/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #if !defined(_POSIX_C_SOURCE) #define _POSIX_C_SOURCE 201410L #endif #include #if !defined(OPENSSL_WINDOWS) #include #include #include #include #include #include #else #include OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include #include OPENSSL_MSVC_PRAGMA(warning(pop)) #endif #include #include #include #include #include #include "../internal.h" #if !defined(OPENSSL_WINDOWS) static int closesocket(int sock) { return close(sock); } static void PrintSocketError(const char *func) { perror(func); } #else static void PrintSocketError(const char *func) { fprintf(stderr, "%s: %d\n", func, WSAGetLastError()); } #endif class ScopedSocket { public: explicit ScopedSocket(int sock) : sock_(sock) {} ~ScopedSocket() { closesocket(sock_); } private: const int sock_; }; static bool TestSocketConnect() { static const char kTestMessage[] = "test"; int listening_sock = socket(AF_INET, SOCK_STREAM, 0); if (listening_sock == -1) { PrintSocketError("socket"); return false; } ScopedSocket listening_sock_closer(listening_sock); struct sockaddr_in sin; memset(&sin, 0, sizeof(sin)); sin.sin_family = AF_INET; if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) { PrintSocketError("inet_pton"); return false; } if (bind(listening_sock, (struct sockaddr *)&sin, sizeof(sin)) != 0) { PrintSocketError("bind"); return false; } if (listen(listening_sock, 1)) { PrintSocketError("listen"); return false; } socklen_t sockaddr_len = sizeof(sin); if (getsockname(listening_sock, (struct sockaddr *)&sin, &sockaddr_len) || sockaddr_len != sizeof(sin)) { PrintSocketError("getsockname"); return false; } char hostname[80]; BIO_snprintf(hostname, sizeof(hostname), "%s:%d", "127.0.0.1", ntohs(sin.sin_port)); bssl::UniquePtr bio(BIO_new_connect(hostname)); if (!bio) { fprintf(stderr, "BIO_new_connect failed.\n"); return false; } if (BIO_write(bio.get(), kTestMessage, sizeof(kTestMessage)) != sizeof(kTestMessage)) { fprintf(stderr, "BIO_write failed.\n"); ERR_print_errors_fp(stderr); return false; } int sock = accept(listening_sock, (struct sockaddr *) &sin, &sockaddr_len); if (sock == -1) { PrintSocketError("accept"); return false; } ScopedSocket sock_closer(sock); char buf[5]; if (recv(sock, buf, sizeof(buf), 0) != sizeof(kTestMessage)) { PrintSocketError("read"); return false; } if (memcmp(buf, kTestMessage, sizeof(kTestMessage))) { return false; } return true; } static bool TestPrintf() { // Test a short output, a very long one, and various sizes around // 256 (the size of the buffer) to ensure edge cases are correct. static const size_t kLengths[] = { 5, 250, 251, 252, 253, 254, 1023 }; bssl::UniquePtr bio(BIO_new(BIO_s_mem())); if (!bio) { fprintf(stderr, "BIO_new failed\n"); return false; } for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kLengths); i++) { char string[1024]; if (kLengths[i] >= sizeof(string)) { fprintf(stderr, "Bad test string length\n"); return false; } memset(string, 'a', sizeof(string)); string[kLengths[i]] = '\0'; int ret = BIO_printf(bio.get(), "test %s", string); if (ret < 0 || static_cast(ret) != 5 + kLengths[i]) { fprintf(stderr, "BIO_printf failed: %d\n", ret); return false; } const uint8_t *contents; size_t len; if (!BIO_mem_contents(bio.get(), &contents, &len)) { fprintf(stderr, "BIO_mem_contents failed\n"); return false; } if (len != 5 + kLengths[i] || strncmp((const char *)contents, "test ", 5) != 0 || strncmp((const char *)contents + 5, string, kLengths[i]) != 0) { fprintf(stderr, "Contents did not match: %.