/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include "internal.h" #include "../../internal.h" // The quick sieve algorithm approach to weeding out primes is Philip // Zimmermann's, as implemented in PGP. I have had a read of his comments and // implemented my own version. #define NUMPRIMES 2048 // primes contains all the primes that fit into a uint16_t. static const uint16_t primes[NUMPRIMES] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973, 10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103, 10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193, 10211, 10223, 10243, 10247, 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313, 10321, 10331, 10333, 10337, 10343, 10357, 10369, 10391, 10399, 10427, 10429, 10433, 10453, 10457, 10459, 10463, 10477, 10487, 10499, 10501, 10513, 10529, 10531, 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, 10631, 10639, 10651, 10657, 10663, 10667, 10687, 10691, 10709, 10711, 10723, 10729, 10733, 10739, 10753, 10771, 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859, 10861, 10867, 10883, 10889, 10891, 10903, 10909, 10937, 10939, 10949, 10957, 10973, 10979, 10987, 10993, 11003, 11027, 11047, 11057, 11059, 11069, 11071, 11083, 11087, 11093, 11113, 11117, 11119, 11131, 11149, 11159, 11161, 11171, 11173, 11177, 11197, 11213, 11239, 11243, 11251, 11257, 11261, 11273, 11279, 11287, 11299, 11311, 11317, 11321, 11329, 11351, 11353, 11369, 11383, 11393, 11399, 11411, 11423, 11437, 11443, 11447, 11467, 11471, 11483, 11489, 11491, 11497, 11503, 11519, 11527, 11549, 11551, 11579, 11587, 11593, 11597, 11617, 11621, 11633, 11657, 11677, 11681, 11689, 11699, 11701, 11717, 11719, 11731, 11743, 11777, 11779, 11783, 11789, 11801, 11807, 11813, 11821, 11827, 11831, 11833, 11839, 11863, 11867, 11887, 11897, 11903, 11909, 11923, 11927, 11933, 11939, 11941, 11953, 11959, 11969, 11971, 11981, 11987, 12007, 12011, 12037, 12041, 12043, 12049, 12071, 12073, 12097, 12101, 12107, 12109, 12113, 12119, 12143, 12149, 12157, 12161, 12163, 12197, 12203, 12211, 12227, 12239, 12241, 12251, 12253, 12263, 12269, 12277, 12281, 12289, 12301, 12323, 12329, 12343, 12347, 12373, 12377, 12379, 12391, 12401, 12409, 12413, 12421, 12433, 12437, 12451, 12457, 12473, 12479, 12487, 12491, 12497, 12503, 12511, 12517, 12527, 12539, 12541, 12547, 12553, 12569, 12577, 12583, 12589, 12601, 12611, 12613, 12619, 12637, 12641, 12647, 12653, 12659, 12671, 12689, 12697, 12703, 12713, 12721, 12739, 12743, 12757, 12763, 12781, 12791, 12799, 12809, 12821, 12823, 12829, 12841, 12853, 12889, 12893, 12899, 12907, 12911, 12917, 12919, 12923, 12941, 12953, 12959, 12967, 12973, 12979, 12983, 13001, 13003, 13007, 13009, 13033, 13037, 13043, 13049, 13063, 13093, 13099, 13103, 13109, 13121, 13127, 13147, 13151, 13159, 13163, 13171, 13177, 13183, 13187, 13217, 13219, 13229, 13241, 13249, 13259, 13267, 13291, 13297, 13309, 13313, 13327, 13331, 13337, 13339, 13367, 13381, 13397, 13399, 13411, 13417, 13421, 13441, 13451, 13457, 13463, 13469, 13477, 13487, 13499, 13513, 13523, 13537, 13553, 13567, 13577, 13591, 13597, 13613, 13619, 13627, 13633, 13649, 13669, 13679, 13681, 13687, 13691, 13693, 13697, 13709, 13711, 13721, 13723, 13729, 13751, 13757, 13759, 13763, 13781, 13789, 13799, 13807, 13829, 13831, 13841, 13859, 13873, 13877, 13879, 13883, 13901, 13903, 13907, 13913, 13921, 13931, 13933, 13963, 13967, 13997, 13999, 14009, 14011, 14029, 14033, 14051, 14057, 14071, 14081, 14083, 14087, 14107, 14143, 14149, 14153, 14159, 14173, 14177, 14197, 14207, 14221, 14243, 14249, 14251, 14281, 14293, 14303, 14321, 14323, 14327, 14341, 14347, 14369, 14387, 14389, 14401, 14407, 