/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include #include #include #include #include #include #include #include #include "internal.h" #include "../crypto/internal.h" /* kCiphers is an array of all supported ciphers, sorted by id. */ static const SSL_CIPHER kCiphers[] = { /* The RSA ciphers */ /* Cipher 02 */ { SSL3_TXT_RSA_NULL_SHA, SSL3_CK_RSA_NULL_SHA, SSL_kRSA, SSL_aRSA, SSL_eNULL, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, /* Cipher 0A */ { SSL3_TXT_RSA_DES_192_CBC3_SHA, SSL3_CK_RSA_DES_192_CBC3_SHA, SSL_kRSA, SSL_aRSA, SSL_3DES, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, /* New AES ciphersuites */ /* Cipher 2F */ { TLS1_TXT_RSA_WITH_AES_128_SHA, TLS1_CK_RSA_WITH_AES_128_SHA, SSL_kRSA, SSL_aRSA, SSL_AES128, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, /* Cipher 33 */ { TLS1_TXT_DHE_RSA_WITH_AES_128_SHA, TLS1_CK_DHE_RSA_WITH_AES_128_SHA, SSL_kDHE, SSL_aRSA, SSL_AES128, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, /* Cipher 35 */ { TLS1_TXT_RSA_WITH_AES_256_SHA, TLS1_CK_RSA_WITH_AES_256_SHA, SSL_kRSA, SSL_aRSA, SSL_AES256, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, /* Cipher 39 */ { TLS1_TXT_DHE_RSA_WITH_AES_256_SHA, TLS1_CK_DHE_RSA_WITH_AES_256_SHA, SSL_kDHE, SSL_aRSA, SSL_AES256, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, /* TLS v1.2 ciphersuites */ /* Cipher 3C */ { TLS1_TXT_RSA_WITH_AES_128_SHA256, TLS1_CK_RSA_WITH_AES_128_SHA256, SSL_kRSA, SSL_aRSA, SSL_AES128, SSL_SHA256, SSL_HANDSHAKE_MAC_SHA256, }, /* Cipher 3D */ { TLS1_TXT_RSA_WITH_AES_256_SHA256, TLS1_CK_RSA_WITH_AES_256_SHA256, SSL_kRSA, SSL_aRSA, SSL_AES256, SSL_SHA256, SSL_HANDSHAKE_MAC_SHA256, }, /* Cipher 67 */ { TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256, TLS1_CK_DHE_RSA_WITH_AES_128_SHA256, SSL_kDHE, SSL_aRSA, SSL_AES128, SSL_SHA256, SSL_HANDSHAKE_MAC_SHA256, }, /* Cipher 6B */ { TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256, TLS1_CK_DHE_RSA_WITH_AES_256_SHA256, SSL_kDHE, SSL_aRSA, SSL_AES256, SSL_SHA256, SSL_HANDSHAKE_MAC_SHA256, }, /* PSK cipher suites. */ /* Cipher 8C */ { TLS1_TXT_PSK_WITH_AES_128_CBC_SHA, TLS1_CK_PSK_WITH_AES_128_CBC_SHA, SSL_kPSK, SSL_aPSK, SSL_AES128, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, /* Cipher 8D */ { TLS1_TXT_PSK_WITH_AES_256_CBC_SHA, TLS1_CK_PSK_WITH_AES_256_CBC_SHA, SSL_kPSK, SSL_aPSK, SSL_AES256, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, /* GCM ciphersuites from RFC5288 */ /* Cipher 9C */ { TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256, TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, SSL_kRSA, SSL_aRSA, SSL_AES128GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, /* Cipher 9D */ { TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384, TLS1_CK_RSA_WITH_AES_256_GCM_SHA384, SSL_kRSA, SSL_aRSA, SSL_AES256GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA384, }, /* Cipher 9E */ { TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256, TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256, SSL_kDHE, SSL_aRSA, SSL_AES128GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, /* Cipher 9F */ { TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384, TLS1_CK_DHE_RSA_WITH_AES_256_GCM_SHA384, SSL_kDHE, SSL_aRSA, SSL_AES256GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA384, }, /* CECPQ1 (combined elliptic curve + post-quantum) suites. */ /* Cipher 16B7 */ { TLS1_TXT_CECPQ1_RSA_WITH_CHACHA20_POLY1305_SHA256, TLS1_CK_CECPQ1_RSA_WITH_CHACHA20_POLY1305_SHA256, SSL_kCECPQ1, SSL_aRSA, SSL_CHACHA20POLY1305, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, /* Cipher 16B8 */ { TLS1_TXT_CECPQ1_ECDSA_WITH_CHACHA20_POLY1305_SHA256, TLS1_CK_CECPQ1_ECDSA_WITH_CHACHA20_POLY1305_SHA256, SSL_kCECPQ1, SSL_aECDSA, SSL_CHACHA20POLY1305, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, /* Cipher 16B9 */ { TLS1_TXT_CECPQ1_RSA_WITH_AES_256_GCM_SHA384, TLS1_CK_CECPQ1_RSA_WITH_AES_256_GCM_SHA384, SSL_kCECPQ1, SSL_aRSA, SSL_AES256GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA384, }, /* Cipher 16BA */ { TLS1_TXT_CECPQ1_ECDSA_WITH_AES_256_GCM_SHA384, TLS1_CK_CECPQ1_ECDSA_WITH_AES_256_GCM_SHA384, SSL_kCECPQ1, SSL_aECDSA, SSL_AES256GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA384, }, /* Cipher C009 */ { TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, SSL_kECDHE, SSL_aECDSA, SSL_AES128, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, /* Cipher C00A */ { TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, SSL_kECDHE, SSL_aECDSA, SSL_AES256, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, /* Cipher C013 */ { TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA, TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, SSL_kECDHE, SSL_aRSA, SSL_AES128, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, /* Cipher C014 */ { TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA, TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, SSL_kECDHE, SSL_aRSA, SSL_AES256, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, /* HMAC based TLS v1.2 ciphersuites from RFC5289 */ /* Cipher C023 */ { TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_SHA256, TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256, SSL_kECDHE, SSL_aECDSA, SSL_AES128, SSL_SHA256, SSL_HANDSHAKE_MAC_SHA256, }, /* Cipher