*s\n", (int)len, contents); return false; } if (!BIO_reset(bio.get())) { fprintf(stderr, "BIO_reset failed\n"); return false; } } return true; } static bool ReadASN1(bool should_succeed, const uint8_t *data, size_t data_len, size_t expected_len, size_t max_len) { bssl::UniquePtr bio(BIO_new_mem_buf(data, data_len)); uint8_t *out; size_t out_len; int ok = BIO_read_asn1(bio.get(), &out, &out_len, max_len); if (!ok) { out = nullptr; } bssl::UniquePtr out_storage(out); if (should_succeed != (ok == 1)) { return false; } if (should_succeed && (out_len != expected_len || memcmp(data, out, expected_len) != 0)) { return false; } return true; } static bool TestASN1() { static const uint8_t kData1[] = {0x30, 2, 1, 2, 0, 0}; static const uint8_t kData2[] = {0x30, 3, 1, 2}; /* truncated */ static const uint8_t kData3[] = {0x30, 0x81, 1, 1}; /* should be short len */ static const uint8_t kData4[] = {0x30, 0x82, 0, 1, 1}; /* zero padded. */ if (!ReadASN1(true, kData1, sizeof(kData1), 4, 100) || !ReadASN1(false, kData2, sizeof(kData2), 0, 100) || !ReadASN1(false, kData3, sizeof(kData3), 0, 100) || !ReadASN1(false, kData4, sizeof(kData4), 0, 100)) { return false; } static const size_t kLargePayloadLen = 8000; static const uint8_t kLargePrefix[] = {0x30, 0x82, kLargePayloadLen >> 8, kLargePayloadLen & 0xff}; bssl::UniquePtr large(reinterpret_cast( OPENSSL_malloc(sizeof(kLargePrefix) + kLargePayloadLen))); if (!large) { return false; } memset(large.get() + sizeof(kLargePrefix), 0, kLargePayloadLen); memcpy(large.get(), kLargePrefix, sizeof(kLargePrefix)); if (!ReadASN1(true, large.get(), sizeof(kLargePrefix) + kLargePayloadLen, sizeof(kLargePrefix) + kLargePayloadLen, kLargePayloadLen * 2)) { fprintf(stderr, "Large payload test failed.\n"); return false; } if (!ReadASN1(false, large.get(), sizeof(kLargePrefix) + kLargePayloadLen, sizeof(kLargePrefix) + kLargePayloadLen, kLargePayloadLen - 1)) { fprintf(stderr, "max_len test failed.\n"); return false; } static const uint8_t kIndefPrefix[] = {0x30, 0x80}; memcpy(large.get(), kIndefPrefix, sizeof(kIndefPrefix)); if (!ReadASN1(true, large.get(), sizeof(kLargePrefix) + kLargePayloadLen, sizeof(kLargePrefix) + kLargePayloadLen, kLargePayloadLen*2)) { fprintf(stderr, "indefinite length test failed.\n"); return false; } if (!ReadASN1(false, large.get(), sizeof(kLargePrefix) + kLargePayloadLen, sizeof(kLargePrefix) + kLargePayloadLen, kLargePayloadLen-1)) { fprintf(stderr, "indefinite length, max_len test failed.\n"); return false; } return true; } static bool TestPair() { // Run through the tests twice, swapping |bio1| and |bio2|, for symmetry. for (int i = 0; i < 2; i++) { BIO *bio1, *bio2; if (!BIO_new_bio_pair(&bio1, 10, &bio2, 10)) { return false; } bssl::UniquePtr free_bio1(bio1), free_bio2(bio2); if (i == 1) { std::swap(bio1, bio2); } // Check initial states. if (BIO_ctrl_get_write_guarantee(bio1) != 10 || BIO_ctrl_get_read_request(bio1) != 0) { return false; } // Data written in one end may be read out the other. char buf[20]; if (BIO_write(bio1, "12345", 5) != 5 || BIO_ctrl_get_write_guarantee(bio1) != 5 || BIO_read(bio2, buf, sizeof(buf)) != 5 || memcmp(buf, "12345", 