/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #define c2l(c, l) \ do { \ (l) = ((uint32_t)(*((c)++))); \ (l) |= ((uint32_t)(*((c)++))) << 8L; \ (l) |= ((uint32_t)(*((c)++))) << 16L; \ (l) |= ((uint32_t)(*((c)++))) << 24L; \ } while (0) #define c2ln(c, l1, l2, n) \ do { \ (c) += (n); \ (l1) = (l2) = 0; \ switch (n) { \ case 8: \ (l2) = ((uint32_t)(*(--(c)))) << 24L; \ case 7: \ (l2) |= ((uint32_t)(*(--(c)))) << 16L; \ case 6: \ (l2) |= ((uint32_t)(*(--(c)))) << 8L; \ case 5: \ (l2) |= ((uint32_t)(*(--(c)))); \ case 4: \ (l1) = ((uint32_t)(*(--(c)))) << 24L; \ case 3: \ (l1) |= ((uint32_t)(*(--(c)))) << 16L; \ case 2: \ (l1) |= ((uint32_t)(*(--(c)))) << 8L; \ case 1: \ (l1) |= ((uint32_t)(*(--(c)))); \ } \ } while (0) #define l2c(l, c) \ do { \ *((c)++) = (uint8_t)(((l)) & 0xff); \ *((c)++) = (uint8_t)(((l) >> 8L) & 0xff); \ *((c)++) = (uint8_t)(((l) >> 16L) & 0xff); \ *((c)++) = (uint8_t)(((l) >> 24L) & 0xff); \ } while (0) #define l2cn(l1, l2, c, n) \ do { \ (c) += (n); \ switch (n) { \ case 8: \ *(--(c)) = (uint8_t)(((l2) >> 24L) & 0xff); \ case 7: \ *(--(c)) = (uint8_t)(((l2) >> 16L) & 0xff); \ case 6: \ *(--(c)) = (uint8_t)(((l2) >> 8L) & 0xff); \ case 5: \ *(--(c)) = (uint8_t)(((l2)) & 0xff); \ case 4: \ *(--(c)) = (uint8_t)(((l1) >> 24L) & 0xff); \ case 3: \ *(--(c)) = (uint8_t)(((l1) >> 16L) & 0xff); \ case 2: \ *(--(c)) = (uint8_t)(((l1) >> 8L) & 0xff); \ case 1: \ *(--(c)) = (uint8_t)(((l1)) & 0xff); \ } \ } while (0) typedef struct rc2_key_st { uint16_t data[64]; } RC2_KEY; static void RC2_encrypt(uint32_t *d, RC2_KEY *key) { int i, n; uint16_t *p0, *p1; uint16_t x0, x1, x2, x3, t; uint32_t l; l = d[0]; x0 = (uint16_t)l & 0xffff; x1 = (uint16_t)(l >> 16L); l = d[1]; x2 = (uint16_t)l & 0xffff; x3 = (uint16_t)(l >> 16L); n = 3; i = 5; p0 = p1 = &key->data[0]; for (;;) { t = (x0 + (x1 & ~x3) + (x2 & x3) + *(p0++)) & 0xffff; x0 = (t << 1) | (t >> 15); t = (x1 + (x2 & ~x0) + (x3 & x0) + *(p0++)) & 0xffff; x1 = (t << 2) | (t >> 14); t = (x2 + (x3 & ~x1) + (x0 & x1) + *(p0++)) & 0xffff; x2 = (t << 3) | (t >> 13); t = (x3 + (x0 & ~x2) + (x1 & x2) + *(p0++)) & 0xffff; x3 = (t << 5) | (t >> 11); if (--i == 0) { if (--n == 0) { break; } i = (n == 2) ? 6 : 5; x0 += p1[x3 & 0x3f]; x1 += p1[x0 & 0x3f]; x2 += p1[x1 & 0x3f]; x3 += p1[x2 & 0x3f]; } } d[0] = (uint32_t)(x0 & 0xffff) | ((uint32_t)(x1 & 0xffff) << 16L); d[1] = (uint32_t)(x2 & 0xffff) | ((uint32_t)(x3 & 0xffff) << 16L); } static void RC2_decrypt(uint32_t *d, RC2_KEY *key) { int i, n; uint16_t *p0, *p1; uint16_t x0, x1, x2, x3, t; uint32_t l; l = d[0]; x0 = (uint16_t)l & 0xffff; x1 = (uint16_t)(l >> 16L); l = d[1]; x2 = (uint16_t)l & 0xffff; x3 = (uint16_t)(l >> 16L); n = 3; i = 5; p0 = &key->data[63]; p1 = &key->data[0]; for (;;) { t = ((x3 << 11) | (x3 >> 5)) & 0xffff; x3 = (t - (x0 & ~x2) - (x1 & x2) - *(p0--)) & 0xffff; t = ((x2 << 13) | (x2 >> 3)) & 0xffff; x2 = (t - (x3 & ~x1) - (x0 & x1) - *(p0--)) & 0xffff; t = ((x1 << 14) | (x1 >> 2)) & 0xffff; x1 = (t - (x2 & ~x0) - (x3 & x0) - *(p0--)) & 0xffff; t = ((x0 << 15) | (x0 >> 1)) & 0xffff; x0 = (t - (x1 & ~x3) - (x2 & x3) - *(p0--)) & 0xffff; if (--i == 0) { if (--n == 0) { break; } i = (n == 2) ? 6 : 5; x3 = (x3 - p1[x2 & 0x3f]) & 0xffff; x2 = (x2 - p1[x1 & 0x3f]) & 0xffff; x1 = (x1 - p1[x0 & 0x3f]) & 0xffff; x0 = (x0 - p1[x3 & 0x3f]) & 0xffff; } } d[0] = (uint32_t)(x0 & 0xffff) | ((uint32_t)(x1 & 0xffff) << 16L); d[1] = (uint32_t)(x2 & 0xffff) | ((uint32_t)(x3 & 0xffff) << 16L); } static void RC2_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, RC2_KEY *ks, uint8_t *iv, int encrypt) { uint32_t tin0, tin1; uint32_t tout0, tout1, xor0, xor1; long l = length; uint32_t tin[2]; if (encrypt) { c2l(iv, tout0); c2l(iv, tout1); iv -= 8; for (l -= 8; l >= 0; l -= 8) { c2l(in, tin0); c2l(in, tin1); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; RC2_encrypt(tin, ks); tout0 = tin[0]; l2c(tout0, out); tout1 = tin[1]; l2c(tout1, out); } if (l != -8) { c2ln(in, tin0, tin1, l + 8); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; RC2_encrypt(tin, ks); tout0 = tin[0]; l2c(tout0, out); tout1 = tin[1]; l2c(tout1, out); } l2c(tout0, iv); l2c(tout1, iv); } else { c2l(iv, xor0); c2l(iv, xor1); iv -= 8; for (l -= 8; l >= 0; l -= 