14411, 14419, 14423, 14431, 14437, 14447, 14449, 14461, 14479, 14489, 14503, 14519, 14533, 14537, 14543, 14549, 14551, 14557, 14561, 14563, 14591, 14593, 14621, 14627, 14629, 14633, 14639, 14653, 14657, 14669, 14683, 14699, 14713, 14717, 14723, 14731, 14737, 14741, 14747, 14753, 14759, 14767, 14771, 14779, 14783, 14797, 14813, 14821, 14827, 14831, 14843, 14851, 14867, 14869, 14879, 14887, 14891, 14897, 14923, 14929, 14939, 14947, 14951, 14957, 14969, 14983, 15013, 15017, 15031, 15053, 15061, 15073, 15077, 15083, 15091, 15101, 15107, 15121, 15131, 15137, 15139, 15149, 15161, 15173, 15187, 15193, 15199, 15217, 15227, 15233, 15241, 15259, 15263, 15269, 15271, 15277, 15287, 15289, 15299, 15307, 15313, 15319, 15329, 15331, 15349, 15359, 15361, 15373, 15377, 15383, 15391, 15401, 15413, 15427, 15439, 15443, 15451, 15461, 15467, 15473, 15493, 15497, 15511, 15527, 15541, 15551, 15559, 15569, 15581, 15583, 15601, 15607, 15619, 15629, 15641, 15643, 15647, 15649, 15661, 15667, 15671, 15679, 15683, 15727, 15731, 15733, 15737, 15739, 15749, 15761, 15767, 15773, 15787, 15791, 15797, 15803, 15809, 15817, 15823, 15859, 15877, 15881, 15887, 15889, 15901, 15907, 15913, 15919, 15923, 15937, 15959, 15971, 15973, 15991, 16001, 16007, 16033, 16057, 16061, 16063, 16067, 16069, 16073, 16087, 16091, 16097, 16103, 16111, 16127, 16139, 16141, 16183, 16187, 16189, 16193, 16217, 16223, 16229, 16231, 16249, 16253, 16267, 16273, 16301, 16319, 16333, 16339, 16349, 16361, 16363, 16369, 16381, 16411, 16417, 16421, 16427, 16433, 16447, 16451, 16453, 16477, 16481, 16487, 16493, 16519, 16529, 16547, 16553, 16561, 16567, 16573, 16603, 16607, 16619, 16631, 16633, 16649, 16651, 16657, 16661, 16673, 16691, 16693, 16699, 16703, 16729, 16741, 16747, 16759, 16763, 16787, 16811, 16823, 16829, 16831, 16843, 16871, 16879, 16883, 16889, 16901, 16903, 16921, 16927, 16931, 16937, 16943, 16963, 16979, 16981, 16987, 16993, 17011, 17021, 17027, 17029, 17033, 17041, 17047, 17053, 17077, 17093, 17099, 17107, 17117, 17123, 17137, 17159, 17167, 17183, 17189, 17191, 17203, 17207, 17209, 17231, 17239, 17257, 17291, 17293, 17299, 17317, 17321, 17327, 17333, 17341, 17351, 17359, 17377, 17383, 17387, 17389, 17393, 17401, 17417, 17419, 17431, 17443, 17449, 17467, 17471, 17477, 17483, 17489, 17491, 17497, 17509, 17519, 17539, 17551, 17569, 17573, 17579, 17581, 17597, 17599, 17609, 17623, 17627, 17657, 17659, 17669, 17681, 17683, 17707, 17713, 17729, 17737, 17747, 17749, 17761, 17783, 17789, 17791, 17807, 17827, 17837, 17839, 17851, 17863, }; // BN_prime_checks_for_size returns the number of Miller-Rabin iterations // necessary for a 'bits'-bit prime, in order to maintain an error rate greater // than the security level for an RSA prime of that many bits (calculated using // the FIPS SP 800-57 security level and 186-4 Section F.1; original paper: // Damgaard, Landrock, Pomerance: Average case error estimates for the strong // probable prime test. -- Math. Comp. 61 (1993) 177-194) static int BN_prime_checks_for_size(int bits) { if (bits >= 3747) { return 3; } if (bits >= 1345) { return 4; } if (bits >= 476) { return 5; } if (bits >= 400) { return 6; } if (bits >= 308) { return 8; } if (bits >= 205) { return 13; } if (bits >= 155) { return 19; } return 28; } // BN_PRIME_CHECKS_BLINDED is the iteration count for blinding the constant-time // primality test. See |BN_primality_test| for details. This number is selected // so that, for a candidate N-bit RSA prime, picking |BN_PRIME_CHECKS_BLINDED| // random N-bit numbers will have at least |BN_prime_checks_for_size(N)| values // in range with high probability. // // The following Python