5) != 0 || BIO_ctrl_get_write_guarantee(bio1) != 10) { return false; } // Attempting to write more than 10 bytes will write partially. if (BIO_write(bio1, "1234567890___", 13) != 10 || BIO_ctrl_get_write_guarantee(bio1) != 0 || BIO_write(bio1, "z", 1) != -1 || !BIO_should_write(bio1) || BIO_read(bio2, buf, sizeof(buf)) != 10 || memcmp(buf, "1234567890", 10) != 0 || BIO_ctrl_get_write_guarantee(bio1) != 10) { return false; } // Unsuccessful reads update the read request. if (BIO_read(bio2, buf, 5) != -1 || !BIO_should_read(bio2) || BIO_ctrl_get_read_request(bio1) != 5) { return false; } // The read request is clamped to the size of the buffer. if (BIO_read(bio2, buf, 20) != -1 || !BIO_should_read(bio2) || BIO_ctrl_get_read_request(bio1) != 10) { return false; } // Data may be written and read in chunks. if (BIO_write(bio1, "12345", 5) != 5 || BIO_ctrl_get_write_guarantee(bio1) != 5 || BIO_write(bio1, "67890___", 8) != 5 || BIO_ctrl_get_write_guarantee(bio1) != 0 || BIO_read(bio2, buf, 3) != 3 || memcmp(buf, "123", 3) != 0 || BIO_ctrl_get_write_guarantee(bio1) != 3 || BIO_read(bio2, buf, sizeof(buf)) != 7 || memcmp(buf, "4567890", 7) != 0 || BIO_ctrl_get_write_guarantee(bio1) != 10) { return false; } // Successful reads reset the read request. if (BIO_ctrl_get_read_request(bio1) != 0) { return false; } // Test writes and reads starting in the middle of the ring buffer and // wrapping to front. if (BIO_write(bio1, "abcdefgh", 8) != 8 || BIO_ctrl_get_write_guarantee(bio1) != 2 || BIO_read(bio2, buf, 3) != 3 || memcmp(buf, "abc", 3) != 0 || BIO_ctrl_get_write_guarantee(bio1) != 5 || BIO_write(bio1, "ijklm___", 8) != 5 || BIO_ctrl_get_write_guarantee(bio1) != 0 || BIO_read(bio2, buf, sizeof(buf)) != 10 || memcmp(buf, "defghijklm", 10) != 0 || BIO_ctrl_get_write_guarantee(bio1) != 10) { return false; } // Data may flow from both ends in parallel. if (BIO_write(bio1, "12345", 5) != 5 || BIO_write(bio2, "67890", 5) != 5 || BIO_read(bio2, buf, sizeof(buf)) != 5 || memcmp(buf, "12345", 5) != 0 || BIO_read(bio1, buf, sizeof(buf)) != 5 || memcmp(buf, "67890", 5) != 0) { return false; } // Closing the write end causes an EOF on the read half, after draining. if (BIO_write(bio1, "12345", 5) != 5 || !BIO_shutdown_wr(bio1) || BIO_read(bio2, buf, sizeof(buf)) != 5 || memcmp(buf, "12345", 5) != 0 || BIO_read(bio2, buf, sizeof(buf)) != 0) { return false; } // A closed write end may not be written to. if (BIO_ctrl_get_write_guarantee(bio1) != 0 || BIO_write(bio1, "_____", 5) != -1) { return false; } uint32_t err = ERR_get_error(); if (ERR_GET_LIB(err) != ERR_LIB_BIO || ERR_GET_REASON(err) != BIO_R_BROKEN_PIPE) { return false; } // The other end is still functional. if (BIO_write(bio2, "12345", 5) != 5 || BIO_read(bio1, buf, sizeof(buf)) != 5 || memcmp(buf, "12345", 5) != 0) { return false; } } return true; } int main() { CRYPTO_library_init(); #if defined(OPENSSL_WINDOWS) // Initialize Winsock. WORD wsa_version = MAKEWORD(2, 2); WSADATA wsa_data; int wsa_err = WSAStartup(wsa_version, &wsa_data); if (wsa_err != 0) { fprintf(stderr, "WSAStartup failed: %d\n", wsa_err); return 1; } if (wsa_data.wVersion != wsa_version) { fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion); return 1; } #endif if (!TestSocketConnect() || !TestPrintf() || !TestASN1() || !TestPair()) { return 1; } printf("PASS\n"); return 0; }