/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #if !defined(__STDC_FORMAT_MACROS) #define __STDC_FORMAT_MACROS #endif #include #if !defined(OPENSSL_WINDOWS) #include #include #include #include #include #include #include #else #include OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include #include OPENSSL_MSVC_PRAGMA(warning(pop)) OPENSSL_MSVC_PRAGMA(comment(lib, "Ws2_32.lib")) #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../crypto/internal.h" #include "async_bio.h" #include "packeted_bio.h" #include "test_config.h" static CRYPTO_BUFFER_POOL *g_pool = nullptr; #if !defined(OPENSSL_WINDOWS) static int closesocket(int sock) { return close(sock); } static void PrintSocketError(const char *func) { perror(func); } #else static void PrintSocketError(const char *func) { fprintf(stderr, "%s: %d\n", func, WSAGetLastError()); } #endif static int Usage(const char *program) { fprintf(stderr, "Usage: %s [flags...]\n", program); return 1; } struct TestState { // async_bio is async BIO which pauses reads and writes. BIO *async_bio = nullptr; // packeted_bio is the packeted BIO which simulates read timeouts. BIO *packeted_bio = nullptr; bssl::UniquePtr channel_id; bool cert_ready = false; bssl::UniquePtr session; bssl::UniquePtr pending_session; bool early_callback_called = false; bool handshake_done = false; // private_key is the underlying private key used when testing custom keys. bssl::UniquePtr private_key; std::vector private_key_result; // private_key_retries is the number of times an asynchronous private key // operation has been retried. unsigned private_key_retries = 0; bool got_new_session = false; bssl::UniquePtr new_session; bool ticket_decrypt_done = false; bool alpn_select_done = false; bool is_resume = false; bool early_callback_ready = false; }; static void TestStateExFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int index, long argl, void *argp) { delete ((TestState *)ptr); } static int g_config_index = 0; static int g_state_index = 0; static bool SetTestConfig(SSL *ssl, const TestConfig *config) { return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1; } static const TestConfig *GetTestConfig(const SSL *ssl) { return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index); } static bool SetTestState(SSL *ssl, std::unique_ptr state) { // |SSL_set_ex_data| takes ownership of |state| only on success. if (SSL_set_ex_data(ssl, g_state_index, state.get()) == 1) { state.release(); return true; } return false; } static TestState *GetTestState(const SSL *ssl) { return (TestState *)SSL_get_ex_data(ssl, g_state_index); } static bool LoadCertificate(bssl::UniquePtr *out_x509, bssl::UniquePtr *out_chain, const std::string &file) { bssl::UniquePtr bio(BIO_new(BIO_s_file())); if (!bio || !BIO_read_filename(bio.get(), file.c_str())) { return false; } out_x509->reset(PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr)); if (!*out_x509) { return false; } out_chain->reset(sk_X509_new_null()); if (!*out_chain) { return false; } // Keep reading the certificate chain. for (;;) { bssl::UniquePtr cert( PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr)); if (!cert) { break; } if (!sk_X509_push(out_chain->get(), cert.get())) { return false; } cert.release(); // sk_X509_push takes ownership. } uint32_t err = ERR_peek_last_error(); if (ERR_GET_LIB(err) != ERR_LIB_PEM || ERR_GET_REASON(err) != PEM_R_NO_START_LINE) { return false; } ERR_clear_error(); return true; } static bssl::UniquePtr LoadPrivateKey(const std::string &file) { bssl::UniquePtr bio(BIO_new(BIO_s_file())); if (!bio || !BIO_read_filename(bio.get(), file.c_str())) { return nullptr; } return bssl::UniquePtr( PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL)); } static bool FromHexDigit(uint8_t *out, char c) { if ('0' <= c && c <= '9') { *out = c - '0'; return true; } if ('a' <= c && c <= 'f') { *out = c - 'a' + 10; return true; } if ('A' <= c && c <= 'F') { *out = c - 'A' + 10; return true; } return false; } static bool HexDecode(std::string *out, const std::string &in) { if ((in.size() & 1) != 0) { return false; } std::unique_ptr buf(new uint8_t[in.size() / 2]); for (size_t i = 0; i < in.size() / 2; i++) { uint8_t high, low; if (!FromHexDigit(&high, in[i*2]) || !FromHexDigit(&low, in[i*2+1])) { return false; } buf[i] = (high << 4) | low; } out->assign(reinterpret_cast(buf.get()), in.size() / 2); return true; } static std::vector SplitParts(const std::string &in, const char delim) { std::vector ret; size_t start = 0; for (size_t i = 0; i < in.size(); i++) { if (in[i] == delim) { ret.push_back(in.substr(start, i - start)); start = i + 1; } } ret.push_back(in.substr(start, std::string::npos)); return ret; } static std::vector DecodeHexStrings( const std::string &hex_strings) { std::vector ret; const std::vector parts = SplitParts(hex_strings, ','); for (const auto &part : parts) { std::string binary; if (!HexDecode(&binary, part)) { fprintf(stderr, "Bad hex string: %s\n", part.c_str()); return ret; } ret.push_back(binary); } return ret; } static bssl::UniquePtr DecodeHexX509Names( const std::string &hex_names) { const std::vector der_names = DecodeHexStrings(hex_names); bssl::UniquePtr ret(sk_X509_NAME_new_null()); for (const auto &der_name : der_names) { const uint8_t *const data = reinterpret_cast(der_name.data()); const uint8_t *derp = data; bssl::UniquePtr name( d2i_X509_NAME(nullptr, &derp, der_name.size())); if (!name || derp != data + der_name.size()) { fprintf(stderr, "Failed to parse X509_NAME.\n"); return nullptr; } if (!sk_X509_NAME_push(ret.get(), name.get())) { return nullptr; } name.release(); } return ret; } static int AsyncPrivateKeyType(SSL *ssl) { EVP_PKEY *key = GetTestState(ssl)->private_key.get(); switch (EVP_PKEY_id(key)) { case EVP_PKEY_RSA: return NID_rsaEncryption; case EVP_PKEY_EC: return EC_GROUP_get_curve_name( EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(key))); default: return NID_undef; } } static size_t AsyncPrivateKeyMaxSignatureLen(SSL *ssl) { return EVP_PKEY_size(GetTestState(ssl)->private_key.get()); } static ssl_private_key_result_t AsyncPrivateKeySign( SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, uint16_t signature_algorithm, const uint8_t *in, size_t in_len) { TestState *test_state = GetTestState(ssl); if (!test_state->private_key_result.empty()) { fprintf(stderr, "AsyncPrivateKeySign called with operation pending.\n"); abort(); } // Determine the hash. const EVP_MD *md; switch (signature_algorithm) { case SSL_SIGN_RSA_PKCS1_SHA1: case SSL_SIGN_ECDSA_SHA1: md = EVP_sha1(); break; case SSL_SIGN_RSA_PKCS1_SHA256: case SSL_SIGN_ECDSA_SECP256R1_SHA256: case SSL_SIGN_RSA_PSS_SHA256: md = EVP_sha256(); break; case SSL_SIGN_RSA_PKCS1_SHA384: case SSL_SIGN_ECDSA_SECP384R1_SHA384: case SSL_SIGN_RSA_PSS_SHA384: md = EVP_sha384(); break; case SSL_SIGN_RSA_PKCS1_SHA512: case SSL_SIGN_ECDSA_SECP521R1_SHA512: case SSL_SIGN_RSA_PSS_SHA512: md = EVP_sha512(); break; case SSL_SIGN_RSA_PKCS1_MD5_SHA1: md = EVP_md5_sha1(); break; default: fprintf(stderr, "Unknown signature algorithm %04x.