script computes the blinding factor needed for the // corresponding iteration count. /* import math # We choose candidate RSA primes between sqrt(2)/2 * 2^N and 2^N and select # witnesses by generating random N-bit numbers. Thus the probability of # selecting one in range is at least sqrt(2)/2. p = math.sqrt(2) / 2 # Target a 2^-80 probability of the blinding being insufficient. epsilon = 2**-80 def choose(a, b): r = 1 for i in xrange(b): r *= a - i r /= (i + 1) return r def failure_rate(min_uniform, iterations): """ Returns the probability that, for |iterations| candidate witnesses, fewer than |min_uniform| of them will be uniform. """ prob = 0.0 for i in xrange(min_uniform): prob += (choose(iterations, i) * p**i * (1-p)**(iterations - i)) return prob for min_uniform in (3, 4, 5, 6, 8, 13, 19, 28): # Find the smallest number of iterations under the target failure rate. iterations = min_uniform while True: prob = failure_rate(min_uniform, iterations) if prob < epsilon: print min_uniform, iterations, prob break iterations += 1 Output: 3 53 4.43927387758e-25 4 56 5.4559565573e-25 5 59 5.47044804496e-25 6 62 4.74781795233e-25 8 67 8.11486028886e-25 13 80 5.52341867763e-25 19 94 5.74309668718e-25 28 114 4.39583733951e-25 64 iterations suffices for 400-bit primes and larger (6 uniform samples needed), which is already well below the minimum acceptable key size for RSA. */ #define BN_PRIME_CHECKS_BLINDED 64 static int probable_prime(BIGNUM *rnd, int bits); static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); static int probable_prime_dh_safe(BIGNUM *rnd, int bits, const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); void BN_GENCB_set(BN_GENCB *callback, int (*f)(int event, int n, struct bn_gencb_st *), void *arg) { callback->callback = f; callback->arg = arg; } int BN_GENCB_call(BN_GENCB *callback, int event, int n) { if (!callback) { return 1; } return callback->callback(event, n, callback); } int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb) { BIGNUM *t; int found = 0; int i, j, c1 = 0; BN_CTX *ctx; int checks = BN_prime_checks_for_size(bits); if (bits < 2) { // There are no prime numbers this small. OPENSSL_PUT_ERROR(BN, BN_R_BITS_TOO_SMALL); return 0; } else if (bits == 2 && safe) { // The smallest safe prime (7) is three bits. OPENSSL_PUT_ERROR(BN, BN_R_BITS_TOO_SMALL); return 0; } ctx = BN_CTX_new(); if (ctx == NULL) { goto err; } BN_CTX_start(ctx); t = BN_CTX_get(ctx); if (!t) { goto err; } loop: // make a random number and set the top and bottom bits if (add == NULL) { if (!probable_prime(ret, bits)) { goto err; } } else { if (safe) { if (!probable_prime_dh_safe(ret, bits, add, rem, ctx)) { goto err; } } else { if (!probable_prime_dh(ret, bits, add, rem, ctx)) { goto err; } } } if (!BN_GENCB_call(cb, BN_GENCB_GENERATED, c1++)) { // aborted goto err; } if (!safe) { i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb); if (i == -1) { goto err; } else if (i == 0) { goto loop; } } else { // for "safe prime" generation, check that (p-1)/2 is prime. Since a prime // is odd, We just need to divide by 2 if (!BN_rshift1(t, ret)) { goto err; } for (i = 0; i < checks; i++) { j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, NULL); if (j == -1) { goto err; } else if (j == 0) { goto loop; } j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, NULL); if (j == -1) { goto err; } else if (j == 0) { goto loop; } if (!BN_GENCB_call(cb, i, c1 - 1)) { goto err; } // We have a safe prime test pass } } // we have a prime :-) found = 1; err: if (ctx != NULL) { BN_CTX_end(ctx); BN_CTX_free(ctx); } return found; } // The following functions use a