, psk []byte) []byte { out := make([]byte, 0, 2+len(otherSecret)+2+len(psk)) out = append(out, byte(len(otherSecret)>>8), byte(len(otherSecret))) out = append(out, otherSecret...) out = append(out, byte(len(psk)>>8), byte(len(psk))) out = append(out, psk...) return out } // pskKeyAgreement implements the PSK key agreement. type pskKeyAgreement struct { base keyAgreement identityHint string } func (ka *pskKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) { // Assemble the identity hint. bytes := make([]byte, 2+len(config.PreSharedKeyIdentity)) bytes[0] = byte(len(config.PreSharedKeyIdentity) >> 8) bytes[1] = byte(len(config.PreSharedKeyIdentity)) copy(bytes[2:], []byte(config.PreSharedKeyIdentity)) // If there is one, append the base key agreement's // ServerKeyExchange. baseSkx, err := ka.base.generateServerKeyExchange(config, cert, clientHello, hello) if err != nil { return nil, err } if baseSkx != nil { bytes = append(bytes, baseSkx.key...) } else if config.PreSharedKeyIdentity == "" { // ServerKeyExchange is optional if the identity hint is empty // and there would otherwise be no ServerKeyExchange. return nil, nil } skx := new(serverKeyExchangeMsg) skx.key = bytes return skx, nil } func (ka *pskKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { // First, process the PSK identity. if len(ckx.ciphertext) < 2 { return nil, errClientKeyExchange } identityLen := (int(ckx.ciphertext[0]) << 8) | int(ckx.ciphertext[1]) if 2+identityLen > len(ckx.ciphertext) { return nil, errClientKeyExchange } identity := string(ckx.ciphertext[2 : 2+identityLen]) if identity != config.PreSharedKeyIdentity { return nil, errors.New("tls: unexpected identity") } if config.PreSharedKey == nil { return nil, errors.New("tls: pre-shared key not configured") } // Process the remainder of the ClientKeyExchange to compute the base // pre-master secret. newCkx := new(clientKeyExchangeMsg) newCkx.ciphertext = ckx.ciphertext[2+identityLen:] otherSecret, err := ka.base.processClientKeyExchange(config, cert, newCkx, version) if err != nil { return nil, err } if otherSecret == nil { // Special-case for the plain PSK key exchanges. otherSecret = make([]byte, len(config.PreSharedKey)) } return makePSKPremaster(otherSecret, config.PreSharedKey), nil } func (ka *pskKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error { if len(skx.key) < 2 { return errServerKeyExchange } identityLen := (int(skx.key[0]) << 8) | int(skx.key[1]) if 2+identityLen > len(skx.key) { return errServerKeyExchange } ka.identityHint = string(skx.key[2 : 2+identityLen]) // Process the remainder of the ServerKeyExchange. newSkx := new(serverKeyExchangeMsg) newSkx.key = skx.key[2+identityLen:] return ka.base.processServerKeyExchange(config, clientHello, serverHello, cert, newSkx) } func (ka *pskKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { // The server only sends an identity hint but, for purposes of // test code, the server always sends the hint and it is // required to match. if ka.identityHint != config.PreSharedKeyIdentity { return nil, nil, errors.New("tls: unexpected identity") } // Serialize the identity. bytes := make([]byte, 2+len(config.PreSharedKeyIdentity)) bytes[0] = byte(len(config.PreSharedKeyIdentity) >> 8) bytes[1] = byte(len(config.PreSharedKeyIdentity)) copy(bytes[2:], []byte(config.PreSharedKeyIdentity)) // Append the base key exchange's ClientKeyExchange. otherSecret, baseCkx, err := ka.base.generateClientKeyExchange(config, clientHello, cert) if err != nil { return nil, nil, err } ckx := new(clientKeyExchangeMsg) ckx.ciphertext = append(bytes, baseCkx.ciphertext...) if config.PreSharedKey == nil { return nil, nil, errors.New("tls: pre-shared key not configured") } if otherSecret == nil { otherSecret = make([]byte, len(config.PreSharedKey)) } return makePSKPremaster(otherSecret, config.PreSharedKey), ckx, nil } func (ka *pskKeyAgreement) peerSignatureAlgorithm() signatureAlgorithm { return 0 }