\n", signature_algorithm); return ssl_private_key_failure; } bssl::ScopedEVP_MD_CTX ctx; EVP_PKEY_CTX *pctx; if (!EVP_DigestSignInit(ctx.get(), &pctx, md, nullptr, test_state->private_key.get())) { return ssl_private_key_failure; } // Configure additional signature parameters. switch (signature_algorithm) { case SSL_SIGN_RSA_PSS_SHA256: case SSL_SIGN_RSA_PSS_SHA384: case SSL_SIGN_RSA_PSS_SHA512: if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) || !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) { return ssl_private_key_failure; } } // Write the signature into |test_state|. size_t len = 0; if (!EVP_DigestSignUpdate(ctx.get(), in, in_len) || !EVP_DigestSignFinal(ctx.get(), nullptr, &len)) { return ssl_private_key_failure; } test_state->private_key_result.resize(len); if (!EVP_DigestSignFinal(ctx.get(), test_state->private_key_result.data(), &len)) { return ssl_private_key_failure; } test_state->private_key_result.resize(len); // The signature will be released asynchronously in |AsyncPrivateKeyComplete|. return ssl_private_key_retry; } static ssl_private_key_result_t AsyncPrivateKeyDecrypt( SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, const uint8_t *in, size_t in_len) { TestState *test_state = GetTestState(ssl); if (!test_state->private_key_result.empty()) { fprintf(stderr, "AsyncPrivateKeyDecrypt called with operation pending.\n"); abort(); } RSA *rsa = EVP_PKEY_get0_RSA(test_state->private_key.get()); if (rsa == NULL) { fprintf(stderr, "AsyncPrivateKeyDecrypt called with incorrect key type.\n"); abort(); } test_state->private_key_result.resize(RSA_size(rsa)); if (!RSA_decrypt(rsa, out_len, test_state->private_key_result.data(), RSA_size(rsa), in, in_len, RSA_NO_PADDING)) { return ssl_private_key_failure; } test_state->private_key_result.resize(*out_len); // The decryption will be released asynchronously in |AsyncPrivateComplete|. return ssl_private_key_retry; } static ssl_private_key_result_t AsyncPrivateKeyComplete( SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) { TestState *test_state = GetTestState(ssl); if (test_state->private_key_result.empty()) { fprintf(stderr, "AsyncPrivateKeyComplete called without operation pending.\n"); abort(); } if (test_state->private_key_retries < 2) { // Only return the decryption on the second attempt, to test both incomplete // |decrypt| and |decrypt_complete|. return ssl_private_key_retry; } if (max_out < test_state->private_key_result.size()) { fprintf(stderr, "Output buffer too small.\n"); return ssl_private_key_failure; } OPENSSL_memcpy(out, test_state->private_key_result.data(), test_state->private_key_result.size()); *out_len = test_state->private_key_result.size(); test_state->private_key_result.clear(); test_state->private_key_retries = 0; return ssl_private_key_success; } static const SSL_PRIVATE_KEY_METHOD g_async_private_key_method = { AsyncPrivateKeyType, AsyncPrivateKeyMaxSignatureLen, AsyncPrivateKeySign, nullptr /* sign_digest */, AsyncPrivateKeyDecrypt, AsyncPrivateKeyComplete, }; template struct Free { void operator()(T *buf) { free(buf); } }; static bool GetCertificate(SSL *ssl, bssl::UniquePtr *out_x509, bssl::UniquePtr *out_chain, bssl::UniquePtr *out_pkey) { const TestConfig *config = GetTestConfig(ssl); if (!config->digest_prefs.empty()) { std::unique_ptr> digest_prefs( strdup(config->digest_prefs.c_str())); std::vector digest_list; for (;;) { char *token = strtok(digest_list.empty() ? digest_prefs.get() : nullptr, ","); if (token == nullptr) { break; } digest_list.push_back(EVP_MD_type(EVP_get_digestbyname(token))); } if (!SSL_set_private_key_digest_prefs(ssl, digest_list.data(), digest_list.size())) { return false; } } if (!config->signing_prefs.empty()) { std::vector u16s(config->signing_prefs.begin(), config->signing_prefs.end()); if (!SSL_set_signing_algorithm_prefs(ssl, u16s.data(), u16s.size())) { return false; } } if (!config->key_file.empty()) { *out_pkey = LoadPrivateKey(config->key_file.c_str()); if (!*out_pkey) { return false; } } if (!config->cert_file.empty() && !LoadCertificate(out_x509, out_chain, config->cert_file.c_str())) { return false; } if (!config->ocsp_response.empty() && !SSL_set_ocsp_response(ssl, (const uint8_t *)config->ocsp_response.data(), config->ocsp_response.size())) { return false; } return true; } static bool InstallCertificate(SSL *ssl) { bssl::UniquePtr x509; bssl::UniquePtr chain; bssl::UniquePtr pkey; if (!GetCertificate(ssl, &x509, &chain, &pkey)) { return false; } if (pkey) { TestState *test_state = GetTestState(ssl); const TestConfig *config = GetTestConfig(ssl); if (config->async) { test_state->private_key = std::move(pkey); SSL_set_private_key_method(ssl, &g_async_private_key_method); } else if (!SSL_use_PrivateKey(ssl, pkey.get())) { return false; } } if (x509 && !SSL_use_certificate(ssl, x509.get())) { return false; } if (sk_X509_num(chain.get()) > 0 && !SSL_set1_chain(ssl, chain.get())) { return false; } return true; } static enum ssl_select_cert_result_t SelectCertificateCallback( const SSL_CLIENT_HELLO *client_hello) { const TestConfig *config = GetTestConfig(client_hello->ssl); GetTestState(client_hello->ssl)->early_callback_called = true; if (!config->expected_server_name.empty()) { const uint8_t *extension_data; size_t extension_len; CBS extension, server_name_list, host_name; uint8_t name_type; if (!SSL_early_callback_ctx_extension_get( client_hello, TLSEXT_TYPE_server_name, &extension_data, &extension_len)) { fprintf(stderr, "Could not find server_name extension.\n"); return ssl_select_cert_error; } CBS_init(&extension, extension_data, extension_len); if (!CBS_get_u16_length_prefixed(&extension, &server_name_list) || CBS_len(&extension) != 0 || !CBS_get_u8(&server_name_list, &name_type) || name_type != TLSEXT_NAMETYPE_host_name || !CBS_get_u16_length_prefixed(&server_name_list, &host_name) || CBS_len(&server_name_list) != 0) { fprintf(stderr, "Could not decode server_name extension.\n"); return ssl_select_cert_error; } if (!CBS_mem_equal(&host_name, (const uint8_t*)config->expected_server_name.data(), config->expected_server_name.size())) { fprintf(stderr, "Server name mismatch.\n"); } } if (config->fail_early_callback) { return ssl_select_cert_error; } // Install the certificate in the early callback. if (config->use_early_callback) { bool early_callback_ready = GetTestState(client_hello->ssl)->early_callback_ready; if (config->async && !early_callback_ready) { // Install the certificate asynchronously. return ssl_select_cert_retry; } if (!InstallCertificate(client_hello->ssl)) { return ssl_select_cert_error; } } return ssl_select_cert_success; } static bool CheckCertificateRequest(SSL *ssl) { const TestConfig *config = GetTestConfig(ssl); if (!config->expected_certificate_types.empty()) { const uint8_t *certificate_types; size_t certificate_types_len = SSL_get0_certificate_types(ssl, &certificate_types); if (certificate_types_len != config->expected_certificate_types.size() || OPENSSL_memcmp(certificate_types, config->expected_certificate_types.data(), certificate_types_len) != 0) { fprintf(stderr, "certificate types mismatch\n"); return false; } } if (!config->expected_client_ca_list.empty()) { bssl::UniquePtr expected = DecodeHexX509Names(config->expected_client_ca_list); const size_t num_expected = sk_X509_NAME_num(expected.get()); const STACK_OF(X509_NAME) *received = SSL_get_client_CA_list(ssl); const size_t num_received = sk_X509_NAME_num(received); if (num_received != num_expected) { fprintf(stderr, "expected %u names in CertificateRequest but got %u\n", static_cast(num_expected), static_cast(num_received)); return false; } for (size_t i = 0; i < num_received; i++) { if (X509_NAME_cmp(sk_X509_NAME_value(received, i), sk_X509_NAME_value(expected.get(), i)) != 0) { fprintf(stderr, "names in CertificateRequest differ at index #%d\n", static_cast(i)); return false; } } STACK_OF(CRYPTO_BUFFER) *buffers = SSL_get0_server_requested_CAs(ssl); if (sk_CRYPTO_BUFFER_num(buffers) != num_received) { fprintf(stderr, "Mismatch between SSL_get_server_requested_CAs and " "SSL_get_client_CA_list.