/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project 2006. */ /* ==================================================================== * Copyright (c) 2006 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include #include #include #include #include "../rsa/internal.h" #include "internal.h" static int rsa_pub_encode(X509_PUBKEY *pk, const EVP_PKEY *pkey) { uint8_t *encoded = NULL; int len; len = i2d_RSAPublicKey(pkey->pkey.rsa, &encoded); if (len <= 0) { return 0; } if (!X509_PUBKEY_set0_param(pk, OBJ_nid2obj(EVP_PKEY_RSA), V_ASN1_NULL, NULL, encoded, len)) { OPENSSL_free(encoded); return 0; } return 1; } static int rsa_pub_decode(EVP_PKEY *pkey, X509_PUBKEY *pubkey) { const uint8_t *p; int pklen; RSA *rsa; if (!X509_PUBKEY_get0_param(NULL, &p, &pklen, NULL, pubkey)) { return 0; } rsa = d2i_RSAPublicKey(NULL, &p, pklen); if (rsa == NULL) { OPENSSL_PUT_ERROR(EVP, rsa_pub_decode, ERR_R_RSA_LIB); return 0; } EVP_PKEY_assign_RSA(pkey, rsa); return 1; } static int rsa_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b) { return BN_cmp(b->pkey.rsa->n, a->pkey.rsa->n) == 0 && BN_cmp(b->pkey.rsa->e, a->pkey.rsa->e) == 0; } static int rsa_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey) { uint8_t *rk = NULL; int rklen; rklen = i2d_RSAPrivateKey(pkey->pkey.rsa, &rk); if (rklen <= 0) { OPENSSL_PUT_ERROR(EVP, rsa_priv_encode, ERR_R_MALLOC_FAILURE); return 0; } /* TODO(fork): const correctness in next line. */ if (!PKCS8_pkey_set0(p8, (ASN1_OBJECT *)OBJ_nid2obj(NID_rsaEncryption), 0, V_ASN1_NULL, NULL, rk, rklen)) { OPENSSL_PUT_ERROR(EVP, rsa_priv_encode, ERR_R_MALLOC_FAILURE); return 0; } return 1; } static int rsa_priv_decode(EVP_PKEY *pkey, PKCS8_PRIV_KEY_INFO *p8) { const uint8_t *p; int pklen; RSA *rsa; if (!PKCS8_pkey_get0(NULL, &p, &pklen, NULL, p8)) { OPENSSL_PUT_ERROR(EVP, rsa_priv_decode, ERR_R_MALLOC_FAILURE); return 0; } rsa = d2i_RSAPrivateKey(NULL, &p, pklen); if (rsa == NULL) { OPENSSL_PUT_ERROR(EVP, rsa_priv_decode, ERR_R_RSA_LIB); return 0; } EVP_PKEY_assign_RSA(pkey, rsa); return 1; } static int rsa_opaque(const EVP_PKEY *pkey) { return RSA_is_opaque(pkey->pkey.rsa); } static int rsa_supports_digest(const EVP_PKEY *pkey, const EVP_MD *md) { return RSA_supports_digest(pkey->pkey.rsa, md); } static int int_rsa_size(const EVP_PKEY *pkey) { return RSA_size(pkey->pkey.rsa); } static int rsa_bits(const EVP_PKEY *pkey) { return BN_num_bits(pkey->pkey.rsa->n); } static void int_rsa_free(EVP_PKEY *pkey) { RSA_free(pkey->pkey.rsa); } static void update_buflen(const BIGNUM *b, size_t *pbuflen) { size_t i; if (!b) { return; } i = BN_num_bytes(b); if (*pbuflen < i) { *pbuflen = i; } } static int do_rsa_print(BIO *out, const RSA *rsa, int off, int include_private) { char *str; const char *s; uint8_t *m = NULL; int ret = 0, mod_len = 0; size_t buf_len = 0; update_buflen(rsa->n, &buf_len); update_buflen(rsa->e, &buf_len); if (include_private) { update_buflen(rsa->d, &buf_len); update_buflen(rsa->p, &buf_len); update_buflen(rsa->q, &buf_len); update_buflen(rsa->dmp1, &buf_len); update_buflen(rsa->dmq1, &buf_len); update_buflen(rsa->iqmp, &buf_len); if (rsa->additional_primes != NULL) { size_t i; for (i = 0; i < sk_RSA_additional_prime_num(rsa->additional_primes); i++) { const RSA_additional_prime *ap = sk_RSA_additional_prime_value(rsa->additional_primes, i); update_buflen(ap->prime, &buf_len); update_buflen(ap->exp, &buf_len); update_buflen(ap->coeff, &buf_len); } } } m = (uint8_t *)OPENSSL_malloc(buf_len + 10); if (m == NULL) { OPENSSL_PUT_ERROR(EVP, do_rsa_print, ERR_R_MALLOC_FAILURE); goto err; } if (rsa->n != NULL) { mod_len = BN_num_bits(rsa->n); } if (!BIO_indent(out, off, 128)) { goto err; } if (include_private && rsa->d) { if (BIO_printf(out, "Private-Key: (%d bit)\nversion: %ld\n", mod_len, rsa->version) <= 0) { goto err; } str = "modulus:"; s = "publicExponent:"; } else { if (BIO_printf(out, "Public-Key: (%d bit)\n", mod_len) <= 0) { goto err; } str = "Modulus:"; s = "Exponent:"; } if (!ASN1_bn_print(out, str, rsa->n, m, off) || !ASN1_bn_print(out, s, rsa->e, m, off)) { goto err; } if (include_private) { if (!ASN1_bn_print(out, "privateExponent:", rsa->d, m, off) || !ASN1_bn_print(out, "prime1:", rsa->p, m, off) || !ASN1_bn_print(out, "prime2:", rsa->q, m, off) || !ASN1_bn_print(out, "exponent1:", rsa->dmp1, m, off) || !ASN1_bn_print(out, "exponent2:", rsa->dmq1, m, off) || !ASN1_bn_print(out, "coefficient:", rsa->iqmp, m, off)) { goto err; } if (rsa->additional_primes != NULL && sk_RSA_additional_prime_num(rsa->additional_primes) > 0) { size_t i; if (BIO_printf(out, "otherPrimeInfos:\n") <= 0) { goto err; } for (i = 0; i < sk_RSA_additional_prime_num(rsa->additional_primes); i++) { const RSA_additional_prime *ap = sk_RSA_additional_prime_value(rsa->additional_primes, i); if (BIO_printf(out, "otherPrimeInfo (prime %u):\n", (unsigned)(i + 3)) <= 0 || !ASN1_bn_print(out, "prime:", ap->prime, m, off) || !ASN1_bn_print(out, "exponent:", ap->exp, m, off) || !ASN1_bn_print(out, "coeff:", ap->coeff, m, off)) { goto err; } } } } ret = 1; err: OPENSSL_free(m); return ret; } static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_rsa_print(bp, pkey->pkey.rsa, indent, 0); } static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_rsa_print(bp, pkey->pkey.rsa, indent, 1); } /* Given an MGF1 Algorithm ID decode to an Algorithm Identifier */ static X509_ALGOR *rsa_mgf1_decode(X509_ALGOR *alg) { const uint8_t *p; int plen; if (alg == NULL || OBJ_obj2nid(alg->algorithm) != NID_mgf1 || alg->parameter->type != V_ASN1_SEQUENCE) { return NULL; } p = alg->parameter->value.sequence->data; plen = alg->parameter->value.sequence->length; return d2i_X509_ALGOR(NULL, &p, plen); } static RSA_PSS_PARAMS *rsa_pss_decode(const X509_ALGOR *alg, X509_ALGOR **pmaskHash) { const uint8_t *p; int plen; RSA_PSS_PARAMS *pss; *pmaskHash = NULL; if (!alg->parameter || alg->parameter->type != V_ASN1_SEQUENCE) { return NULL; } p = alg->parameter->value.sequence->data; plen = alg->parameter->value.sequence->length; pss = d2i_RSA_PSS_PARAMS(NULL, &p, plen); if (!pss) { return NULL; } *pmaskHash = rsa_mgf1_decode(pss->maskGenAlgorithm); return pss; } static int rsa_pss_param_print(BIO *bp, RSA_PSS_PARAMS *pss, X509_ALGOR *maskHash, int indent) { int rv = 0; if (!pss) { if (BIO_puts(bp, " (INVALID PSS PARAMETERS)\n") <= 0) { return 0; } return 1; } if (BIO_puts(bp, "\n") <= 0 || !BIO_indent(bp, indent, 128) || BIO_puts(bp, "Hash Algorithm: ") <= 0) { goto err; } if (pss->hashAlgorithm) { if (i2a_ASN1_OBJECT(bp, pss->hashAlgorithm->algorithm) <= 0) { goto err; } } else if (BIO_puts(bp, "sha1 (default)") <= 0) { goto err; } if (BIO_puts(bp, "\n") <= 0 || !BIO_indent(bp, indent, 128) || BIO_puts(bp, "Mask Algorithm: ") <= 0) { goto err; } if (pss->maskGenAlgorithm) { if (i2a_ASN1_OBJECT(bp, pss->maskGenAlgorithm->algorithm) <= 0 || BIO_puts(bp, " with ") <= 0) { goto err; } if (maskHash) { if (i2a_ASN1_OBJECT(bp, maskHash->algorithm) <= 0) { goto err; } } else if (BIO_puts(bp, "INVALID") <= 0) { goto err; } } else if (BIO_puts(bp, "mgf1 with sha1 (default)") <= 0) { goto err; } BIO_puts(bp, "\n"); if (!BIO_indent(bp, indent, 128) || BIO_puts(bp, "Salt Length: 0x") <= 0) { goto err; } if (pss->saltLength) { if (i2a_ASN1_INTEGER(bp, pss->saltLength) <= 0) { goto err; } } else if (BIO_puts(bp, "14 (default)") <= 0) { goto err; } BIO_puts(bp, "\n"); if (!BIO_indent(bp, indent, 128) || BIO_puts(bp, "Trailer Field: 0x") <= 0) { goto err; } if (pss->trailerField) { if (i2a_ASN1_INTEGER(bp, pss->trailerField) <= 0) { goto err; } } else if (BIO_puts(bp, "BC (default)") <= 0) { goto err; } BIO_puts(bp, "\n"); rv = 1; err: return rv; } static int rsa_sig_print(BIO *bp, const X509_ALGOR *sigalg, const ASN1_STRING *sig, int indent, ASN1_PCTX *pctx) { if (OBJ_obj2nid(sigalg->algorithm) == NID_rsassaPss) { int rv; RSA_PSS_PARAMS *pss; X509_ALGOR *maskHash; pss = rsa_pss_decode(sigalg, &maskHash); rv = rsa_pss_param_print(bp, pss, maskHash, indent); RSA_PSS_PARAMS_free(pss); X509_ALGOR_free(maskHash); if (!rv) { return 0; } } else if (!sig && BIO_puts(bp, "\n") <= 0) { return 0; } if (sig) { return X509_signature_dump(bp, sig, indent); } return 1; } static int old_rsa_priv_decode(EVP_PKEY *pkey, const unsigned char **pder, int derlen) { RSA *rsa = d2i_RSAPrivateKey(NULL, pder, derlen); if (rsa == NULL) { OPENSSL_PUT_ERROR(EVP, old_rsa_priv_decode, ERR_R_RSA_LIB); return 0; } EVP_PKEY_assign_RSA(pkey, rsa); return 1; } static int old_rsa_priv_encode(const EVP_PKEY *pkey, unsigned char **pder) { return i2d_RSAPrivateKey(pkey->pkey.rsa, pder); } /* allocate and set algorithm ID from EVP_MD, default SHA1 */ static int rsa_md_to_algor(X509_ALGOR **palg, const EVP_MD *md) { if (EVP_MD_type(md) == NID_sha1) { return 1; } *palg = X509_ALGOR_new(); if (!