C024 */ { TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_SHA384, TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384, SSL_kECDHE, SSL_aECDSA, SSL_AES256, SSL_SHA384, SSL_HANDSHAKE_MAC_SHA384, }, /* Cipher C027 */ { TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256, TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256, SSL_kECDHE, SSL_aRSA, SSL_AES128, SSL_SHA256, SSL_HANDSHAKE_MAC_SHA256, }, /* Cipher C028 */ { TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384, TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384, SSL_kECDHE, SSL_aRSA, SSL_AES256, SSL_SHA384, SSL_HANDSHAKE_MAC_SHA384, }, /* GCM based TLS v1.2 ciphersuites from RFC5289 */ /* Cipher C02B */ { TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, SSL_kECDHE, SSL_aECDSA, SSL_AES128GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, /* Cipher C02C */ { TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, SSL_kECDHE, SSL_aECDSA, SSL_AES256GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA384, }, /* Cipher C02F */ { TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256, TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, SSL_kECDHE, SSL_aRSA, SSL_AES128GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, /* Cipher C030 */ { TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384, TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, SSL_kECDHE, SSL_aRSA, SSL_AES256GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA384, }, /* ECDHE-PSK cipher suites. */ /* Cipher C035 */ { TLS1_TXT_ECDHE_PSK_WITH_AES_128_CBC_SHA, TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA, SSL_kECDHE, SSL_aPSK, SSL_AES128, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, /* Cipher C036 */ { TLS1_TXT_ECDHE_PSK_WITH_AES_256_CBC_SHA, TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA, SSL_kECDHE, SSL_aPSK, SSL_AES256, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, /* ChaCha20-Poly1305 cipher suites. */ #if !defined(BORINGSSL_ANDROID_SYSTEM) { TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305_OLD, TLS1_CK_ECDHE_RSA_CHACHA20_POLY1305_OLD, SSL_kECDHE, SSL_aRSA, SSL_CHACHA20POLY1305_OLD, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, { TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_OLD, TLS1_CK_ECDHE_ECDSA_CHACHA20_POLY1305_OLD, SSL_kECDHE, SSL_aECDSA, SSL_CHACHA20POLY1305_OLD, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, #endif /* Cipher CCA8 */ { TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, SSL_kECDHE, SSL_aRSA, SSL_CHACHA20POLY1305, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, /* Cipher CCA9 */ { TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, SSL_kECDHE, SSL_aECDSA, SSL_CHACHA20POLY1305, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, /* Cipher CCAB */ { TLS1_TXT_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256, TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256, SSL_kECDHE, SSL_aPSK, SSL_CHACHA20POLY1305, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, /* Cipher D001 */ { TLS1_TXT_ECDHE_PSK_WITH_AES_128_GCM_SHA256, TLS1_CK_ECDHE_PSK_WITH_AES_128_GCM_SHA256, SSL_kECDHE, SSL_aPSK, SSL_AES128GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, /* Cipher D002 */ { TLS1_TXT_ECDHE_PSK_WITH_AES_256_GCM_SHA384, TLS1_CK_ECDHE_PSK_WITH_AES_256_GCM_SHA384, SSL_kECDHE, SSL_aPSK, SSL_AES256GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA384, }, }; static const size_t kCiphersLen = OPENSSL_ARRAY_SIZE(kCiphers); #define CIPHER_ADD 1 #define CIPHER_KILL 2 #define CIPHER_DEL 3 #define CIPHER_ORD 4 #define CIPHER_SPECIAL 5 typedef struct cipher_order_st { const SSL_CIPHER *cipher; int active; int in_group; struct cipher_order_st *next, *prev; } CIPHER_ORDER; typedef struct cipher_alias_st { /* name is the name of the cipher alias. */ const char *name; /* The following fields are bitmasks for the corresponding fields on * |SSL_CIPHER|. A cipher matches a cipher alias iff, for each bitmask, the * bit corresponding to the cipher's value is set to 1. If any bitmask is * all zeroes, the alias matches nothing. Use |~0u| for the default value. */ uint32_t algorithm_mkey; uint32_t algorithm_auth; uint32_t algorithm_enc; uint32_t algorithm_mac; /* min_version, if non-zero, matches all ciphers which were added in that * particular protocol version. */ uint16_t min_version; } CIPHER_ALIAS; static const CIPHER_ALIAS kCipherAliases[] = { /* "ALL" doesn't include eNULL nor kCECPQ1. These must be explicitly * enabled. */ {"ALL", ~SSL_kCECPQ1, ~0u, ~SSL_eNULL, ~0u, 0}, /* The "COMPLEMENTOFDEFAULT" rule is omitted. It matches nothing. */ /* key exchange aliases * (some of those using only a single bit here combine * multiple key exchange algs according to the RFCs, * e.g. kEDH combines DHE_DSS and DHE_RSA) */ {"kRSA", SSL_kRSA, ~0u, ~0u, ~0u, 0}, {"kDHE", SSL_kDHE, ~0u, ~0u, ~0u, 0}, {"kEDH", SSL_kDHE, ~0u, ~0u, ~0u, 0}, {"DH", SSL_kDHE, ~0u, ~0u, ~0u, 0}, {"kECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, {"kCECPQ1", SSL_kCECPQ1, ~0u, ~0u, ~0u, 0}, {"kEECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, {"ECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, {"kPSK", SSL_kPSK, ~0u, ~0u, ~0u, 0}, /* server authentication aliases */ {"aRSA", ~SSL_kCECPQ1, SSL_aRSA, ~SSL_eNULL, ~0u, 0}, {"aECDSA", ~SSL_kCECPQ1, SSL_aECDSA, ~0u, ~0u, 0}, {"ECDSA", ~SSL_kCECPQ1, SSL_aECDSA, ~0u, ~0u, 0}, {"aPSK", ~0u, SSL_aPSK, ~0u, ~0u, 0}, /* aliases combining key exchange and server authentication */ {"DHE", SSL_kDHE, ~0u, ~0u, ~0u, 0}, {"EDH", SSL_kDHE, ~0u, ~0u, ~0u, 0}, {"ECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, {"EECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, {"RSA", SSL_kRSA, SSL_aRSA, ~SSL_eNULL, ~0u, 0}, {"PSK", SSL_kPSK, SSL_aPSK, ~0u, ~0u, 0}, /* symmetric encryption aliases */ {"3DES", ~0u, ~0u, SSL_3DES, ~0u, 0}, {"AES128", ~0u, ~0u, SSL_AES128 | SSL_AES128GCM, ~0u, 0}, {"AES256", ~SSL_kCECPQ1, ~0u, SSL_AES256 | SSL_AES256GCM, ~0u, 0}, {"AES", ~SSL_kCECPQ1, ~0u, SSL_AES, ~0u, 0}, {"AESGCM", ~SSL_kCECPQ1, ~0u, SSL_AES128GCM | SSL_AES256GCM, ~0u, 0}, {"CHACHA20", ~SSL_kCECPQ1, ~0u, SSL_CHACHA20POLY1305 | SSL_CHACHA20POLY1305_OLD, ~0u, 0}, /* MAC aliases */ {"MD5", ~0u, ~0u, ~0u, SSL_MD5, 0}, {"SHA1", ~0u, ~0u, ~SSL_eNULL, SSL_SHA1, 0}, {"SHA", ~0u, ~0u, ~SSL_eNULL, SSL_SHA1, 0}, {"SHA256", ~SSL_kCECPQ1, ~0u, ~0u, SSL_SHA256, 0}, {"SHA384", ~SSL_kCECPQ1, ~0u, ~0u, SSL_SHA384, 0}, /* Legacy protocol minimum version aliases. "TLSv1" is intentionally the * same as "SSLv3". */ {"SSLv3", ~SSL_kCECPQ1, ~0u, ~SSL_eNULL, ~0u, SSL3_VERSION}, {"TLSv1", ~SSL_kCECPQ1, ~0u, ~SSL_eNULL, ~0u, SSL3_VERSION}, {"TLSv1.2", ~SSL_kCECPQ1, ~0u, ~SSL_eNULL, ~0u, TLS1_2_VERSION}, /* Legacy strength classes. */ {"HIGH", ~SSL_kCECPQ1, ~0u, ~SSL_eNULL, ~0u, 0}, {"FIPS", ~SSL_kCECPQ1, ~0u, ~SSL_eNULL, ~0u, 0}, }; static const size_t kCipherAliasesLen = OPENSSL_ARRAY_SIZE(kCipherAliases); static int ssl_cipher_id_cmp(const void *in_a, const void *in_b) { const SSL_CIPHER *a = in_a; const SSL_CIPHER *b = in_b; if (a->id > b->id) { return 1; } else if (a->id < b->id) { return -1; } else { return 0; } } static int ssl_cipher_ptr_id_cmp(const SSL_CIPHER **a, const SSL_CIPHER **b) { return ssl_cipher_id_cmp(*a, *b); } const SSL_CIPHER *SSL_get_cipher_by_value(uint16_t value) { SSL_CIPHER c; c.id = 0x03000000L | value; return bsearch(&c, kCiphers, kCiphersLen, sizeof(SSL_CIPHER), ssl_cipher_id_cmp); } int ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead, size_t *out_mac_secret_len, size_t *out_fixed_iv_len, const SSL_CIPHER *cipher, uint16_t version) { *out_aead = NULL; *out_mac_secret_len = 0; *out_fixed_iv_len = 0; switch (cipher->algorithm_enc) { case SSL_AES128GCM: *out_aead = EVP_aead_aes_128_gcm(); *out_fixed_iv_len = 4; break; case SSL_AES256GCM: *out_aead = EVP_aead_aes_256_gcm(); *out_fixed_iv_len = 4; break; #if !defined(BORINGSSL_ANDROID_SYSTEM) case SSL_CHACHA20POLY1305_OLD: *out_aead = EVP_aead_chacha20_poly1305_old(); *out_fixed_iv_len = 0; break; #endif case SSL_CHACHA20POLY1305: *out_aead = EVP_aead_chacha20_poly1305(); *out_fixed_iv_len = 12; break; case SSL_AES128: switch (cipher->algorithm_mac) { case SSL_SHA1: if (version == SSL3_VERSION) { *out_aead = EVP_aead_aes_128_cbc_sha1_ssl3(); *out_fixed_iv_len = 16; } else if (version == TLS1_VERSION) { *out_aead = EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(); *out_fixed_iv_len = 16; } else { *out_aead = EVP_aead_aes_128_cbc_sha1_tls(); } *out_mac_secret_len = SHA_DIGEST_LENGTH; break; case SSL_SHA256: *out_aead = EVP_aead_aes_128_cbc_sha256_tls(); *out_mac_secret_len = SHA256_DIGEST_LENGTH; break; default: return 0; } break; case SSL_AES256: switch (cipher->algorithm_mac) { case SSL_SHA1: if (version == SSL3_VERSION) { *out_aead = EVP_aead_aes_256_cbc_sha1_ssl3(); *out_fixed_iv_len = 16; } else if (version == TLS1_VERSION) { *out_aead = EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(); *out_fixed_iv_len = 16; } else { *out_aead = EVP_aead_aes_256_cbc_sha1_tls(); } *out_mac_secret_len = SHA_DIGEST_LENGTH; break; case SSL_SHA256: *out_aead = EVP_aead_aes_256_cbc_sha256_tls(); *out_mac_secret_len = SHA256_DIGEST_LENGTH; break; case SSL_SHA384: *out_aead = EVP_aead_aes_256_cbc_sha384_tls(); *out_mac_secret_len = SHA384_DIGEST_LENGTH; break; default: return 0; } break; case SSL_3DES: switch (cipher->algorithm_mac) { case SSL_SHA1: if (version == SSL3_VERSION) { *out_aead = EVP_aead_des_ede3_cbc_sha1_ssl3(); *out_fixed_iv_len = 8; } else if (version == TLS1_VERSION) { *out_aead = EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(); *out_fixed_iv_len = 8; } else { *out_aead = EVP_aead_des_ede3_cbc_sha1_tls(); } *out_mac_secret_len = SHA_DIGEST_LENGTH; break; default: return 0; } break; case SSL_eNULL: switch (cipher->algorithm_mac) { case SSL_SHA1: if (version == SSL3_VERSION) { *out_aead = EVP_aead_null_sha1_ssl3(); } else { *out_aead = EVP_aead_null_sha1_tls(); } *out_mac_secret_len = SHA_DIGEST_LENGTH; break; default: return 0; } break; default: return 0; } /* In TLS 1.3, the iv_len is equal to the AEAD nonce length whereas the code * above computes the TLS 1.2 construction. * * TODO(davidben,svaldez): Avoid computing the wrong value and fixing it. */ if (version >= TLS1_3_VERSION) { *out_fixed_iv_len = EVP_AEAD_nonce_length(*out_aead); assert(*out_fixed_iv_len >= 8); } return 1; } const EVP_MD *ssl_get_handshake_digest(uint32_t algorithm_prf) { switch (algorithm_prf) { case SSL_HANDSHAKE_MAC_DEFAULT: return