/* ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include #include "../bn/internal.h" #include "../ec/internal.h" #include "../../internal.h" // digest_to_bn interprets |digest_len| bytes from |digest| as a big-endian // number and sets |out| to that value. It then truncates |out| so that it's, // at most, as long as |order|. It returns one on success and zero otherwise. static int digest_to_bn(BIGNUM *out, const uint8_t *digest, size_t digest_len, const BIGNUM *order) { size_t num_bits; num_bits = BN_num_bits(order); // Need to truncate digest if it is too long: first truncate whole // bytes. if (8 * digest_len > num_bits) { digest_len = (num_bits + 7) / 8; } if (!BN_bin2bn(digest, digest_len, out)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); return 0; } // If still too long truncate remaining bits with a shift if ((8 * digest_len > num_bits) && !BN_rshift(out, out, 8 - (num_bits & 0x7))) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); return 0; } return 1; } ECDSA_SIG *ECDSA_SIG_new(void) { ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG)); if (sig == NULL) { return NULL; } sig->r = BN_new(); sig->s = BN_new(); if (sig->r == NULL || sig->s == NULL) { ECDSA_SIG_free(sig); return NULL; } return sig; } void ECDSA_SIG_free(ECDSA_SIG *sig) { if (sig == NULL) { return; } BN_free(sig->r); BN_free(sig->s); OPENSSL_free(sig); } ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len, const EC_KEY *key) { return ECDSA_do_sign_ex(digest, digest_len, NULL, NULL, key); } int ECDSA_do_verify(const uint8_t *digest, size_t digest_len, const ECDSA_SIG *sig, const EC_KEY *eckey) { int ret = 0; BN_CTX *ctx; BIGNUM *u1, *u2, *m, *X; EC_POINT *point = NULL; const EC_GROUP *group; const EC_POINT *pub_key; // check input values if ((group = EC_KEY_get0_group(eckey)) == NULL || (pub_key = EC_KEY_get0_public_key(eckey)) == NULL || sig == NULL) { OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS); return 0; } ctx = BN_CTX_new(); if (!ctx) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); return 0; } BN_CTX_start(ctx); u1 = BN_CTX_get(ctx); u2 = BN_CTX_get(ctx); m = BN_CTX_get(ctx); X = BN_CTX_get(ctx); if (u1 == NULL || u2 == NULL || m == NULL || X == NULL) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); goto err; } const BIGNUM *order = EC_GROUP_get0_order(group); if (BN_is_zero(sig->r) || BN_is_negative(sig->r) || BN_ucmp(sig->r, order) >= 0 || BN_is_zero(sig->s) || BN_is_negative(sig->s) || BN_ucmp(sig->s, order) >= 0) { OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE); goto err; } // tmp = inv(s) mod order int no_inverse; if (!BN_mod_inverse_odd(u2, &no_inverse, sig->s, order, ctx)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); goto err; } if (!digest_to_bn(m, digest, digest_len, order)) { goto err; } // u1 = m * tmp mod order if (!BN_mod_mul(u1, m, u2, order, ctx)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); goto err; } // u2 = r * tmp mod order if (!BN_mod_mul(u2, sig->r, u2, order, ctx)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); goto err; } point = EC_POINT_new(group); if (point == NULL) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); goto err; } if (!EC_POINT_mul(group, point, u1, pub_key, u2, ctx)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); goto err; } if (!EC_POINT_get_affine_coordinates_GFp(group, point, X, NULL, ctx)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); goto err; } if (!BN_nnmod(u1, X, order, ctx)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); goto err; } // if the signature is correct u1 is equal to sig->r if (BN_ucmp(u1, sig->r) != 0) { OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE); goto err; } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(ctx); EC_POINT_free(point); return ret; } static int ecdsa_sign_setup(const EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp, const uint8_t *digest, size_t digest_len) { BN_CTX *ctx = NULL; BIGNUM *k = NULL, *kinv = NULL, *r = NULL, *tmp = NULL; EC_POINT *tmp_point = NULL; const EC_GROUP *group; int ret = 0; if (eckey == NULL || (group = EC_KEY_get0_group(eckey)) == NULL) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (ctx_in == NULL) { if ((ctx = BN_CTX_new()) == NULL) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); return 0; } } else { ctx = ctx_in; } k = BN_new(); kinv = BN_new(); // this value is later returned in *kinvp r = BN_new(); // this value is later returned in *rp tmp = BN_new(); if (k == NULL || kinv == NULL || r == NULL || tmp == NULL) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); goto err; } tmp_point = EC_POINT_new(group); if (tmp_point == NULL) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); goto err; } const BIGNUM *order = EC_GROUP_get0_order(group); // Check that the size of the group order is FIPS compliant (FIPS 186-4 // B.5.2). if (BN_num_bits(order) < 160) { OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER); goto err; } do { // If possible, we'll include the private key and message digest in the k // generation. The |digest| argument is only empty if |ECDSA_sign_setup| is // being used. if (eckey->fixed_k != NULL) { if (!BN_copy(k, eckey->fixed_k)) { goto err; } } else if (digest_len > 0) { if (!BN_generate_dsa_nonce(k, order, EC_KEY_get0_private_key(eckey), digest, digest_len, ctx)) { OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_RANDOM_NUMBER_GENERATION_FAILED); goto err; } } else if (!BN_rand_range_ex(k, 1, order)) { OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_RANDOM_NUMBER_GENERATION_FAILED); goto err; } // Compute the inverse of k. The order is a prime, so use Fermat's Little // Theorem. if (!bn_mod_inverse_prime(kinv, k, order, ctx, group->order_mont)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); goto err; } // We do not want timing information to leak the length of k, // so we compute G*k using an equivalent scalar of fixed // bit-length. if (!BN_add(k, k, order)) { goto err; } if (BN_num_bits(k) <= BN_num_bits(order)) { if (!BN_add(k, k, order)) { goto err; } } // compute r the x-coordinate of generator * k if (!EC_POINT_mul(group, tmp_point, k, NULL, NULL, ctx)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); goto err; } if (!EC_POINT_get_affine_coordinates_GFp(group, tmp_point, tmp, NULL, ctx)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); goto err; } if (!BN_nnmod(r, tmp, order, ctx)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); goto err; } } while (BN_is_zero(r)); // clear old values if necessary BN_clear_free(*rp); BN_clear_free(*kinvp); // save the pre-computed values *rp = r; *kinvp = kinv; ret = 1; err: BN_clear_free(k); if (!ret) { BN_clear_free(kinv); BN_clear_free(r); } if (ctx_in == NULL) { BN_CTX_free(ctx); } EC_POINT_free(tmp_point); BN_clear_free(tmp); return ret; } int ECDSA_sign_setup(const EC_KEY *eckey, BN_CTX *ctx, BIGNUM **kinv, BIGNUM **rp) { return ecdsa_sign_setup(eckey, ctx, kinv, rp, NULL, 0); } ECDSA_SIG *ECDSA_do_sign_ex(const uint8_t *digest, size_t digest_len, const BIGNUM *in_kinv, const BIGNUM *in_r, const EC_KEY *eckey) { int ok = 0; BIGNUM *kinv = NULL, *s, *m = NULL, *tmp = NULL; const BIGNUM *ckinv; BN_CTX *ctx = NULL; const EC_GROUP *group; ECDSA_SIG *ret; const BIGNUM *priv_key; if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) { OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED); return NULL; } group = EC_KEY_get0_group(eckey); priv_key = EC_KEY_get0_private_key(eckey); if (group == NULL || priv_key == NULL) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER); return NULL; } ret = ECDSA_SIG_new(); if (!ret) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); return NULL; } s = ret->s; if ((ctx = BN_CTX_new()) == NULL || (tmp = BN_new()) == NULL || (m = BN_new()) == NULL) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); goto err; } const BIGNUM *order = EC_GROUP_get0_order(group); if (!digest_to_bn(m, digest, digest_len, order)) { goto err; } for (;;) { if (in_kinv == NULL || in_r == NULL) { if (!ecdsa_sign_setup(eckey, ctx, &kinv, &ret->r, digest, digest_len)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_ECDSA_LIB); goto err; } ckinv = kinv; } else { ckinv = in_kinv; if (BN_copy(ret->r, in_r) == NULL) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); goto err; } } if (!BN_mod_mul(tmp, priv_key, ret->r, order, ctx)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); goto err; } if (!BN_mod_add_quick(s, tmp, m, order)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); goto err; } if (!BN_mod_mul(s, s, ckinv, order, ctx)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); goto err; } if (BN_is_zero(s)) { // if kinv and r have been supplied by the caller // don't to generate new kinv and r values if (in_kinv != NULL && in_r != NULL) { OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NEED_NEW_SETUP_VALUES); goto err; } } else { // s != 0 => we have a valid signature break; } } ok = 1; err: if (!ok) { ECDSA_SIG_free(ret); ret = NULL; } BN_CTX_free(ctx); BN_clear_free(m); BN_clear_free(tmp); BN_clear_free(kinv); return ret; }