\n"); return false; } } return true; } static int ClientCertCallback(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey) { if (!CheckCertificateRequest(ssl)) { return -1; } if (GetTestConfig(ssl)->async && !GetTestState(ssl)->cert_ready) { return -1; } bssl::UniquePtr x509; bssl::UniquePtr chain; bssl::UniquePtr pkey; if (!GetCertificate(ssl, &x509, &chain, &pkey)) { return -1; } // Return zero for no certificate. if (!x509) { return 0; } // Chains and asynchronous private keys are not supported with client_cert_cb. *out_x509 = x509.release(); *out_pkey = pkey.release(); return 1; } static int CertCallback(SSL *ssl, void *arg) { const TestConfig *config = GetTestConfig(ssl); // Check the CertificateRequest metadata is as expected. if (!SSL_is_server(ssl) && !CheckCertificateRequest(ssl)) { return -1; } if (config->fail_cert_callback) { return 0; } // The certificate will be installed via other means. if (!config->async || config->use_early_callback) { return 1; } if (!GetTestState(ssl)->cert_ready) { return -1; } if (!InstallCertificate(ssl)) { return 0; } return 1; } static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) { SSL* ssl = (SSL*)X509_STORE_CTX_get_ex_data(store_ctx, SSL_get_ex_data_X509_STORE_CTX_idx()); const TestConfig *config = GetTestConfig(ssl); if (!config->expected_ocsp_response.empty()) { const uint8_t *data; size_t len; SSL_get0_ocsp_response(ssl, &data, &len); if (len == 0) { fprintf(stderr, "OCSP response not available in verify callback\n"); return 0; } } return 1; } static int VerifyFail(X509_STORE_CTX *store_ctx, void *arg) { store_ctx->error = X509_V_ERR_APPLICATION_VERIFICATION; return 0; } static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out, unsigned int *out_len, void *arg) { const TestConfig *config = GetTestConfig(ssl); if (config->advertise_npn.empty()) { return SSL_TLSEXT_ERR_NOACK; } *out = (const uint8_t*)config->advertise_npn.data(); *out_len = config->advertise_npn.size(); return SSL_TLSEXT_ERR_OK; } static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen, const uint8_t* in, unsigned inlen, void* arg) { const TestConfig *config = GetTestConfig(ssl); if (config->select_next_proto.empty()) { return SSL_TLSEXT_ERR_NOACK; } *out = (uint8_t*)config->select_next_proto.data(); *outlen = config->select_next_proto.size(); return SSL_TLSEXT_ERR_OK; } static int AlpnSelectCallback(SSL* ssl, const uint8_t** out, uint8_t* outlen, const uint8_t* in, unsigned inlen, void* arg) { if (GetTestState(ssl)->alpn_select_done) { fprintf(stderr, "AlpnSelectCallback called after completion.\n"); exit(1); } GetTestState(ssl)->alpn_select_done = true; const TestConfig *config = GetTestConfig(ssl); if (config->decline_alpn) { return SSL_TLSEXT_ERR_NOACK; } if (!config->expected_advertised_alpn.empty() && (config->expected_advertised_alpn.size() != inlen || OPENSSL_memcmp(config->expected_advertised_alpn.data(), in, inlen) != 0)) { fprintf(stderr, "bad ALPN select callback inputs\n"); exit(1); } *out = (const uint8_t*)config->select_alpn.data(); *outlen = config->select_alpn.size(); if (GetTestState(ssl)->is_resume && config->select_resume_alpn.size() > 0) { *out = (const uint8_t*)config->select_resume_alpn.data(); *outlen = config->select_resume_alpn.size(); } return SSL_TLSEXT_ERR_OK; } static unsigned PskClientCallback(SSL *ssl, const char *hint, char *out_identity, unsigned max_identity_len, uint8_t *out_psk, unsigned max_psk_len) { const TestConfig *config = GetTestConfig(ssl); if (config->psk_identity.empty()) { if (hint != nullptr) { fprintf(stderr, "Server PSK hint was non-null.\n"); return 0; } } else if (hint == nullptr || strcmp(hint, config->psk_identity.c_str()) != 0) { fprintf(stderr, "Server PSK hint did not match.\n"); return 0; } // Account for the trailing '\0' for the identity. if (config->psk_identity.size() >= max_identity_len || config->psk.size() > max_psk_len) { fprintf(stderr, "PSK buffers too small\n"); return 0; } BUF_strlcpy(out_identity, config->psk_identity.c_str(), max_identity_len); OPENSSL_memcpy(out_psk, config->psk.data(), config->psk.size()); return config->psk.size(); } static unsigned PskServerCallback(SSL *ssl, const char *identity, uint8_t *out_psk, unsigned max_psk_len) { const TestConfig *config = GetTestConfig(ssl); if (strcmp(identity, config->psk_identity.c_str()) != 0) { fprintf(stderr, "Client PSK identity did not match.\n"); return 0; } if (config->psk.size() > max_psk_len) { fprintf(stderr, "PSK buffers too small\n"); return 0; } OPENSSL_memcpy(out_psk, config->psk.data(), config->psk.size()); return config->psk.size(); } static timeval g_clock; static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) { *out_clock = g_clock; } static void ChannelIdCallback(SSL *ssl, EVP_PKEY **out_pkey) { *out_pkey = GetTestState(ssl)->channel_id.release(); } static SSL_SESSION *GetSessionCallback(SSL *ssl, uint8_t *data, int len, int *copy) { TestState *async_state = GetTestState(ssl); if (async_state->session) { *copy = 0; return async_state->session.release(); } else if (async_state->pending_session) { return SSL_magic_pending_session_ptr(); } else { return NULL; } } static int DDoSCallback(const SSL_CLIENT_HELLO *client_hello) { const TestConfig *config = GetTestConfig(client_hello->ssl); static int callback_num = 0; callback_num++; if (config->fail_ddos_callback || (config->fail_second_ddos_callback && callback_num == 2)) { return 0; } return 1; } static void InfoCallback(const SSL *ssl, int type, int val) { if (type == SSL_CB_HANDSHAKE_DONE) { if (GetTestConfig(ssl)->handshake_never_done) { fprintf(stderr, "Handshake unexpectedly completed.\n"); // Abort before any expected error code is printed, to ensure the overall // test fails. abort(); } GetTestState(ssl)->handshake_done = true; // Callbacks may be called again on a new handshake. GetTestState(ssl)->ticket_decrypt_done = false; GetTestState(ssl)->alpn_select_done = false; } } static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) { GetTestState(ssl)->got_new_session = true; GetTestState(ssl)->new_session.reset(session); return 1; } static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv, EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, int encrypt) { if (!encrypt) { if (GetTestState(ssl)->ticket_decrypt_done) { fprintf(stderr, "TicketKeyCallback called after completion.