EVP_sha1(); case SSL_HANDSHAKE_MAC_SHA256: return EVP_sha256(); case SSL_HANDSHAKE_MAC_SHA384: return EVP_sha384(); default: return NULL; } } #define ITEM_SEP(a) \ (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ',')) /* rule_equals returns one iff the NUL-terminated string |rule| is equal to the * |buf_len| bytes at |buf|. */ static int rule_equals(const char *rule, const char *buf, size_t buf_len) { /* |strncmp| alone only checks that |buf| is a prefix of |rule|. */ return strncmp(rule, buf, buf_len) == 0 && rule[buf_len] == '\0'; } static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr, CIPHER_ORDER **tail) { if (curr == *tail) { return; } if (curr == *head) { *head = curr->next; } if (curr->prev != NULL) { curr->prev->next = curr->next; } if (curr->next != NULL) { curr->next->prev = curr->prev; } (*tail)->next = curr; curr->prev = *tail; curr->next = NULL; *tail = curr; } static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr, CIPHER_ORDER **tail) { if (curr == *head) { return; } if (curr == *tail) { *tail = curr->prev; } if (curr->next != NULL) { curr->next->prev = curr->prev; } if (curr->prev != NULL) { curr->prev->next = curr->next; } (*head)->prev = curr; curr->next = *head; curr->prev = NULL; *head = curr; } static void ssl_cipher_collect_ciphers(const SSL_PROTOCOL_METHOD *ssl_method, CIPHER_ORDER *co_list, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { /* The set of ciphers is static, but some subset may be unsupported by * |ssl_method|, so the list may be smaller. */ size_t co_list_num = 0; for (size_t i = 0; i < kCiphersLen; i++) { const SSL_CIPHER *cipher = &kCiphers[i]; if (ssl_method->supports_cipher(cipher)) { co_list[co_list_num].cipher = cipher; co_list[co_list_num].next = NULL; co_list[co_list_num].prev = NULL; co_list[co_list_num].active = 0; co_list[co_list_num].in_group = 0; co_list_num++; } } /* Prepare linked list from list entries. */ if (co_list_num > 0) { co_list[0].prev = NULL; if (co_list_num > 1) { co_list[0].next = &co_list[1]; for (size_t i = 1; i < co_list_num - 1; i++) { co_list[i].prev = &co_list[i - 1]; co_list[i].next = &co_list[i + 1]; } co_list[co_list_num - 1].prev = &co_list[co_list_num - 2]; } co_list[co_list_num - 1].next = NULL; *head_p = &co_list[0]; *tail_p = &co_list[co_list_num - 1]; } } /* ssl_cipher_apply_rule applies the rule type |rule| to ciphers matching its * parameters in the linked list from |*head_p| to |*tail_p|. It writes the new * head and tail of the list to |*head_p| and |*tail_p|, respectively. * * - If |cipher_id| is non-zero, only that cipher is selected. * - Otherwise, if |strength_bits| is non-negative, it selects ciphers * of that strength. * - Otherwise, it selects ciphers that match each bitmasks in |alg_*| and * |min_version|. */ static void ssl_cipher_apply_rule( uint32_t cipher_id, uint32_t alg_mkey, uint32_t alg_auth, uint32_t alg_enc, uint32_t alg_mac, uint16_t min_version, int rule, int strength_bits, int in_group, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { CIPHER_ORDER *head, *tail, *curr, *next, *last; const SSL_CIPHER *cp; int reverse = 0; if (cipher_id == 0 && strength_bits == -1 && min_version == 0 && (alg_mkey == 0 || alg_auth == 0 || alg_enc == 0 || alg_mac == 0)) { /* The rule matches nothing, so bail early. */ return; } if (rule == CIPHER_DEL) { /* needed to maintain sorting between currently deleted ciphers */ reverse = 1; } head = *head_p; tail = *tail_p; if (reverse) { next = tail; last = head; } else { next = head; last = tail; } curr = NULL; for (;;) { if (curr == last) { break; } curr = next; if (curr == NULL) { break; } next = reverse ? curr->prev : curr->next; cp = curr->cipher; /* Selection criteria is either a specific cipher, the value of * |strength_bits|, or the algorithms used. */ if (cipher_id != 0) { if (cipher_id != cp->id) { continue; } } else if (strength_bits >= 0) { if (strength_bits != SSL_CIPHER_get_bits(cp, NULL)) { continue; } } else { if (!(alg_mkey & cp->algorithm_mkey) || !(alg_auth & cp->algorithm_auth) || !(alg_enc & cp->algorithm_enc) || !(alg_mac & cp->algorithm_mac) || (min_version != 0 && SSL_CIPHER_get_min_version(cp) != min_version)) { continue; } /* The following ciphers are internal implementation details of TLS 1.3 * resumption but are not yet finalized. Disable them by default until * then. */ if (cp->id == TLS1_CK_ECDHE_PSK_WITH_AES_128_GCM_SHA256 || cp->id == TLS1_CK_ECDHE_PSK_WITH_AES_256_GCM_SHA384) { continue; } } /* add the cipher if it has not been added yet. */ if (rule == CIPHER_ADD) { /* reverse == 0 */ if (!curr->active) { ll_append_tail(&head, curr, &tail); curr->active = 1; curr->in_group = in_group; } } /* Move the added cipher to this location */ else if (rule == CIPHER_ORD) { /* reverse == 0 */ if (curr->active) { ll_append_tail(&head, curr, &tail); curr->in_group = 0; } } else if (rule == CIPHER_DEL) { /* reverse == 1 */ if (curr->active) { /* most recently deleted ciphersuites get best positions * for any future CIPHER_ADD (note that the CIPHER_DEL loop * works in reverse to maintain the order) */ ll_append_head(&head, curr, &tail); curr->active = 0; curr->in_group = 0; } } else if (rule == CIPHER_KILL) { /* reverse == 0 */ if (head == curr) { head = curr->next; } else { curr->prev->next = curr->next; } if (tail == curr) { tail = curr->prev; } curr->active = 0; if (curr->next != NULL) { curr->next->prev = curr->prev; } if (curr->prev != NULL) { curr->prev->next = curr->next; } curr->next = NULL; curr->prev = NULL; } } *head_p = head; *tail_p = tail; } static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { int max_strength_bits, i, *number_uses; CIPHER_ORDER *curr; /* This routine sorts the ciphers with descending strength. The sorting must * keep the pre-sorted sequence, so we apply the normal sorting routine as * '+' movement to the end of the list. */ max_strength_bits = 0; curr = *head_p; while (curr != NULL) { if (curr->active && SSL_CIPHER_get_bits(curr->cipher, NULL) > max_strength_bits) { max_strength_bits = SSL_CIPHER_get_bits(curr->cipher, NULL); } curr = curr->next; } number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int)); if (!number_uses) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return 0; } memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int)); /* Now find the strength_bits values actually used. */ curr = *head_p; while (curr != NULL) { if (curr->active) { number_uses[SSL_CIPHER_get_bits(curr->cipher, NULL)]++; } curr = curr->next; } /* Go through the list of used strength_bits values in descending order. */ for (i = max_strength_bits; i >= 0; i--) { if (number_uses[i] > 0) { ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, CIPHER_ORD, i, 0, head_p, tail_p); } } OPENSSL_free(number_uses); return 1; } static int ssl_cipher_process_rulestr(const SSL_PROTOCOL_METHOD *ssl_method, const char *rule_str, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { uint32_t alg_mkey, alg_auth, alg_enc, alg_mac; uint16_t min_version; const char *l, *buf; int multi, skip_rule, rule, ok, in_group = 0, has_group = 0; size_t j, buf_len; uint32_t cipher_id; char ch; l = rule_str; for (;;) { ch = *l; if (ch == '\0') { break; /* done */ } if (in_group) { if (ch == ']') { if (*tail_p) { (*tail_p)->in_group = 0; } in_group = 0; l++; continue; } if (ch == '|') { rule = CIPHER_ADD; l++; continue; } else if (!(ch >= 'a' && ch <= 'z') && !(ch >= 'A' && ch <= 'Z') && !(ch >= '0' && ch <= '9')) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_OPERATOR_IN_GROUP); return 0; } else { rule = CIPHER_ADD; } } else if (ch == '-') { rule = CIPHER_DEL; l++; } else if (ch == '+') { rule = CIPHER_ORD; l++; } else if (ch == '!') { rule = CIPHER_KILL; l++; } else if (ch == '@') { rule = CIPHER_SPECIAL; l++; } else if (ch == '[') { if (in_group) { OPENSSL_PUT_ERROR(SSL, SSL_R_NESTED_GROUP); return 0; } in_group = 1; has_group = 1; l++; continue; } else { rule = CIPHER_ADD; } /* If preference groups are enabled, the only legal operator is +. * Otherwise the in_group bits will get mixed up. */ if (has_group && rule != CIPHER_ADD) { OPENSSL_PUT_ERROR(SSL, SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS); return 0; } if (ITEM_SEP(ch)) { l++; continue; } multi = 0; cipher_id = 0; alg_mkey = ~0u; alg_auth = ~0u; alg_enc = ~0u; alg_mac = ~0u; min_version = 0; skip_rule = 0; for (;;) { ch = *l; buf = l; buf_len = 0; while (((ch >= 'A') && (ch <= 'Z')) || ((ch >= '0') && (ch <= '9')) || ((ch >= 'a') && (ch <= 'z')) || (ch == '-') || (ch == '.')) { ch = *(++l); buf_len++; } if (buf_len == 0) { /* We hit something we cannot deal with, it is no command or separator * nor alphanumeric, so we call this an error. */ OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND); return 0; } if (rule == CIPHER_SPECIAL) { break; } /* Look for a matching exact cipher. These aren't allowed in multipart * rules. */ if (!multi && ch != '+') { for (j = 0; j < kCiphersLen; j++) { const SSL_CIPHER *cipher = &kCiphers[j]; if (rule_equals(cipher->name, buf, buf_len)) { cipher_id = cipher->id; break; } } } if (cipher_id == 0) { /* If not an exact cipher, look for a matching cipher alias. */ for (j = 0; j < kCipherAliasesLen; j++) { if (rule_equals(kCipherAliases[j].name, buf, buf_len)) { alg_mkey &= kCipherAliases[j].algorithm_mkey; alg_auth &= kCipherAliases[j].algorithm_auth; alg_enc &= kCipherAliases[j].algorithm_enc; alg_mac &= kCipherAliases[j].algorithm_mac; if (min_version != 0 && min_version != kCipherAliases[j].min_version) { skip_rule = 1; } else { min_version = kCipherAliases[j].min_version; } break; } } if (j == kCipherAliasesLen) { skip_rule = 1; } } /* Check for a multipart rule. */ if (ch != '+') { break; } l++; multi = 1; } /* If one of the CHACHA20_POLY1305 variants is selected, include the other * as well. They have the same name to avoid requiring changes in * configuration. Apply this transformation late so that the cipher name * still behaves as an exact name and not an alias in multipart rules. * * This is temporary and will be removed when the pre-standard construction * is removed. */ if (cipher_id == TLS1_CK_ECDHE_RSA_CHACHA20_POLY1305_OLD || cipher_id == TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256) { cipher_id = 0; alg_mkey = SSL_kECDHE; alg_auth = SSL_aRSA; alg_enc = SSL_CHACHA20POLY1305|SSL_CHACHA20POLY1305_OLD; alg_mac = SSL_AEAD; } else if (cipher_id == TLS1_CK_ECDHE_ECDSA_CHACHA20_POLY1305_OLD || cipher_id == TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256) { cipher_id = 0; alg_mkey = SSL_kECDHE; alg_auth = SSL_aECDSA; alg_enc = SSL_CHACHA20POLY1305|SSL_CHACHA20POLY1305_OLD; alg_mac = SSL_AEAD; } /* Ok, we have the rule, now apply it. */ if (rule == CIPHER_SPECIAL) { /* special command */ ok = 0; if (buf_len == 8 && !strncmp(buf, "STRENGTH", 8)) { ok = ssl_cipher_strength_sort(head_p, tail_p); } else { OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND); } if (ok == 0) { return 0; } /* We do not support any "multi" options together with "@", so throw away * the rest of the command, if any left, until end or ':' is found. */ while (*l != '\0' && !ITEM_SEP(*l)) { l++; } } else if (!skip_rule) { ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, alg_enc, alg_mac, min_version, rule, -1, in_group, head_p, tail_p); } } if (in_group) { OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND); return 0; } return 1; } STACK_OF(SSL_CIPHER) * ssl_create_cipher_list(const SSL_PROTOCOL_METHOD *ssl_method, struct ssl_cipher_preference_list_st **out_cipher_list, STACK_OF(SSL_CIPHER) **out_cipher_list_by_id, const char *rule_str) { int ok; STACK_OF(SSL_CIPHER) *cipherstack = NULL, *tmp_cipher_list = NULL; const char *rule_p; CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr; uint8_t *in_group_flags = NULL; unsigned int num_in_group_flags = 0; struct ssl_cipher_preference_list_st *pref_list = NULL; /* Return with error if nothing to do. */ if (rule_str == NULL || out_cipher_list == NULL) { return NULL; } /* Now we have to collect the available ciphers from the compiled in ciphers. * We cannot get more than the number compiled in, so it is used for * allocation. */ co_list = OPENSSL_malloc(sizeof(CIPHER_ORDER) * kCiphersLen); if (co_list == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return NULL; } ssl_cipher_collect_ciphers(ssl_method, co_list, &head, &tail); /* Now arrange all ciphers by preference: * TODO(davidben): Compute this order once and copy it. */ /* Everything else being equal, prefer ECDHE_ECDSA then ECDHE_RSA over other * key exchange mechanisms */ ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, ~0u, ~0u, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, SSL_kECDHE, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, SSL_kECDHE, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, 0, &head, &tail); /* Order the bulk ciphers. First the preferred AEAD ciphers. We prefer * CHACHA20 unless there is hardware support for fast and constant-time * AES_GCM. Of the two CHACHA20 variants, the new one is preferred over the * old one. */ if (EVP_has_aes_hardware()) { ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305_OLD, ~0u, 0, CIPHER_ADD, -1, 0, &head, &tail); } else { ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305_OLD, ~0u, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1, 0, &head, &tail); } /* Then the legacy non-AEAD ciphers: AES_128_CBC, AES_256_CBC, * 3DES_EDE_CBC_SHA. */ ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128, ~0u, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256, ~0u, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_3DES, ~0u, 0, CIPHER_ADD, -1, 0, &head, &tail); /* Temporarily enable everything else for sorting */ ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, 0, &head, &tail); /* Move ciphers without forward secrecy to the end. */ ssl_cipher_apply_rule(0, ~(SSL_kDHE | SSL_kECDHE), ~0u, ~0u, ~0u, 0, CIPHER_ORD, -1, 0, &head, &tail); /* Now disable everything (maintaining the ordering!) */ ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, 0, &head, &tail); /* If the rule_string begins with DEFAULT, apply the default rule before * using the (possibly available) additional rules. */ ok = 1; rule_p = rule_str; if (strncmp(rule_str, "DEFAULT", 7) == 0) { ok = ssl_cipher_process_rulestr(ssl_method, SSL_DEFAULT_CIPHER_LIST, &head, &tail); rule_p += 7; if (*rule_p == ':') { rule_p++; } } if (ok && strlen(rule_p) > 0) { ok = ssl_cipher_process_rulestr(ssl_method, rule_p, &head, &tail); } if (!ok) { goto err; } /* Allocate new "cipherstack" for the result, return with error * if we cannot get one. */ cipherstack = sk_SSL_CIPHER_new_null(); if (cipherstack == NULL) { goto err; } in_group_flags = OPENSSL_malloc(kCiphersLen); if (!in_group_flags) { goto err; } /* The cipher selection for the list is done. The ciphers are added * to the resulting precedence to the STACK_OF(SSL_CIPHER). */ for (curr = head; curr != NULL; curr = curr->next) { if (curr->active) { if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) { goto err; } in_group_flags[num_in_group_flags++] = curr->in_group; } } OPENSSL_free(co_list); /* Not needed any longer */ co_list = NULL; tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack); if (tmp_cipher_list == NULL) { goto err; } pref_list = OPENSSL_malloc(sizeof(struct ssl_cipher_preference_list_st)); if (!pref_list) { goto err; } pref_list->ciphers = cipherstack; pref_list->in_group_flags = OPENSSL_malloc(num_in_group_flags); if (!pref_list->in_group_flags) { goto err; } memcpy(pref_list->in_group_flags, in_group_flags, num_in_group_flags); OPENSSL_free(in_group_flags); in_group_flags = NULL; if (*out_cipher_list != NULL) { ssl_cipher_preference_list_free(*out_cipher_list); } *out_cipher_list = pref_list; pref_list = NULL; if (out_cipher_list_by_id != NULL) { sk_SSL_CIPHER_free(*out_cipher_list_by_id); *out_cipher_list_by_id = tmp_cipher_list; tmp_cipher_list = NULL; (void) sk_SSL_CIPHER_set_cmp_func(*out_cipher_list_by_id, ssl_cipher_ptr_id_cmp); sk_SSL_CIPHER_sort(*out_cipher_list_by_id); } else { sk_SSL_CIPHER_free(tmp_cipher_list); tmp_cipher_list = NULL; } return cipherstack; err: OPENSSL_free(co_list); OPENSSL_free(in_group_flags); sk_SSL_CIPHER_free(cipherstack); sk_SSL_CIPHER_free(tmp_cipher_list); if (pref_list) { OPENSSL_free(pref_list->in_group_flags); } OPENSSL_free(pref_list); return NULL; } uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *cipher) { return cipher->id; } uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher) { uint32_t id = cipher->id; /* All ciphers are SSLv3. */ assert((id & 0xff000000) == 0x03000000); return id & 0xffff; } int ssl_cipher_get_ecdhe_psk_cipher(const SSL_CIPHER *cipher, uint16_t *out_cipher) { switch (cipher->id) { case TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256: case TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256: case TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256: *out_cipher = TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 & 0xffff; return 1; case TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256: case TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: case TLS1_CK_ECDHE_PSK_WITH_AES_128_GCM_SHA256: *out_cipher = TLS1_CK_ECDHE_PSK_WITH_AES_128_GCM_SHA256 & 0xffff; return 1; case TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384: case TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: case TLS1_CK_ECDHE_PSK_WITH_AES_256_GCM_SHA384: *out_cipher = TLS1_CK_ECDHE_PSK_WITH_AES_256_GCM_SHA384 & 0xffff; return 1; } return 0; } int SSL_CIPHER_is_AES(const SSL_CIPHER *cipher) { return (cipher->algorithm_enc & SSL_AES) != 0; } int SSL_CIPHER_has_MD5_HMAC(const SSL_CIPHER *cipher) { return (cipher->algorithm_mac & SSL_MD5) != 0; } int SSL_CIPHER_has_SHA1_HMAC(const SSL_CIPHER *cipher) { return (cipher->algorithm_mac & SSL_SHA1) != 0; } int SSL_CIPHER_has_SHA256_HMAC(const SSL_CIPHER *cipher) { return (cipher->algorithm_mac & SSL_SHA256) != 0; } int SSL_CIPHER_is_AESGCM(const SSL_CIPHER *cipher) { return (cipher->algorithm_enc & (SSL_AES128GCM | SSL_AES256GCM)) != 0; } int SSL_CIPHER_is_AES128GCM(const SSL_CIPHER *cipher) { return (cipher->algorithm_enc & SSL_AES128GCM) != 0; } int SSL_CIPHER_is_AES128CBC(const SSL_CIPHER *cipher) { return (cipher->algorithm_enc & SSL_AES128) != 0; } int SSL_CIPHER_is_AES256CBC(const SSL_CIPHER *cipher) { return (cipher->algorithm_enc & SSL_AES256) != 0; } int SSL_CIPHER_is_CHACHA20POLY1305(const SSL_CIPHER *cipher) { return (cipher->algorithm_enc & (SSL_CHACHA20POLY1305 | SSL_CHACHA20POLY1305_OLD)) != 0; } int SSL_CIPHER_is_NULL(const SSL_CIPHER *cipher) { return (cipher->algorithm_enc & SSL_eNULL) != 0; } int SSL_CIPHER_is_block_cipher(const SSL_CIPHER *cipher) { return (cipher->algorithm_enc & SSL_eNULL) == 0 && cipher->algorithm_mac != SSL_AEAD; } int SSL_CIPHER_is_ECDSA(const SSL_CIPHER *cipher) { return (cipher->algorithm_auth & SSL_aECDSA) != 0; } int SSL_CIPHER_is_DHE(const SSL_CIPHER *cipher) { return (cipher->algorithm_mkey & SSL_kDHE) != 0; } int SSL_CIPHER_is_ECDHE(const SSL_CIPHER *cipher) { return (cipher->algorithm_mkey & SSL_kECDHE) != 0; } int SSL_CIPHER_is_CECPQ1(const SSL_CIPHER *cipher) { return (cipher->algorithm_mkey & SSL_kCECPQ1) != 0; } uint16_t SSL_CIPHER_get_min_version(const SSL_CIPHER *cipher) { if (cipher->algorithm_prf != SSL_HANDSHAKE_MAC_DEFAULT) { /* Cipher suites before TLS 1.2 use the default PRF, while all those added * afterwards specify a particular hash. */ return TLS1_2_VERSION; } return SSL3_VERSION; } uint16_t SSL_CIPHER_get_max_version(const SSL_CIPHER *cipher) { if (cipher->algorithm_mac == SSL_AEAD && (cipher->algorithm_enc & SSL_CHACHA20POLY1305_OLD) == 0 && (cipher->algorithm_mkey & SSL_kECDHE) != 0 && /* TODO(davidben,svaldez): Support PSK-based ciphers in TLS 1.3. */ (cipher->algorithm_auth & SSL_aCERT) != 0) { return TLS1_3_VERSION; } return TLS1_2_VERSION; } /* return the actual cipher being used */ const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher) { if (cipher != NULL) { return cipher->name; } return "(NONE)"; } const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher) { if (cipher == NULL) { return ""; } switch (cipher->algorithm_mkey) { case SSL_kRSA: return "RSA"; case SSL_kDHE: switch (cipher->algorithm_auth) { case SSL_aRSA: return "DHE_RSA"; default: assert(0); return "UNKNOWN"; } case SSL_kECDHE: switch (cipher->algorithm_auth) { case SSL_aECDSA: return "ECDHE_ECDSA"; case SSL_aRSA: return "ECDHE_RSA"; case SSL_aPSK: return "ECDHE_PSK"; default: assert(0); return "UNKNOWN"; } case SSL_kCECPQ1: switch (cipher->algorithm_auth) { case SSL_aECDSA: return "CECPQ1_ECDSA"; case SSL_aRSA: return "CECPQ1_RSA"; default: assert(0); return "UNKNOWN"; } case SSL_kPSK: assert(cipher->algorithm_auth == SSL_aPSK); return "PSK"; default: assert(0); return "UNKNOWN"; } } static const char *ssl_cipher_get_enc_name(const SSL_CIPHER *cipher) { switch (cipher->algorithm_enc) { case SSL_3DES: return "3DES_EDE_CBC"; case SSL_AES128: return "AES_128_CBC"; case SSL_AES256: return "AES_256_CBC"; case