/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project 1999. */ /* ==================================================================== * Copyright (c) 1999 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #ifndef OPENSSL_HEADER_PKCS8_H #define OPENSSL_HEADER_PKCS8_H #include #include #if defined(__cplusplus) extern "C" { #endif /* PKCS8_encrypt_pbe serializes and encrypts a PKCS8_PRIV_KEY_INFO with PBES1 or * PBES2 as defined in PKCS #5. Only pbeWithSHAAnd128BitRC4, * pbeWithSHAAnd3-KeyTripleDES-CBC and pbeWithSHA1And40BitRC2, defined in PKCS * #12, and PBES2, are supported. PBES2 is selected by setting |cipher| and * passing -1 for |pbe_nid|. Otherwise, PBES1 is used and |cipher| is ignored. * * The |pass_raw_len| bytes pointed to by |pass_raw| are used as the password. * Note that any conversions from the password as supplied in a text string * (such as those specified in B.1 of PKCS #12) must be performed by the caller. * * If |salt| is NULL, a random salt of |salt_len| bytes is generated. If * |salt_len| is zero, a default salt length is used instead. * * The resulting structure is stored in an X509_SIG which must be freed by the * caller. * * TODO(davidben): Really? An X509_SIG? OpenSSL probably did that because it has * the same structure as EncryptedPrivateKeyInfo. */ OPENSSL_EXPORT X509_SIG *PKCS8_encrypt_pbe(int pbe_nid, const EVP_CIPHER *cipher, const uint8_t *pass_raw, size_t pass_raw_len, uint8_t *salt, size_t salt_len, int iterations, PKCS8_PRIV_KEY_INFO *p8inf); /* PKCS8_decrypt_pbe decrypts and decodes a PKCS8_PRIV_KEY_INFO with PBES1 or * PBES2 as defined in PKCS #5. Only pbeWithSHAAnd128BitRC4, * pbeWithSHAAnd3-KeyTripleDES-CBC and pbeWithSHA1And40BitRC2, and PBES2, * defined in PKCS #12, are supported. * * The |pass_raw_len| bytes pointed to by |pass_raw| are used as the password. * Note that any conversions from the password as supplied in a text string * (such as those specified in B.1 of PKCS #12) must be performed by the caller. * * The resulting structure must be freed by the caller. */ OPENSSL_EXPORT PKCS8_PRIV_KEY_INFO *PKCS8_decrypt_pbe(X509_SIG *pkcs8, const uint8_t *pass_raw, size_t pass_raw_len); /* PKCS12_get_key_and_certs parses a PKCS#12 structure from |in|, authenticates * and decrypts it using |password|, sets |*out_key| to the included private * key and appends the included certificates to |out_certs|. It returns one on * success and zero on error. The caller takes ownership of the outputs. */ OPENSSL_EXPORT int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs, CBS *in, const char *password); /* Deprecated functions. */ /* PKCS8_encrypt calls |PKCS8_encrypt_pbe| after (in the PKCS#12 case) treating * |pass| as an ASCII string, appending U+0000, and converting to UCS-2. (So the * empty password encodes as two NUL bytes.) In the PBES2 case, the password is * unchanged. */ OPENSSL_EXPORT X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass, int pass_len, uint8_t *salt, size_t salt_len, int iterations, PKCS8_PRIV_KEY_INFO *p8inf); /* PKCS8_decrypt calls PKCS8_decrypt_pbe after (in the PKCS#12 case) treating * |pass| as an ASCII string, appending U+0000, and converting to UCS-2. (So the * empty password encodes as two NUL bytes.) In the PBES2 case, the password is * unchanged. */ OPENSSL_EXPORT PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass, int pass_len); /* PKCS12_PBE_add does nothing. It exists for compatibility with OpenSSL. */ OPENSSL_EXPORT void PKCS12_PBE_add(void); /* d2i_PKCS12 is a dummy function that copies |*ber_bytes| into a * |PKCS12| structure. The |out_p12| argument must be NULL. On exit, * |*ber_bytes| will be advanced by |ber_len|. It returns a fresh |PKCS12| * structure or NULL on error. * * Note: unlike other d2i functions, |d2i_PKCS12| will always consume |ber_len| * bytes.*/ OPENSSL_EXPORT PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes, size_t ber_len); /* d2i_PKCS12_bio acts like |d2i_PKCS12| but reads from a |BIO|. */ OPENSSL_EXPORT PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12); /* d2i_PKCS12_fp acts like |d2i_PKCS12| but reads from a |FILE|. */ OPENSSL_EXPORT PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12); /* PKCS12_parse calls |PKCS12_get_key_and_certs| on the ASN.1 data stored in * |p12|. The |out_pkey| and |out_cert| arguments must not be NULL and, on * successful exit, the private key and first certificate will be stored in * them. The |out_ca_certs| argument may be NULL but, if not, then any extra * certificates will be appended to |*out_ca_certs|. If |*out_ca_certs| is NULL * then it will be set to a freshly allocated stack containing the extra certs. * * It returns one on success and zero on error. */ OPENSSL_EXPORT int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey, X509 **out_cert, STACK_OF(X509) **out_ca_certs); /* PKCS12_free frees |p12| and its contents. */ OPENSSL_EXPORT void PKCS12_free(PKCS12 *p12); #if defined(__cplusplus) } /* extern C */ #endif #define PKCS8_R_BAD_PKCS12_DATA 100 #define PKCS8_R_BAD_PKCS12_VERSION 101 #define PKCS8_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER 102 #define PKCS8_R_CRYPT_ERROR 103 #define PKCS8_R_DECODE_ERROR 104 #define PKCS8_R_ENCODE_ERROR 105 #define PKCS8_R_ENCRYPT_ERROR 106 #define PKCS8_R_ERROR_SETTING_CIPHER_PARAMS 107 #define PKCS8_R_INCORRECT_PASSWORD 108 #define PKCS8_R_KEYGEN_FAILURE 109 #define PKCS8_R_KEY_GEN_ERROR 110 #define PKCS8_R_METHOD_NOT_SUPPORTED 111 #define PKCS8_R_MISSING_MAC 112 #define PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12 113 #define PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED 114 #define PKCS8_R_PKCS12_TOO_DEEPLY_NESTED 115 #define PKCS8_R_PRIVATE_KEY_DECODE_ERROR 116 #define PKCS8_R_PRIVATE_KEY_ENCODE_ERROR 117 #define PKCS8_R_TOO_LONG 118 #define PKCS8_R_UNKNOWN_ALGORITHM 119 #define PKCS8_R_UNKNOWN_CIPHER 120 #define PKCS8_R_UNKNOWN_CIPHER_ALGORITHM 121 #define PKCS8_R_UNKNOWN_DIGEST 122 #define PKCS8_R_UNKNOWN_HASH 123 #define PKCS8_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM 124 #define PKCS8_R_UNSUPPORTED_KEYLENGTH 125 #define PKCS8_R_UNSUPPORTED_SALT_TYPE 126 #define PKCS8_R_UNSUPPORTED_CIPHER 127 #define PKCS8_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION 128 #define PKCS8_R_BAD_ITERATION_COUNT 129 #define PKCS8_R_UNSUPPORTED_PRF 130 #endif /* OPENSSL_HEADER_PKCS8_H */