\n"); return -1; } GetTestState(ssl)->ticket_decrypt_done = true; } // This is just test code, so use the all-zeros key. static const uint8_t kZeros[16] = {0}; if (encrypt) { OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros)); RAND_bytes(iv, 16); } else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) { return 0; } if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) || !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) { return -1; } if (!encrypt) { return GetTestConfig(ssl)->renew_ticket ? 2 : 1; } return 1; } // kCustomExtensionValue is the extension value that the custom extension // callbacks will add. static const uint16_t kCustomExtensionValue = 1234; static void *const kCustomExtensionAddArg = reinterpret_cast(kCustomExtensionValue); static void *const kCustomExtensionParseArg = reinterpret_cast(kCustomExtensionValue + 1); static const char kCustomExtensionContents[] = "custom extension"; static int CustomExtensionAddCallback(SSL *ssl, unsigned extension_value, const uint8_t **out, size_t *out_len, int *out_alert_value, void *add_arg) { if (extension_value != kCustomExtensionValue || add_arg != kCustomExtensionAddArg) { abort(); } if (GetTestConfig(ssl)->custom_extension_skip) { return 0; } if (GetTestConfig(ssl)->custom_extension_fail_add) { return -1; } *out = reinterpret_cast(kCustomExtensionContents); *out_len = sizeof(kCustomExtensionContents) - 1; return 1; } static void CustomExtensionFreeCallback(SSL *ssl, unsigned extension_value, const uint8_t *out, void *add_arg) { if (extension_value != kCustomExtensionValue || add_arg != kCustomExtensionAddArg || out != reinterpret_cast(kCustomExtensionContents)) { abort(); } } static int CustomExtensionParseCallback(SSL *ssl, unsigned extension_value, const uint8_t *contents, size_t contents_len, int *out_alert_value, void *parse_arg) { if (extension_value != kCustomExtensionValue || parse_arg != kCustomExtensionParseArg) { abort(); } if (contents_len != sizeof(kCustomExtensionContents) - 1 || OPENSSL_memcmp(contents, kCustomExtensionContents, contents_len) != 0) { *out_alert_value = SSL_AD_DECODE_ERROR; return 0; } return 1; } static int ServerNameCallback(SSL *ssl, int *out_alert, void *arg) { // SNI must be accessible from the SNI callback. const TestConfig *config = GetTestConfig(ssl); const char *server_name = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); if (server_name == nullptr || std::string(server_name) != config->expected_server_name) { fprintf(stderr, "servername mismatch (got %s; want %s)\n", server_name, config->expected_server_name.c_str()); return SSL_TLSEXT_ERR_ALERT_FATAL; } return SSL_TLSEXT_ERR_OK; } // Connect returns a new socket connected to localhost on |port| or -1 on // error. static int Connect(uint16_t port) { int sock = socket(AF_INET, SOCK_STREAM, 0); if (sock == -1) { PrintSocketError("socket"); return -1; } int nodelay = 1; if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, reinterpret_cast(&nodelay), sizeof(nodelay)) != 0) { PrintSocketError("setsockopt"); closesocket(sock); return -1; } sockaddr_in sin; OPENSSL_memset(&sin, 0, sizeof(sin)); sin.sin_family = AF_INET; sin.sin_port = htons(port); if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) { PrintSocketError("inet_pton"); closesocket(sock); return -1; } if (connect(sock, reinterpret_cast(&sin), sizeof(sin)) != 0) { PrintSocketError("connect"); closesocket(sock); return -1; } return sock; } class SocketCloser { public: explicit SocketCloser(int sock) : sock_(sock) {} ~SocketCloser() { // Half-close and drain the socket before releasing it. This seems to be // necessary for graceful shutdown on Windows. It will also avoid write // failures in the test runner. #if defined(OPENSSL_WINDOWS) shutdown(sock_, SD_SEND); #else shutdown(sock_, SHUT_WR); #endif while (true) { char buf[1024]; if (recv(sock_, buf, sizeof(buf), 0) <= 0) { break; } } closesocket(sock_); } private: const int sock_; }; static bssl::UniquePtr SetupCtx(const TestConfig *config) { bssl::UniquePtr ssl_ctx(SSL_CTX_new( config->is_dtls ? DTLS_method() : TLS_method())); if (!ssl_ctx) { return nullptr; } SSL_CTX_set0_buffer_pool(ssl_ctx.get(), g_pool); // Enable TLS 1.3 for tests. if (!config->is_dtls && !SSL_CTX_set_max_proto_version(ssl_ctx.get(), TLS1_3_VERSION)) { return nullptr; } std::string cipher_list = "ALL"; if (!config->cipher.empty()) { cipher_list = config->cipher; SSL_CTX_set_options(ssl_ctx.get(), SSL_OP_CIPHER_SERVER_PREFERENCE); } if (!SSL_CTX_set_strict_cipher_list(ssl_ctx.get(), cipher_list.c_str())) { return nullptr; } bssl::UniquePtr dh(DH_get_2048_256(NULL)); if (!dh) { return nullptr; } if (config->use_sparse_dh_prime) { // This prime number is 2^1024 + 643 – a value just above a power of two. // Because of its form, values modulo it are essentially certain to be one // byte shorter. This is used to test padding of these values. if (BN_hex2bn( &dh->p, "1000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000028" "3") == 0 || !BN_set_word(dh->g, 2)) { return nullptr; } BN_free(dh->q); dh->q = NULL; dh->priv_length = 0; } if (!SSL_CTX_set_tmp_dh(ssl_ctx.get(), dh.get())) { return nullptr; } if (config->async && config->is_server) { // Disable the internal session cache. To test asynchronous session lookup, // we use an external session cache. SSL_CTX_set_session_cache_mode( ssl_ctx.get(), SSL_SESS_CACHE_BOTH | SSL_SESS_CACHE_NO_INTERNAL); SSL_CTX_sess_set_get_cb(ssl_ctx.get(), GetSessionCallback); } else { SSL_CTX_set_session_cache_mode(ssl_ctx.get(), SSL_SESS_CACHE_BOTH); } SSL_CTX_set_select_certificate_cb(ssl_ctx.get(), SelectCertificateCallback); if (config->use_old_client_cert_callback) { SSL_CTX_set_client_cert_cb(ssl_ctx.get(), ClientCertCallback); } SSL_CTX_set_next_protos_advertised_cb( ssl_ctx.get(), NextProtosAdvertisedCallback, NULL); if (!config->select_next_proto.empty()) { SSL_CTX_set_next_proto_select_cb(ssl_ctx.get(), NextProtoSelectCallback, NULL); } if (!config->select_alpn.empty() || !config->select_resume_alpn.empty() || config->decline_alpn) { SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL); } SSL_CTX_set_channel_id_cb(ssl_ctx.get(), ChannelIdCallback); SSL_CTX_set_current_time_cb(ssl_ctx.get(), CurrentTimeCallback); SSL_CTX_set_info_callback(ssl_ctx.get(), InfoCallback); SSL_CTX_sess_set_new_cb(ssl_ctx.get(), NewSessionCallback); if (config->use_ticket_callback) { SSL_CTX_set_tlsext_ticket_key_cb(ssl_ctx.get(), TicketKeyCallback); } if (config->enable_client_custom_extension && !SSL_CTX_add_client_custom_ext( ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback, CustomExtensionFreeCallback, kCustomExtensionAddArg, CustomExtensionParseCallback, kCustomExtensionParseArg)) { return nullptr; } if (config->enable_server_custom_extension && !SSL_CTX_add_server_custom_ext( ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback, CustomExtensionFreeCallback, kCustomExtensionAddArg, CustomExtensionParseCallback, kCustomExtensionParseArg)) { return nullptr; } if (config->verify_fail) { SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifyFail, NULL); } else { SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifySucceed, NULL); } if (!config->signed_cert_timestamps.empty() && !SSL_CTX_set_signed_cert_timestamp_list( ssl_ctx.get(), (const uint8_t *)config->signed_cert_timestamps.data(), config->signed_cert_timestamps.size())) { return nullptr; } if (!config->use_client_ca_list.empty()) { if (config->use_client_ca_list == "") { SSL_CTX_set_client_CA_list(ssl_ctx.get(), nullptr); } else { bssl::UniquePtr names = DecodeHexX509Names(config->use_client_ca_list); SSL_CTX_set_client_CA_list(ssl_ctx.get(), names.release()); } } if (config->enable_grease) { SSL_CTX_set_grease_enabled(ssl_ctx.get(), 1); } if (!config->expected_server_name.empty()) { SSL_CTX_set_tlsext_servername_callback(ssl_ctx.get(), ServerNameCallback); } if (!config->ticket_key.empty() && !SSL_CTX_set_tlsext_ticket_keys(ssl_ctx.get(), config->ticket_key.data(), config->ticket_key.size())) { return nullptr; } if (config->enable_early_data) { SSL_CTX_set_early_data_enabled(ssl_ctx.get(), 1); } return ssl_ctx; } // RetryAsync is called after a failed operation on |ssl| with return code // |ret|. If the operation should be retried, it simulates one asynchronous // event and returns true. Otherwise it returns false. static bool RetryAsync(SSL *ssl, int ret) { // No error; don't retry. if (ret >= 0) { return false; } TestState *test_state = GetTestState(ssl); assert(GetTestConfig(ssl)->async); if (test_state->packeted_bio != nullptr && PacketedBioAdvanceClock(test_state->packeted_bio)) { // The DTLS retransmit logic silently ignores write failures. So the test // may progress, allow writes through synchronously. AsyncBioEnforceWriteQuota(test_state->async_bio, false); int timeout_ret = DTLSv1_handle_timeout(ssl); AsyncBioEnforceWriteQuota(test_state->async_bio, true); if (timeout_ret < 0) { fprintf(stderr, "Error retransmitting.\n"); return false; } return true; } // See if we needed to read or write more. If so, allow one byte through on // the appropriate end to maximally stress the state machine. switch (SSL_get_error(ssl, ret)) { case SSL_ERROR_WANT_READ: AsyncBioAllowRead(test_state->async_bio, 1); return true; case SSL_ERROR_WANT_WRITE: AsyncBioAllowWrite(test_state->async_bio, 1); return true; case SSL_ERROR_WANT_CHANNEL_ID_LOOKUP: { bssl::UniquePtr pkey = LoadPrivateKey(GetTestConfig(ssl)->send_channel_id); if (!pkey) { return false; } test_state->channel_id = std::move(pkey); return true; } case SSL_ERROR_WANT_X509_LOOKUP: test_state->cert_ready = true; return true; case SSL_ERROR_PENDING_SESSION: test_state->session = std::move(test_state->pending_session); return true; case SSL_ERROR_PENDING_CERTIFICATE: test_state->early_callback_ready = true; return true; case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION: test_state->private_key_retries++; return true; default: return false; } } // DoRead reads from |ssl|, resolving any asynchronous operations. It returns // the result value of the final |SSL_read| call. static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) { const TestConfig *config = GetTestConfig(ssl); TestState *test_state = GetTestState(ssl); int ret; do { if (config->async) { // The DTLS retransmit logic silently ignores write failures. So the test // may progress, allow writes through synchronously. |SSL_read| may // trigger a retransmit, so disconnect the write quota. AsyncBioEnforceWriteQuota(test_state->async_bio, false); } ret = config->peek_then_read ? SSL_peek(ssl, out, max_out) : SSL_read(ssl, out, max_out); if (config->async) { AsyncBioEnforceWriteQuota(test_state->async_bio, true); } // Run the exporter after each read. This is to test that the exporter fails // during a renegotiation. if (config->use_exporter_between_reads) { uint8_t buf; if (!SSL_export_keying_material(ssl, &buf, 1, NULL, 0, NULL, 0, 0)) { fprintf(stderr, "failed to export keying material\n"); return -1; } } } while (config->async && RetryAsync(ssl, ret)); if (config->peek_then_read && ret > 0) { std::unique_ptr buf(new uint8_t[static_cast(ret)]); // SSL_peek should synchronously return the same data. int ret2 = SSL_peek(ssl, buf.get(), ret); if (ret2 != ret || OPENSSL_memcmp(buf.get(), out, ret) != 0) { fprintf(stderr, "First and second SSL_peek did not match.\n"); return -1; } // SSL_read should synchronously return the same data and consume it. ret2 = SSL_read(ssl, buf.get(), ret); if (ret2 != ret || OPENSSL_memcmp(buf.get(), out, ret) != 0) { fprintf(stderr, "SSL_peek and SSL_read did not match.\n"); return -1; } } return ret; } // WriteAll writes |in_len| bytes from |in| to |ssl|, resolving any asynchronous // operations. It returns the result of the final |SSL_write| call. static int WriteAll(SSL *ssl, const uint8_t *in, size_t in_len) { const TestConfig *config = GetTestConfig(ssl); int ret; do { ret = SSL_write(ssl, in, in_len); if (ret > 0) { in += ret; in_len -= ret; } } while ((config->async && RetryAsync(ssl, ret)) || (ret > 0 && in_len > 0)); return ret; } // DoShutdown calls |SSL_shutdown|, resolving any asynchronous operations. It // returns the result of the final |SSL_shutdown| call. static int DoShutdown(SSL *ssl) { const TestConfig *config = GetTestConfig(ssl); int ret; do { ret = SSL_shutdown(ssl); } while (config->async && RetryAsync(ssl, ret)); return ret; } // DoSendFatalAlert calls |SSL_send_fatal_alert|, resolving any asynchronous // operations. It returns the result of the final |SSL_send_fatal_alert| call. static int DoSendFatalAlert(SSL *ssl, uint8_t alert) { const TestConfig *config = GetTestConfig(ssl); int ret; do { ret = SSL_send_fatal_alert(ssl, alert); } while (config->async && RetryAsync(ssl, ret)); return ret; } static uint16_t GetProtocolVersion(const SSL *ssl) { uint16_t version = SSL_version(ssl); if (!SSL_is_dtls(ssl)) { return version; } return 0x0201 + ~version; } // CheckHandshakeProperties checks, immediately after |ssl| completes its // initial handshake (or False Starts), whether all the properties are // consistent with the test configuration and invariants. static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) { const TestConfig *config = GetTestConfig(ssl); if (SSL_get_current_cipher(ssl) == nullptr) { fprintf(stderr, "null cipher after handshake\n"); return false; } if (is_resume && (!!SSL_session_reused(ssl) == config->expect_session_miss)) { fprintf(stderr, "session was%s reused\n", SSL_session_reused(ssl) ? "" : " not"); return false; } bool expect_handshake_done = (is_resume || !config->false_start) && !(config->is_server && SSL_early_data_accepted(ssl)); if (expect_handshake_done != GetTestState(ssl)->handshake_done) { fprintf(stderr, "handshake was%s completed\n", GetTestState(ssl)->handshake_done ? "" : " not"); return false; } if (expect_handshake_done && !config->is_server) { bool expect_new_session = !config->expect_no_session && (!SSL_session_reused(ssl) || config->expect_ticket_renewal) && // Session tickets are sent post-handshake in TLS 1.3. GetProtocolVersion(ssl) < TLS1_3_VERSION; if (expect_new_session != GetTestState(ssl)->got_new_session) { fprintf(stderr, "new session was%s cached, but we expected the opposite\n", GetTestState(ssl)->got_new_session ? "" : " not"); return false; } } if (!is_resume) { if (config->expect_session_id && !GetTestState(ssl)->got_new_session) { fprintf(stderr, "session was not cached on the server.\n"); return false; } if (config->expect_no_session_id && GetTestState(ssl)->got_new_session) { fprintf(stderr, "session was unexpectedly cached on the server.