Barrett reduction variant to avoid leaking the // numerator. See http://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html // // We use 32-bit numerator and 16-bit divisor for simplicity. This allows // computing |m| and |q| without architecture-specific code. // mod_u16 returns |n| mod |d|. |p| and |m| are the "magic numbers" for |d| (see // reference). For proof of correctness in Coq, see // https://github.com/davidben/fiat-crypto/blob/barrett/src/Arithmetic/BarrettReduction/RidiculousFish.v // Note the Coq version of |mod_u16| additionally includes the computation of // |p| and |m| from |bn_mod_u16_consttime| below. static uint16_t mod_u16(uint32_t n, uint16_t d, uint32_t p, uint32_t m) { // Compute floor(n/d) per steps 3 through 5. uint32_t q = ((uint64_t)m * n) >> 32; // Note there is a typo in the reference. We right-shift by one, not two. uint32_t t = ((n - q) >> 1) + q; t = t >> (p - 1); // Multiply and subtract to get the remainder. n -= d * t; assert(n < d); return n; } // shift_and_add_mod_u16 returns |r| * 2^32 + |a| mod |d|. |p| and |m| are the // "magic numbers" for |d| (see reference). static uint16_t shift_and_add_mod_u16(uint16_t r, uint32_t a, uint16_t d, uint32_t p, uint32_t m) { // Incorporate |a| in two 16-bit chunks. uint32_t t = r; t <<= 16; t |= a >> 16; t = mod_u16(t, d, p, m); t <<= 16; t |= a & 0xffff; t = mod_u16(t, d, p, m); return t; } uint16_t bn_mod_u16_consttime(const BIGNUM *bn, uint16_t d) { if (d <= 1) { return 0; } // Compute the "magic numbers" for |d|. See steps 1 and 2. // This computes p = ceil(log_2(d)). uint32_t p = BN_num_bits_word(d - 1); // This operation is not constant-time, but |p| and |d| are public values. // Note that |p| is at most 16, so the computation fits in |uint64_t|. assert(p <= 16); uint32_t m = ((UINT64_C(1) << (32 + p)) + d - 1) / d; uint16_t ret = 0; for (int i = bn->width - 1; i >= 0; i--) { #if BN_BITS2 == 32 ret = shift_and_add_mod_u16(ret, bn->d[i], d, p, m); #elif BN_BITS2 == 64 ret = shift_and_add_mod_u16(ret, bn->d[i] >> 32, d, p, m); ret = shift_and_add_mod_u16(ret, bn->d[i] & 0xffffffff, d, p, m); #else #error "Unknown BN_ULONG size" #endif } return ret; } int BN_primality_test(int *is_probably_prime, const BIGNUM *w, int iterations, BN_CTX *ctx, int do_trial_division, BN_GENCB *cb) { *is_probably_prime = 0; // To support RSA key generation, this function should treat |w| as secret if // it is a large prime. Composite numbers are discarded, so they may return // early. if (BN_cmp(w, BN_value_one()) <= 0) { return 1; } if (!BN_is_odd(w)) { // The only even prime is two. *is_probably_prime = BN_is_word(w, 2); return 1; } // Miller-Rabin does not work for three. if (BN_is_word(w, 3)) { *is_probably_prime = 1; return 1; } if (do_trial_division) { // Perform additional trial division checks to discard small primes. for (int i = 1; i < NUMPRIMES; i++) { if (bn_mod_u16_consttime(w, primes[i]) == 0) { *is_probably_prime = BN_is_word(w, primes[i]); return 1; } } if (!BN_GENCB_call(cb, 1, -1)) { return 0; } } if (iterations == BN_prime_checks) { iterations = BN_prime_checks_for_size(BN_num_bits(w)); } // See C.3.1 from FIPS 186-4. int ret = 0; BN_MONT_CTX *mont = NULL; BN_CTX_start(ctx); BIGNUM *w1 = BN_CTX_get(ctx); if (w1 == NULL || !bn_usub_consttime(w1, w, BN_value_one())) { goto err; } // Write w1 as m * 2^a (Steps 1 and 2). int w_len = BN_num_bits(w); int a = BN_count_low_zero_bits(w1); BIGNUM *m = BN_CTX_get(ctx); if (m == NULL || !bn_rshift_secret_shift(m, w1, a, ctx)) { goto err; } // Montgomery setup for computations mod w. Additionally, compute 1 and w - 1 // in the Montgomery domain