SSL_AES128GCM: return "AES_128_GCM"; case SSL_AES256GCM: return "AES_256_GCM"; case SSL_CHACHA20POLY1305: case SSL_CHACHA20POLY1305_OLD: return "CHACHA20_POLY1305"; break; default: assert(0); return "UNKNOWN"; } } static const char *ssl_cipher_get_prf_name(const SSL_CIPHER *cipher) { switch (cipher->algorithm_prf) { case SSL_HANDSHAKE_MAC_DEFAULT: /* Before TLS 1.2, the PRF component is the hash used in the HMAC, which is * only ever MD5 or SHA-1. */ switch (cipher->algorithm_mac) { case SSL_MD5: return "MD5"; case SSL_SHA1: return "SHA"; } break; case SSL_HANDSHAKE_MAC_SHA256: return "SHA256"; case SSL_HANDSHAKE_MAC_SHA384: return "SHA384"; } assert(0); return "UNKNOWN"; } char *SSL_CIPHER_get_rfc_name(const SSL_CIPHER *cipher) { if (cipher == NULL) { return NULL; } const char *kx_name = SSL_CIPHER_get_kx_name(cipher); const char *enc_name = ssl_cipher_get_enc_name(cipher); const char *prf_name = ssl_cipher_get_prf_name(cipher); /* The final name is TLS_{kx_name}_WITH_{enc_name}_{prf_name}. */ size_t len = 4 + strlen(kx_name) + 6 + strlen(enc_name) + 1 + strlen(prf_name) + 1; char *ret = OPENSSL_malloc(len); if (ret == NULL) { return NULL; } if (BUF_strlcpy(ret, "TLS_", len) >= len || BUF_strlcat(ret, kx_name, len) >= len || BUF_strlcat(ret, "_WITH_", len) >= len || BUF_strlcat(ret, enc_name, len) >= len || BUF_strlcat(ret, "_", len) >= len || BUF_strlcat(ret, prf_name, len) >= len) { assert(0); OPENSSL_free(ret); return NULL; } assert(strlen(ret) + 1 == len); return ret; } int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, int *out_alg_bits) { if (cipher == NULL) { return 0; } int alg_bits, strength_bits; switch (cipher->algorithm_enc) { case SSL_AES128: case SSL_AES128GCM: alg_bits = 128; strength_bits = 128; break; case SSL_AES256: case SSL_AES256GCM: #if !defined(BORINGSSL_ANDROID_SYSTEM) case SSL_CHACHA20POLY1305_OLD: #endif case SSL_CHACHA20POLY1305: alg_bits = 256; strength_bits = 256; break; case SSL_3DES: alg_bits = 168; strength_bits = 112; break; case SSL_eNULL: alg_bits = 0; strength_bits = 0; break; default: assert(0); alg_bits = 0; strength_bits = 0; } if (out_alg_bits != NULL) { *out_alg_bits = alg_bits; } return strength_bits; } const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len) { const char *kx, *au, *enc, *mac; uint32_t alg_mkey, alg_auth, alg_enc, alg_mac; alg_mkey = cipher->algorithm_mkey; alg_auth = cipher->algorithm_auth; alg_enc = cipher->algorithm_enc; alg_mac = cipher->algorithm_mac; switch (alg_mkey) { case SSL_kRSA: kx = "RSA"; break; case SSL_kDHE: kx = "DH"; break; case SSL_kECDHE: kx = "ECDH"; break; case SSL_kCECPQ1: kx = "CECPQ1"; break; case SSL_kPSK: kx = "PSK"; break; default: kx = "unknown"; } switch (alg_auth) { case SSL_aRSA: au = "RSA"; break; case SSL_aECDSA: au = "ECDSA"; break; case SSL_aPSK: au = "PSK"; break; default: au = "unknown"; break; } switch (alg_enc) { case SSL_3DES: enc = "3DES(168)"; break; case SSL_AES128: enc = "AES(128)"; break; case SSL_AES256: enc = "AES(256)"; break; case SSL_AES128GCM: enc = "AESGCM(128)"; break; case SSL_AES256GCM: enc = "AESGCM(256)"; break; case SSL_CHACHA20POLY1305_OLD: enc = "ChaCha20-Poly1305-Old"; break; case SSL_CHACHA20POLY1305: enc = "ChaCha20-Poly1305"; break; case SSL_eNULL: enc="None"; break; default: enc = "unknown"; break; } switch (alg_mac) { case SSL_MD5: mac = "MD5"; break; case SSL_SHA1: mac = "SHA1"; break; case SSL_SHA256: mac = "SHA256"; break; case SSL_SHA384: mac = "SHA384"; break; case SSL_AEAD: mac = "AEAD"; break; default: mac = "unknown"; break; } if (buf == NULL) { len = 128; buf = OPENSSL_malloc(len); if (buf == NULL) { return NULL; } } else if (len < 128) { return "Buffer too small"; } BIO_snprintf(buf, len, "%-23s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n", cipher->name, kx, au, enc, mac); return buf; } const char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher) { return "TLSv1/SSLv3"; } COMP_METHOD *SSL_COMP_get_compression_methods(void) { return NULL; } int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { return 1; } const char *SSL_COMP_get_name(const COMP_METHOD *comp) { return NULL; } int ssl_cipher_get_key_type(const SSL_CIPHER *cipher) { uint32_t alg_a = cipher->algorithm_auth; if (alg_a & SSL_aECDSA) { return EVP_PKEY_EC; } else if (alg_a & SSL_aRSA) { return EVP_PKEY_RSA; } return EVP_PKEY_NONE; } int ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher) { return (cipher->algorithm_auth & SSL_aCERT) != 0; } int ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher) { /* Ephemeral Diffie-Hellman key exchanges require a ServerKeyExchange. */ if (cipher->algorithm_mkey & SSL_kDHE || cipher->algorithm_mkey & SSL_kECDHE || cipher->algorithm_mkey & SSL_kCECPQ1) { return 1; } /* It is optional in all others. */ return 0; } size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher) { size_t block_size; switch (cipher->algorithm_enc) { case SSL_3DES: block_size = 8; break; case SSL_AES128: case SSL_AES256: block_size = 16; break; default: return 0; } size_t mac_len; switch (cipher->algorithm_mac) { case SSL_MD5: mac_len = MD5_DIGEST_LENGTH; break; case SSL_SHA1: mac_len = SHA_DIGEST_LENGTH; break; default: return 0; } size_t ret = 1 + mac_len; ret += block_size - (ret % block_size); return ret; }