\n"); return false; } } if (config->is_server && !GetTestState(ssl)->early_callback_called) { fprintf(stderr, "early callback not called\n"); return false; } if (!config->expected_server_name.empty()) { const char *server_name = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); if (server_name == nullptr || server_name != config->expected_server_name) { fprintf(stderr, "servername mismatch (got %s; want %s)\n", server_name, config->expected_server_name.c_str()); return false; } } if (!config->expected_next_proto.empty()) { const uint8_t *next_proto; unsigned next_proto_len; SSL_get0_next_proto_negotiated(ssl, &next_proto, &next_proto_len); if (next_proto_len != config->expected_next_proto.size() || OPENSSL_memcmp(next_proto, config->expected_next_proto.data(), next_proto_len) != 0) { fprintf(stderr, "negotiated next proto mismatch\n"); return false; } } std::string expected_alpn = config->expected_alpn; if (is_resume && !config->expected_resume_alpn.empty()) { expected_alpn = config->expected_resume_alpn; } bool expect_no_alpn = (!is_resume && config->expect_no_alpn) || (is_resume && config->expect_no_resume_alpn); if (expect_no_alpn) { expected_alpn.clear(); } if (!expected_alpn.empty() || expect_no_alpn) { const uint8_t *alpn_proto; unsigned alpn_proto_len; SSL_get0_alpn_selected(ssl, &alpn_proto, &alpn_proto_len); if (alpn_proto_len != expected_alpn.size() || OPENSSL_memcmp(alpn_proto, expected_alpn.data(), alpn_proto_len) != 0) { fprintf(stderr, "negotiated alpn proto mismatch\n"); return false; } } if (!config->expected_channel_id.empty()) { uint8_t channel_id[64]; if (!SSL_get_tls_channel_id(ssl, channel_id, sizeof(channel_id))) { fprintf(stderr, "no channel id negotiated\n"); return false; } if (config->expected_channel_id.size() != 64 || OPENSSL_memcmp(config->expected_channel_id.data(), channel_id, 64) != 0) { fprintf(stderr, "channel id mismatch\n"); return false; } } if (config->expect_extended_master_secret && !SSL_get_extms_support(ssl)) { fprintf(stderr, "No EMS for connection when expected\n"); return false; } if (config->expect_secure_renegotiation && !SSL_get_secure_renegotiation_support(ssl)) { fprintf(stderr, "No secure renegotiation for connection when expected\n"); return false; } if (config->expect_no_secure_renegotiation && SSL_get_secure_renegotiation_support(ssl)) { fprintf(stderr, "Secure renegotiation unexpectedly negotiated for connection\n"); return false; } if (!config->expected_ocsp_response.empty()) { const uint8_t *data; size_t len; SSL_get0_ocsp_response(ssl, &data, &len); if (config->expected_ocsp_response.size() != len || OPENSSL_memcmp(config->expected_ocsp_response.data(), data, len) != 0) { fprintf(stderr, "OCSP response mismatch\n"); return false; } } if (!config->expected_signed_cert_timestamps.empty()) { const uint8_t *data; size_t len; SSL_get0_signed_cert_timestamp_list(ssl, &data, &len); if (config->expected_signed_cert_timestamps.size() != len || OPENSSL_memcmp(config->expected_signed_cert_timestamps.data(), data, len) != 0) { fprintf(stderr, "SCT list mismatch\n"); return false; } } if (config->expect_verify_result) { int expected_verify_result = config->verify_fail ? X509_V_ERR_APPLICATION_VERIFICATION : X509_V_OK; if (SSL_get_verify_result(ssl) != expected_verify_result) { fprintf(stderr, "Wrong certificate verification result\n"); return false; } } if (config->expect_peer_signature_algorithm != 0 && config->expect_peer_signature_algorithm != SSL_get_peer_signature_algorithm(ssl)) { fprintf(stderr, "Peer signature algorithm was %04x, wanted %04x.\n", SSL_get_peer_signature_algorithm(ssl), config->expect_peer_signature_algorithm); return false; } int expect_curve_id = config->expect_curve_id; if (is_resume && config->expect_resume_curve_id != 0) { expect_curve_id = config->expect_resume_curve_id; } if (expect_curve_id != 0) { uint16_t curve_id = SSL_get_curve_id(ssl); if (static_cast(expect_curve_id) != curve_id) { fprintf(stderr, "curve_id was %04x, wanted %04x\n", curve_id, static_cast(expect_curve_id)); return false; } } uint16_t cipher_id = static_cast(SSL_CIPHER_get_id(SSL_get_current_cipher(ssl))); if (config->expect_cipher_aes != 0 && EVP_has_aes_hardware() && static_cast(config->expect_cipher_aes) != cipher_id) { fprintf(stderr, "Cipher ID was %04x, wanted %04x (has AES hardware)\n", cipher_id, static_cast(config->expect_cipher_aes)); return false; } if (config->expect_cipher_no_aes != 0 && !EVP_has_aes_hardware() && static_cast(config->expect_cipher_no_aes) != cipher_id) { fprintf(stderr, "Cipher ID was %04x, wanted %04x (no AES hardware)\n", cipher_id, static_cast(config->expect_cipher_no_aes)); return false; } if (is_resume) { if ((config->expect_accept_early_data && !SSL_early_data_accepted(ssl)) || (config->expect_reject_early_data && SSL_early_data_accepted(ssl))) { fprintf(stderr, "Early data was%s accepted, but we expected the opposite\n", SSL_early_data_accepted(ssl) ? "" : " not"); return false; } } if (!config->psk.empty()) { if (SSL_get_peer_cert_chain(ssl) != nullptr) { fprintf(stderr, "Received peer certificate on a PSK cipher.\n"); return false; } } else if (!config->is_server || config->require_any_client_certificate) { if (SSL_get_peer_cert_chain(ssl) == nullptr) { fprintf(stderr, "Received no peer certificate but expected one.\n"); return false; } } if (!config->expect_peer_cert_file.empty()) { bssl::UniquePtr expect_leaf; bssl::UniquePtr expect_chain; if (!LoadCertificate(&expect_leaf, &expect_chain, config->expect_peer_cert_file)) { return false; } // For historical reasons, clients report a chain with a leaf and servers // without. if (!config->is_server) { if (!sk_X509_insert(expect_chain.get(), expect_leaf.get(), 0)) { return false; } X509_up_ref(expect_leaf.get()); // sk_X509_push takes ownership. } bssl::UniquePtr leaf(SSL_get_peer_certificate(ssl)); STACK_OF(X509) *chain = SSL_get_peer_cert_chain(ssl); if (X509_cmp(leaf.get(), expect_leaf.get()) != 0) { fprintf(stderr, "Received a different leaf certificate than expected.\n"); return false; } if (sk_X509_num(chain) != sk_X509_num(expect_chain.get())) { fprintf(stderr, "Received a chain of length %zu instead of %zu.\n", sk_X509_num(chain), sk_X509_num(expect_chain.get())); return false; } for (size_t i = 0; i < sk_X509_num(chain); i++) { if (X509_cmp(sk_X509_value(chain, i), sk_X509_value(expect_chain.get(), i)) != 0) { fprintf(stderr, "Chain certificate %zu did not match.\n", i + 1); return false; } } } bool expected_sha256_client_cert = config->expect_sha256_client_cert_initial; if (is_resume) { expected_sha256_client_cert = config->expect_sha256_client_cert_resume; } if (SSL_get_session(ssl)->peer_sha256_valid != expected_sha256_client_cert) { fprintf(stderr, "Unexpected SHA-256 client cert state: expected:%d is_resume:%d.\n", expected_sha256_client_cert, is_resume); return false; } if (expected_sha256_client_cert && SSL_get_session(ssl)->certs != nullptr) { fprintf(stderr, "Have both client cert and SHA-256 hash: is_resume:%d.