8) { c2l(in, tin0); tin[0] = tin0; c2l(in, tin1); tin[1] = tin1; RC2_decrypt(tin, ks); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2c(tout0, out); l2c(tout1, out); xor0 = tin0; xor1 = tin1; } if (l != -8) { c2l(in, tin0); tin[0] = tin0; c2l(in, tin1); tin[1] = tin1; RC2_decrypt(tin, ks); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2cn(tout0, tout1, out, l + 8); xor0 = tin0; xor1 = tin1; } l2c(xor0, iv); l2c(xor1, iv); } tin[0] = tin[1] = 0; } static const uint8_t key_table[256] = { 0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d, 0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e, 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2, 0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32, 0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82, 0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c, 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc, 0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26, 0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03, 0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7, 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7, 0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a, 0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec, 0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc, 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39, 0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31, 0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9, 0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c, 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9, 0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e, 0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad, }; static void RC2_set_key(RC2_KEY *key, int len, const uint8_t *data, int bits) { int i, j; uint8_t *k; uint16_t *ki; unsigned int c, d; k = (uint8_t *)&key->data[0]; *k = 0; // for if there is a zero length key if (len > 128) { len = 128; } if (bits <= 0) { bits = 1024; } if (bits > 1024) { bits = 1024; } for (i = 0; i < len; i++) { k[i] = data[i]; } // expand table d = k[len - 1]; j = 0; for (i = len; i < 128; i++, j++) { d = key_table[(k[j] + d) & 0xff]; k[i] = d; } // hmm.... key reduction to 'bits' bits j = (bits + 7) >> 3; i = 128 - j; c = (0xff >> (-bits & 0x07)); d = key_table[k[i] & c]; k[i] = d; while (i--) { d = key_table[k[i + j] ^ d]; k[i] = d; } // copy from bytes into uint16_t's ki = &(key->data[63]); for (i = 127; i >= 0; i -= 2) { *(ki--) = ((k[i] << 8) | k[i - 1]) & 0xffff; } } typedef struct { int key_bits; // effective key bits RC2_KEY ks; // key schedule } EVP_RC2_KEY; static int rc2_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, const uint8_t *iv, int enc) { EVP_RC2_KEY *rc2_key = (EVP_RC2_KEY *)ctx->cipher_data; RC2_set_key(&rc2_key->ks, EVP_CIPHER_CTX_key_length(ctx), key, rc2_key->key_bits); return 1; } static int rc2_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t inl) { EVP_RC2_KEY *key = (EVP_RC2_KEY *)ctx->cipher_data; static const size_t kChunkSize = 0x10000; while (inl >= kChunkSize) { RC2_cbc_encrypt(in, out, kChunkSize, &key->ks, ctx->iv, ctx->encrypt); inl -= kChunkSize; in += kChunkSize; out += kChunkSize; } if (inl) { RC2_cbc_encrypt(in, out, inl, &key->ks, ctx->iv, ctx->encrypt); } return 1; } static int rc2_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) { EVP_RC2_KEY *key = (EVP_RC2_KEY *)ctx->cipher_data; switch (type) { case EVP_CTRL_INIT: key->key_bits = EVP_CIPHER_CTX_key_length(ctx) * 8; return 1; case EVP_CTRL_SET_RC2_KEY_BITS: // Should be overridden by later call to |EVP_CTRL_INIT|, but // people call it, so it may as well work. key->key_bits = arg; return 1; default: return -1; } } static const EVP_CIPHER rc2_40_cbc = { NID_rc2_40_cbc, 8 /* block size */, 5 /* 40 bit */, 8 /* iv len */, sizeof(EVP_RC2_KEY), EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT, NULL /* app_data */, rc2_init_key, rc2_cbc_cipher, NULL, rc2_ctrl, }; const EVP_CIPHER *EVP_rc2_40_cbc(void) { return &rc2_40_cbc; } static const EVP_CIPHER rc2_cbc = { NID_rc2_cbc, 8 /* block size */, 16 /* 128 bit */, 8 /* iv len */, sizeof(EVP_RC2_KEY), EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT, NULL /* app_data */, rc2_init_key, rc2_cbc_cipher, NULL, rc2_ctrl, }; const EVP_CIPHER *EVP_rc2_cbc(void) { return &rc2_cbc; }