*palg) { return 0; } X509_ALGOR_set_md(*palg, md); return 1; } /* Allocate and set MGF1 algorithm ID from EVP_MD */ static int rsa_md_to_mgf1(X509_ALGOR **palg, const EVP_MD *mgf1md) { X509_ALGOR *algtmp = NULL; ASN1_STRING *stmp = NULL; *palg = NULL; if (EVP_MD_type(mgf1md) == NID_sha1) { return 1; } /* need to embed algorithm ID inside another */ if (!rsa_md_to_algor(&algtmp, mgf1md) || !ASN1_item_pack(algtmp, ASN1_ITEM_rptr(X509_ALGOR), &stmp)) { goto err; } *palg = X509_ALGOR_new(); if (!*palg) { goto err; } X509_ALGOR_set0(*palg, OBJ_nid2obj(NID_mgf1), V_ASN1_SEQUENCE, stmp); stmp = NULL; err: ASN1_STRING_free(stmp); X509_ALGOR_free(algtmp); if (*palg) { return 1; } return 0; } /* convert algorithm ID to EVP_MD, default SHA1 */ static const EVP_MD *rsa_algor_to_md(X509_ALGOR *alg) { const EVP_MD *md; if (!alg) { return EVP_sha1(); } md = EVP_get_digestbyobj(alg->algorithm); if (md == NULL) { OPENSSL_PUT_ERROR(EVP, rsa_algor_to_md, EVP_R_UNKNOWN_DIGEST); } return md; } /* convert MGF1 algorithm ID to EVP_MD, default SHA1 */ static const EVP_MD *rsa_mgf1_to_md(X509_ALGOR *alg, X509_ALGOR *maskHash) { const EVP_MD *md; if (!alg) { return EVP_sha1(); } /* Check mask and lookup mask hash algorithm */ if (OBJ_obj2nid(alg->algorithm) != NID_mgf1) { OPENSSL_PUT_ERROR(EVP, rsa_mgf1_to_md, EVP_R_UNSUPPORTED_MASK_ALGORITHM); return NULL; } if (!maskHash) { OPENSSL_PUT_ERROR(EVP, rsa_mgf1_to_md, EVP_R_UNSUPPORTED_MASK_PARAMETER); return NULL; } md = EVP_get_digestbyobj(maskHash->algorithm); if (md == NULL) { OPENSSL_PUT_ERROR(EVP, rsa_mgf1_to_md, EVP_R_UNKNOWN_MASK_DIGEST); return NULL; } return md; } /* rsa_ctx_to_pss converts EVP_PKEY_CTX in PSS mode into corresponding * algorithm parameter, suitable for setting as an AlgorithmIdentifier. */ static ASN1_STRING *rsa_ctx_to_pss(EVP_PKEY_CTX *pkctx) { const EVP_MD *sigmd, *mgf1md; RSA_PSS_PARAMS *pss = NULL; ASN1_STRING *os = NULL; EVP_PKEY *pk = EVP_PKEY_CTX_get0_pkey(pkctx); int saltlen, rv = 0; if (!EVP_PKEY_CTX_get_signature_md(pkctx, &sigmd) || !EVP_PKEY_CTX_get_rsa_mgf1_md(pkctx, &mgf1md) || !EVP_PKEY_CTX_get_rsa_pss_saltlen(pkctx, &saltlen)) { goto err; } if (saltlen == -1) { saltlen = EVP_MD_size(sigmd); } else if (saltlen == -2) { saltlen = EVP_PKEY_size(pk) - EVP_MD_size(sigmd) - 2; if (((EVP_PKEY_bits(pk) - 1) & 0x7) == 0) { saltlen--; } } else { goto err; } pss = RSA_PSS_PARAMS_new(); if (!pss) { goto err; } if (saltlen != 20) { pss->saltLength = ASN1_INTEGER_new(); if (!pss->saltLength || !ASN1_INTEGER_set(pss->saltLength, saltlen)) { goto err; } } if (!rsa_md_to_algor(&pss->hashAlgorithm, sigmd) || !rsa_md_to_mgf1(&pss->maskGenAlgorithm, mgf1md)) { goto err; } /* Finally create string with pss parameter encoding. */ if (!ASN1_item_pack(pss, ASN1_ITEM_rptr(RSA_PSS_PARAMS), &os)) { goto err; } rv = 1; err: if (pss) { RSA_PSS_PARAMS_free(pss); } if (rv) { return os; } if (os) { ASN1_STRING_free(os); } return NULL; } /* From PSS AlgorithmIdentifier set public key parameters. */ static int rsa_pss_to_ctx(EVP_MD_CTX *ctx, X509_ALGOR *sigalg, EVP_PKEY *pkey) { int ret = 0; int saltlen; const EVP_MD *mgf1md = NULL, *md = NULL; RSA_PSS_PARAMS *pss; X509_ALGOR *maskHash; EVP_PKEY_CTX *pkctx; /* Sanity check: make sure it is PSS */ if (OBJ_obj2nid(sigalg->algorithm) != NID_rsassaPss) { OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_UNSUPPORTED_SIGNATURE_TYPE); return 0; } /* Decode PSS parameters */ pss = rsa_pss_decode(sigalg, &maskHash); if (pss == NULL) { OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_INVALID_PSS_PARAMETERS); goto err; } mgf1md = rsa_mgf1_to_md(pss->maskGenAlgorithm, maskHash); if (!mgf1md) { goto err; } md = rsa_algor_to_md(pss->hashAlgorithm); if (!md) { goto err; } saltlen = 20; if (pss->saltLength) { saltlen = ASN1_INTEGER_get(pss->saltLength); /* Could perform more salt length sanity checks but the main * RSA routines will trap other invalid values anyway. */ if (saltlen < 0) { OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_INVALID_SALT_LENGTH); goto err; } } /* low-level routines support only trailer field 0xbc (value 1) * and PKCS#1 says we should reject any other value anyway. */ if (pss->trailerField && ASN1_INTEGER_get(pss->trailerField) != 1) { OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_INVALID_TRAILER); goto err; } if (!EVP_DigestVerifyInit(ctx, &pkctx, md, NULL, pkey) || !EVP_PKEY_CTX_set_rsa_padding(pkctx, RSA_PKCS1_PSS_PADDING) || !EVP_PKEY_CTX_set_rsa_pss_saltlen(pkctx, saltlen) || !EVP_PKEY_CTX_set_rsa_mgf1_md(pkctx, mgf1md)) { goto err; } ret = 1; err: RSA_PSS_PARAMS_free(pss); if (maskHash) { X509_ALGOR_free(maskHash); } return ret; } /* Customised RSA AlgorithmIdentifier handling. This is called when a signature * is encountered requiring special handling. We currently only handle PSS. */ static int rsa_digest_verify_init_from_algorithm(EVP_MD_CTX *ctx, X509_ALGOR *sigalg, EVP_PKEY *pkey) { /* Sanity check: make sure it is PSS */ if (OBJ_obj2nid(sigalg->algorithm) != NID_rsassaPss) { OPENSSL_PUT_ERROR(EVP, rsa_digest_verify_init_from_algorithm, EVP_R_UNSUPPORTED_SIGNATURE_TYPE); return 0; } return rsa_pss_to_ctx(ctx, sigalg, pkey); } static evp_digest_sign_algorithm_result_t rsa_digest_sign_algorithm( EVP_MD_CTX *ctx, X509_ALGOR *sigalg) { int pad_mode; EVP_PKEY_CTX *pkctx = ctx->pctx; if (!EVP_PKEY_CTX_get_rsa_padding(pkctx, &pad_mode)) { return EVP_DIGEST_SIGN_ALGORITHM_ERROR; } if (pad_mode == RSA_PKCS1_PSS_PADDING) { ASN1_STRING *os1 = rsa_ctx_to_pss(pkctx); if (!os1) { return EVP_DIGEST_SIGN_ALGORITHM_ERROR; } X509_ALGOR_set0(sigalg, OBJ_nid2obj(NID_rsassaPss), V_ASN1_SEQUENCE, os1); return EVP_DIGEST_SIGN_ALGORITHM_SUCCESS; } /* Other padding schemes use the default behavior. */ return EVP_DIGEST_SIGN_ALGORITHM_DEFAULT; } const EVP_PKEY_ASN1_METHOD rsa_asn1_meth = { EVP_PKEY_RSA, EVP_PKEY_RSA, ASN1_PKEY_SIGPARAM_NULL, "RSA", rsa_pub_decode, rsa_pub_encode, rsa_pub_cmp, rsa_pub_print, rsa_priv_decode, rsa_priv_encode, rsa_priv_print, rsa_opaque, rsa_supports_digest, int_rsa_size, rsa_bits, 0,0,0,0,0,0, rsa_sig_print, int_rsa_free, old_rsa_priv_decode, old_rsa_priv_encode, rsa_digest_verify_init_from_algorithm, rsa_digest_sign_algorithm, };