\n", is_resume); return false; } if (is_resume && config->expect_ticket_age_skew != 0 && SSL_get_ticket_age_skew(ssl) != config->expect_ticket_age_skew) { fprintf(stderr, "Ticket age skew was %" PRId32 ", wanted %d\n", SSL_get_ticket_age_skew(ssl), config->expect_ticket_age_skew); return false; } return true; } // DoExchange runs a test SSL exchange against the peer. On success, it returns // true and sets |*out_session| to the negotiated SSL session. If the test is a // resumption attempt, |is_resume| is true and |session| is the session from the // previous exchange. static bool DoExchange(bssl::UniquePtr *out_session, SSL_CTX *ssl_ctx, const TestConfig *config, bool is_resume, SSL_SESSION *session) { if (is_resume && config->enable_resume_early_data) { SSL_CTX_set_early_data_enabled(ssl_ctx, 1); } bssl::UniquePtr ssl(SSL_new(ssl_ctx)); if (!ssl) { return false; } if (!SetTestConfig(ssl.get(), config) || !SetTestState(ssl.get(), std::unique_ptr(new TestState))) { return false; } GetTestState(ssl.get())->is_resume = is_resume; if (config->fallback_scsv && !SSL_set_mode(ssl.get(), SSL_MODE_SEND_FALLBACK_SCSV)) { return false; } // Install the certificate synchronously if nothing else will handle it. if (!config->use_early_callback && !config->use_old_client_cert_callback && !config->async && !InstallCertificate(ssl.get())) { return false; } if (!config->use_old_client_cert_callback) { SSL_set_cert_cb(ssl.get(), CertCallback, nullptr); } if (config->require_any_client_certificate) { SSL_set_verify(ssl.get(), SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT, NULL); } if (config->verify_peer) { SSL_set_verify(ssl.get(), SSL_VERIFY_PEER, NULL); } if (config->false_start) { SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_FALSE_START); } if (config->cbc_record_splitting) { SSL_set_mode(ssl.get(), SSL_MODE_CBC_RECORD_SPLITTING); } if (config->partial_write) { SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE); } if (config->no_tls13) { SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_3); } if (config->no_tls12) { SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2); } if (config->no_tls11) { SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_1); } if (config->no_tls1) { SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1); } if (config->no_ssl3) { SSL_set_options(ssl.get(), SSL_OP_NO_SSLv3); } if (!config->expected_channel_id.empty() || config->enable_channel_id) { SSL_set_tls_channel_id_enabled(ssl.get(), 1); } if (!config->send_channel_id.empty()) { SSL_set_tls_channel_id_enabled(ssl.get(), 1); if (!config->async) { // The async case will be supplied by |ChannelIdCallback|. bssl::UniquePtr pkey = LoadPrivateKey(config->send_channel_id); if (!pkey || !SSL_set1_tls_channel_id(ssl.get(), pkey.get())) { return false; } } } if (!config->host_name.empty() && !SSL_set_tlsext_host_name(ssl.get(), config->host_name.c_str())) { return false; } if (!config->advertise_alpn.empty() && SSL_set_alpn_protos(ssl.get(), (const uint8_t *)config->advertise_alpn.data(), config->advertise_alpn.size()) != 0) { return false; } if (!config->psk.empty()) { SSL_set_psk_client_callback(ssl.get(), PskClientCallback); SSL_set_psk_server_callback(ssl.get(), PskServerCallback); } if (!config->psk_identity.empty() && !SSL_use_psk_identity_hint(ssl.get(), config->psk_identity.c_str())) { return false; } if (!config->srtp_profiles.empty() && !SSL_set_srtp_profiles(ssl.get(), config->srtp_profiles.c_str())) { return false; } if (config->enable_ocsp_stapling) { SSL_enable_ocsp_stapling(ssl.get()); } if (config->enable_signed_cert_timestamps) { SSL_enable_signed_cert_timestamps(ssl.get()); } if (config->min_version != 0 && !SSL_set_min_proto_version(ssl.get(), (uint16_t)config->min_version)) { return false; } if (config->max_version != 0 && !SSL_set_max_proto_version(ssl.get(), (uint16_t)config->max_version)) { return false; } if (config->mtu != 0) { SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU); SSL_set_mtu(ssl.get(), config->mtu); } if (config->install_ddos_callback) { SSL_CTX_set_dos_protection_cb(ssl_ctx, DDoSCallback); } if (config->renegotiate_once) { SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_once); } if (config->renegotiate_freely) { SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_freely); } if (config->renegotiate_ignore) { SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_ignore); } if (!config->check_close_notify) { SSL_set_quiet_shutdown(ssl.get(), 1); } if (config->p384_only) { int nid = NID_secp384r1; if (!SSL_set1_curves(ssl.get(), &nid, 1)) { return false; } } if (config->enable_all_curves) { static const int kAllCurves[] = { NID_secp224r1, NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1, NID_X25519, }; if (!SSL_set1_curves(ssl.get(), kAllCurves, OPENSSL_ARRAY_SIZE(kAllCurves))) { return false; } } if (config->initial_timeout_duration_ms > 0) { DTLSv1_set_initial_timeout_duration(ssl.get(), config->initial_timeout_duration_ms); } if (config->max_cert_list > 0) { SSL_set_max_cert_list(ssl.get(), config->max_cert_list); } if (!is_resume && config->retain_only_sha256_client_cert_initial) { SSL_set_retain_only_sha256_of_client_certs(ssl.get(), 1); } if (is_resume && config->retain_only_sha256_client_cert_resume) { SSL_set_retain_only_sha256_of_client_certs(ssl.get(), 1); } if (config->max_send_fragment > 0) { SSL_set_max_send_fragment(ssl.get(), config->max_send_fragment); } int sock = Connect(config->port); if (sock == -1) { return false; } SocketCloser closer(sock); bssl::UniquePtr bio(BIO_new_socket(sock, BIO_NOCLOSE)); if (!bio) { return false; } if (config->is_dtls) { bssl::UniquePtr packeted = PacketedBioCreate(&g_clock); if (!packeted) { return false; } GetTestState(ssl.get())->packeted_bio = packeted.get(); BIO_push(packeted.get(), bio.release()); bio = std::move(packeted); } if (config->async) { bssl::UniquePtr async_scoped = config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate(); if (!async_scoped) { return false; } BIO_push(async_scoped.get(), bio.release()); GetTestState(ssl.get())->async_bio = async_scoped.get(); bio = std::move(async_scoped); } SSL_set_bio(ssl.get(), bio.get(), bio.get()); bio.release(); // SSL_set_bio takes ownership. if (session != NULL) { if (!config->is_server) { if (SSL_set_session(ssl.get(), session) != 1) { return false; } } else if (config->async) { // The internal session cache is disabled, so install the session // manually. SSL_SESSION_up_ref(session); GetTestState(ssl.get())->pending_session.reset(session); } } if (SSL_get_current_cipher(ssl.get()) != nullptr) { fprintf(stderr, "non-null cipher before handshake\n"); return false; } if (config->is_server) { SSL_set_accept_state(ssl.get()); } else { SSL_set_connect_state(ssl.get()); } int ret; if (!config->implicit_handshake) { do { ret = SSL_do_handshake(ssl.get()); } while (config->async && RetryAsync(ssl.get(), ret)); if (ret != 1 || !CheckHandshakeProperties(ssl.get(), is_resume)) { return false; } if (config->handshake_twice) { do { ret = SSL_do_handshake(ssl.get()); } while (config->async && RetryAsync(ssl.get(), ret)); if (ret != 1) { return false; } } // Skip the |config->async| logic as this should be a no-op. if (config->no_op_extra_handshake && SSL_do_handshake(ssl.get()) != 1) { fprintf(stderr, "Extra SSL_do_handshake was not a no-op.