for later comparisons. BIGNUM *b = BN_CTX_get(ctx); BIGNUM *z = BN_CTX_get(ctx); BIGNUM *one_mont = BN_CTX_get(ctx); BIGNUM *w1_mont = BN_CTX_get(ctx); mont = BN_MONT_CTX_new_for_modulus(w, ctx); if (b == NULL || z == NULL || one_mont == NULL || w1_mont == NULL || mont == NULL || !bn_one_to_montgomery(one_mont, mont, ctx) || // w - 1 is -1 mod w, so we can compute it in the Montgomery domain, -R, // with a subtraction. (|one_mont| cannot be zero.) !bn_usub_consttime(w1_mont, w, one_mont)) { goto err; } // The following loop performs in inner iteration of the Miller-Rabin // Primality test (Step 4). // // The algorithm as specified in FIPS 186-4 leaks information on |w|, the RSA // private key. Instead, we run through each iteration unconditionally, // performing modular multiplications, masking off any effects to behave // equivalently to the specified algorithm. // // We also blind the number of values of |b| we try. Steps 4.1–4.2 say to // discard out-of-range values. To avoid leaking information on |w|, we use // |bn_rand_secret_range| which, rather than discarding bad values, adjusts // them to be in range. Though not uniformly selected, these adjusted values // are still usable as Rabin-Miller checks. // // Rabin-Miller is already probabilistic, so we could reach the desired // confidence levels by just suitably increasing the iteration count. However, // to align with FIPS 186-4, we use a more pessimal analysis: we do not count // the non-uniform values towards the iteration count. As a result, this // function is more complex and has more timing risk than necessary. // // We count both total iterations and uniform ones and iterate until we've // reached at least |BN_PRIME_CHECKS_BLINDED| and |iterations|, respectively. // If the latter is large enough, it will be the limiting factor with high // probability and we won't leak information. // // Note this blinding does not impact most calls when picking primes because // composites are rejected early. Only the two secret primes see extra work. crypto_word_t uniform_iterations = 0; // Using |constant_time_lt_w| seems to prevent the compiler from optimizing // this into two jumps. for (int i = 1; (i <= BN_PRIME_CHECKS_BLINDED) | constant_time_lt_w(uniform_iterations, iterations); i++) { int is_uniform; if (// Step 4.1-4.2 !bn_rand_secret_range(b, &is_uniform, 2, w1) || // Step 4.3 !BN_mod_exp_mont_consttime(z, b, m, w, ctx, mont)) { goto err; } uniform_iterations += is_uniform; // loop_done is all ones if the loop has completed and all zeros otherwise. crypto_word_t loop_done = 0; // next_iteration is all ones if we should continue to the next iteration // (|b| is not a composite witness for |w|). This is equivalent to going to // step 4.7 in the original algorithm. crypto_word_t next_iteration = 0; // Step 4.4. If z = 1 or z = w-1, mask off the loop and continue to the next // iteration (go to step 4.7). loop_done = BN_equal_consttime(z, BN_value_one()) | BN_equal_consttime(z, w1); loop_done = 0 - loop_done; // Make it all zeros or all ones. next_iteration = loop_done; // Go to step 4.7 if |loop_done|. // Step 4.5. We use Montgomery-encoding for better performance and to avoid // timing leaks. if (!BN_to_montgomery(z, z, mont, ctx)) { goto err; } // To avoid leaking |a|, we run the loop to |w_len| and mask off all // iterations once |j| = |a|. for (int j = 1; j < w_len; j++) { loop_done |= constant_time_eq_int(j, a); // Step 4.5.1. if (!BN_mod_mul_montgomery(z, z, z, mont, ctx)) { goto err; } // Step 4.5.2. If z = w-1 and the loop is not done, run through the next // iteration. crypto_word_t z_is_w1_mont = BN_equal_consttime(z, w1_mont) & ~loop_done; z_is_w1_mont = 0 - z_is_w1_mont; // Make it all zeros or all ones. loop_done |= z_is_w1_mont; next_iteration |= z_is_w1_mont; // Go to step 4.7 if |z_is_w1_mont|. // Step 4.5.3. If z = 1 and the loop is not done, w is composite and we // may exit in variable time. if (BN_equal_consttime(z, one_mont) & ~loop_done) { assert(!next_iteration); break; } } if (!next_iteration) { // Step 4.6. We did not see z = w-1 before z = 1, so w must be composite. // (For any prime, the value of z immediately preceding 1 must be -1. // There are no non-trivial square roots of 1 modulo a prime.) *is_probably_prime = 0; ret = 1; goto err; } // Step 4.7 if (!BN_GENCB_call(cb, 1, i)) { goto err; } } assert(uniform_iterations >= (crypto_word_t)iterations); *is_probably_prime = 1; ret = 1; err: BN_MONT_CTX_free(mont); BN_CTX_end(ctx); return ret; } int BN_is_prime_ex(const BIGNUM *candidate, int checks, BN_CTX *ctx, BN_GENCB *cb) { return BN_is_prime_fasttest_ex(candidate, checks, ctx, 0, cb); } int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx, int do_trial_division, BN_GENCB *cb) { int is_probably_prime; if (!BN_primality_test(&is_probably_prime, a, checks, ctx, do_trial_division, cb)) { return -1; } return is_probably_prime; } int BN_enhanced_miller_rabin_primality_test( enum bn_primality_result_t *out_result, const BIGNUM *w, int iterations, BN_CTX *ctx, BN_GENCB *cb) { // Enhanced Miller-Rabin is only valid on odd integers greater than 3. if (!BN_is_odd(w) || BN_cmp_word(w, 3) <= 0) { OPENSSL_PUT_ERROR(BN, BN_R_INVALID_INPUT); return 0; } if (iterations == BN_prime_checks) { iterations = BN_prime_checks_for_size(BN_num_bits(w)); } int ret = 0; BN_MONT_CTX *mont = NULL; BN_CTX_start(ctx); BIGNUM *w1 = BN_CTX_get(ctx); if (w1 == NULL || !BN_copy(w1, w) || !BN_sub_word(w1, 1)) { goto err; } // Write w1 as m*2^a (Steps 1 and 2). int a = 0; while (!BN_is_bit_set(w1, a)) { a++; } BIGNUM *m = BN_CTX_get(ctx); if (m == NULL || !BN_rshift(m, w1, a)) { goto err; } BIGNUM *b = BN_CTX_get(ctx); BIGNUM *g = BN_CTX_get(ctx); BIGNUM *z = BN_CTX_get(ctx); BIGNUM *x = BN_CTX_get(ctx); BIGNUM *x1 = BN_CTX_get(ctx); if (b == NULL || g == NULL || z == NULL || x == NULL || x1 == NULL) { goto err; } // Montgomery setup for computations mod w mont = BN_MONT_CTX_new_for_modulus(w, ctx); if (mont == NULL) { goto err; } // The following loop performs in inner iteration of the Enhanced Miller-Rabin // Primality test (Step 4). for (int i = 1; i <= iterations; i++) { // Step 4.1-4.2 if (!BN_rand_range_ex(b, 2, w1)) { goto err; } // Step 4.3-4.4 if (!BN_gcd(g, b, w, ctx)) { goto err; } if (BN_cmp_word(g, 1) > 0) { *out_result = bn_composite; ret = 1; goto err; } // Step 4.5 if (!BN_mod_exp_mont(z, b, m, w, ctx, mont)) { goto err; } // Step 4.6 if (BN_is_one(z) || BN_cmp(z, w1) == 0) { goto loop; } // Step 4.7 for (int j = 1; j < a; j++) { if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) { goto err; } if (BN_cmp(z, w1) == 0) { goto loop; } if (BN_is_one(z)) { goto composite; } } // Step 4.8-4.9 if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) { goto err; } // Step 4.10-4.11 if (!BN_is_one(z) && !BN_copy(x, z)) { goto err; } composite: // Step 4.12-4.14 if (!BN_copy(x1, x) || !BN_sub_word(x1, 1) || !BN_gcd(g, x1, w, ctx)) { goto err; } if (BN_cmp_word(g, 1) > 0) { *out_result = bn_composite; } else { *out_result = bn_non_prime_power_composite; } ret = 1; goto err; loop: // Step 4.15 if (!BN_GENCB_call(cb, 1, i)) { goto err; } } *out_result = bn_probably_prime; ret = 1; err: BN_MONT_CTX_free(mont); BN_CTX_end(ctx); return ret; } static int probable_prime(BIGNUM *rnd, int bits) { int i; uint16_t mods[NUMPRIMES]; BN_ULONG delta; BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1]; char is_single_word = bits <= BN_BITS2; again: if (!BN_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD)) { return 0; } // we now have a random number 'rnd' to test. for (i = 1; i < NUMPRIMES; i++) { mods[i] = bn_mod_u16_consttime(rnd, primes[i]); } // If bits is so small that it fits into a single word then we // additionally don't want to exceed that many bits. if (is_single_word) { BN_ULONG size_limit; if (bits == BN_BITS2) { // Avoid undefined behavior. size_limit = ~((BN_ULONG)0) - BN_get_word(rnd); } else { size_limit = (((BN_ULONG)1) << bits) - BN_get_word(rnd) - 1; } if (size_limit < maxdelta) { maxdelta = size_limit; } } delta = 0; loop: if (is_single_word) { BN_ULONG rnd_word = BN_get_word(rnd); // In the case that the candidate prime is a single word then // we check that: // 1) It's greater than primes[i] because we shouldn't reject // 3 as being a prime number because it's a multiple of // three. // 2) That it's not a multiple of a known prime. We don't // check that rnd-1 is also coprime to all the known // primes because there aren't many small primes where // that's true. for (i = 1; i < NUMPRIMES && primes[i] < rnd_word; i++) { if ((mods[i] + delta) % primes[i] == 0) { delta += 2; if (delta > maxdelta) { goto again; } goto loop; } } } else { for (i = 1; i < NUMPRIMES; i++) { // check that rnd is not a prime and also // that gcd(rnd-1,primes) == 1 (except for 2) if (((mods[i] + delta) % primes[i]) <= 1) { delta += 2; if (delta > maxdelta) { goto again; } goto loop; } } } if (!BN_add_word(rnd, delta)) { return 0; } if (BN_num_bits(rnd) != (unsigned)bits) { goto again; } return 1; } static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx) { int i, ret = 0; BIGNUM *t1; BN_CTX_start(ctx); if ((t1 = BN_CTX_get(ctx)) == NULL) { goto err; } if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) { goto err; } // we need ((rnd-rem) % add) == 0 if (!BN_mod(t1, rnd, add, ctx)) { goto err; } if (!BN_sub(rnd, rnd, t1)) { goto err; } if (rem == NULL) { if (!BN_add_word(rnd, 1)) { goto err; } } else { if (!BN_add(rnd, rnd, rem)) { goto err; } } // we now have a random number 'rand' to test. loop: for (i = 1; i < NUMPRIMES; i++) { // check that rnd is a prime if (bn_mod_u16_consttime(rnd, primes[i]) <= 1) { if (!BN_add(rnd, rnd, add)) { goto err; } goto loop; } } ret = 1; err: BN_CTX_end(ctx); return ret; } static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd, const BIGNUM *rem, BN_CTX *ctx) { int i, ret = 0; BIGNUM *t1, *qadd, *q; bits--; BN_CTX_start(ctx); t1 = BN_CTX_get(ctx); q = BN_CTX_get(ctx); qadd = BN_CTX_get(ctx); if (qadd == NULL) { goto err; } if (!BN_rshift1(qadd, padd)) { goto err; } if (!BN_rand(q, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) { goto err; } // we need ((rnd-rem) % add) == 0 if (!BN_mod(t1, q, qadd, ctx)) { goto err; } if (!BN_sub(q, q, t1)) { goto err; } if (rem == NULL) { if (!BN_add_word(q, 1)) { goto err; } } else { if (!BN_rshift1(t1, rem)) { goto err; } if (!BN_add(q, q, t1)) { goto err; } } // we now have a random number 'rand' to test. if (!BN_lshift1(p, q)) { goto err; } if (!BN_add_word(p, 1)) { goto err; } loop: for (i = 1; i < NUMPRIMES; i++) { // check that p and q are prime // check that for p and q // gcd(p-1,primes) == 1 (except for 2) if (bn_mod_u16_consttime(p, primes[i]) == 0 || bn_mod_u16_consttime(q, primes[i]) == 0) { if (!BN_add(p, p, padd)) { goto err; } if (!BN_add(q, q, qadd)) { goto err; } goto loop; } } ret = 1; err: BN_CTX_end(ctx); return ret; }