\n"); return false; } // Reset the state to assert later that the callback isn't called in // renegotations. GetTestState(ssl.get())->got_new_session = false; } if (config->export_keying_material > 0) { std::vector result( static_cast(config->export_keying_material)); if (!SSL_export_keying_material( ssl.get(), result.data(), result.size(), config->export_label.data(), config->export_label.size(), reinterpret_cast(config->export_context.data()), config->export_context.size(), config->use_export_context)) { fprintf(stderr, "failed to export keying material\n"); return false; } if (WriteAll(ssl.get(), result.data(), result.size()) < 0) { return false; } } if (config->tls_unique) { uint8_t tls_unique[16]; size_t tls_unique_len; if (!SSL_get_tls_unique(ssl.get(), tls_unique, &tls_unique_len, sizeof(tls_unique))) { fprintf(stderr, "failed to get tls-unique\n"); return false; } if (tls_unique_len != 12) { fprintf(stderr, "expected 12 bytes of tls-unique but got %u", static_cast(tls_unique_len)); return false; } if (WriteAll(ssl.get(), tls_unique, tls_unique_len) < 0) { return false; } } if (config->send_alert) { if (DoSendFatalAlert(ssl.get(), SSL_AD_DECOMPRESSION_FAILURE) < 0) { return false; } return true; } if (config->write_different_record_sizes) { if (config->is_dtls) { fprintf(stderr, "write_different_record_sizes not supported for DTLS\n"); return false; } // This mode writes a number of different record sizes in an attempt to // trip up the CBC record splitting code. static const size_t kBufLen = 32769; std::unique_ptr buf(new uint8_t[kBufLen]); OPENSSL_memset(buf.get(), 0x42, kBufLen); static const size_t kRecordSizes[] = { 0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769}; for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kRecordSizes); i++) { const size_t len = kRecordSizes[i]; if (len > kBufLen) { fprintf(stderr, "Bad kRecordSizes value.\n"); return false; } if (WriteAll(ssl.get(), buf.get(), len) < 0) { return false; } } } else { if (config->read_with_unfinished_write) { if (!config->async) { fprintf(stderr, "-read-with-unfinished-write requires -async.\n"); return false; } int write_ret = SSL_write(ssl.get(), reinterpret_cast("unfinished"), 10); if (SSL_get_error(ssl.get(), write_ret) != SSL_ERROR_WANT_WRITE) { fprintf(stderr, "Failed to leave unfinished write.\n"); return false; } } if (config->shim_writes_first) { if (WriteAll(ssl.get(), reinterpret_cast("hello"), 5) < 0) { return false; } } if (!config->shim_shuts_down) { for (;;) { // Read only 512 bytes at a time in TLS to ensure records may be // returned in multiple reads. size_t read_size = config->is_dtls ? 16384 : 512; if (config->read_size > 0) { read_size = config->read_size; } std::unique_ptr buf(new uint8_t[read_size]); int n = DoRead(ssl.get(), buf.get(), read_size); int err = SSL_get_error(ssl.get(), n); if (err == SSL_ERROR_ZERO_RETURN || (n == 0 && err == SSL_ERROR_SYSCALL)) { if (n != 0) { fprintf(stderr, "Invalid SSL_get_error output\n"); return false; } // Stop on either clean or unclean shutdown. break; } else if (err != SSL_ERROR_NONE) { if (n > 0) { fprintf(stderr, "Invalid SSL_get_error output\n"); return false; } return false; } // Successfully read data. if (n <= 0) { fprintf(stderr, "Invalid SSL_get_error output\n"); return false; } // After a successful read, with or without False Start, the handshake // must be complete unless we are doing early data. if (!GetTestState(ssl.get())->handshake_done && !SSL_early_data_accepted(ssl.get())) { fprintf(stderr, "handshake was not completed after SSL_read\n"); return false; } for (int i = 0; i < n; i++) { buf[i] ^= 0xff; } if (WriteAll(ssl.get(), buf.get(), n) < 0) { return false; } } } } if (!config->is_server && !config->false_start && !config->implicit_handshake && // Session tickets are sent post-handshake in TLS 1.3. GetProtocolVersion(ssl.get()) < TLS1_3_VERSION && GetTestState(ssl.get())->got_new_session) { fprintf(stderr, "new session was established after the handshake\n"); return false; } if (GetProtocolVersion(ssl.get()) >= TLS1_3_VERSION && !config->is_server) { bool expect_new_session = !config->expect_no_session && !config->shim_shuts_down; if (expect_new_session != GetTestState(ssl.get())->got_new_session) { fprintf(stderr, "new session was%s cached, but we expected the opposite\n", GetTestState(ssl.get())->got_new_session ? "" : " not"); return false; } if (expect_new_session) { bool got_early_data_info = GetTestState(ssl.get())->new_session->ticket_max_early_data != 0; if (config->expect_early_data_info != got_early_data_info) { fprintf( stderr, "new session did%s include ticket_early_data_info, but we expected " "the opposite\n", got_early_data_info ? "" : " not"); return false; } } } if (out_session) { *out_session = std::move(GetTestState(ssl.get())->new_session); } ret = DoShutdown(ssl.get()); if (config->shim_shuts_down && config->check_close_notify) { // We initiate shutdown, so |SSL_shutdown| will return in two stages. First // it returns zero when our close_notify is sent, then one when the peer's // is received. if (ret != 0) { fprintf(stderr, "Unexpected SSL_shutdown result: %d != 0\n", ret); return false; } ret = DoShutdown(ssl.get()); } if (ret != 1) { fprintf(stderr, "Unexpected SSL_shutdown result: %d != 1\n", ret); return false; } if (SSL_total_renegotiations(ssl.get()) != config->expect_total_renegotiations) { fprintf(stderr, "Expected %d renegotiations, got %d\n", config->expect_total_renegotiations, SSL_total_renegotiations(ssl.get())); return false; } return true; } class StderrDelimiter { public: ~StderrDelimiter() { fprintf(stderr, "--- DONE ---\n"); } }; int main(int argc, char **argv) { // To distinguish ASan's output from ours, add a trailing message to stderr. // Anything following this line will be considered an error. StderrDelimiter delimiter; #if defined(OPENSSL_WINDOWS) /* Initialize Winsock. */ WORD wsa_version = MAKEWORD(2, 2); WSADATA wsa_data; int wsa_err = WSAStartup(wsa_version, &wsa_data); if (wsa_err != 0) { fprintf(stderr, "WSAStartup failed: %d\n", wsa_err); return 1; } if (wsa_data.wVersion != wsa_version) { fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion); return 1; } #else signal(SIGPIPE, SIG_IGN); #endif CRYPTO_library_init(); g_config_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL); g_state_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, TestStateExFree); if (g_config_index < 0 || g_state_index < 0) { return 1; } TestConfig config; if (!ParseConfig(argc - 1, argv + 1, &config)) { return Usage(argv[0]); } g_pool = CRYPTO_BUFFER_POOL_new(); // Some code treats the zero time special, so initialize the clock to a // non-zero time. g_clock.tv_sec = 1234; g_clock.tv_usec = 1234; bssl::UniquePtr ssl_ctx = SetupCtx(&config); if (!ssl_ctx) { ERR_print_errors_fp(stderr); return 1; } bssl::UniquePtr session; for (int i = 0; i < config.resume_count + 1; i++) { bool is_resume = i > 0; if (is_resume && !config.is_server && !session) { fprintf(stderr, "No session to offer.\n"); return 1; } bssl::UniquePtr offer_session = std::move(session); if (!DoExchange(&session, ssl_ctx.get(), &config, is_resume, offer_session.get())) { fprintf(stderr, "Connection %d failed.\n", i + 1); ERR_print_errors_fp(stderr); return 1; } if (config.resumption_delay != 0) { g_clock.tv_sec += config.resumption_delay; } } return 0; }