#!/usr/bin/env perl # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # August 2011. # # Companion to x86_64-mont.pl that optimizes cache-timing attack # countermeasures. The subroutines are produced by replacing bp[i] # references in their x86_64-mont.pl counterparts with cache-neutral # references to powers table computed in BN_mod_exp_mont_consttime. # In addition subroutine that scatters elements of the powers table # is implemented, so that scatter-/gathering can be tuned without # bn_exp.c modifications. # August 2013. # # Add MULX/AD*X code paths and additional interfaces to optimize for # branch prediction unit. For input lengths that are multiples of 8 # the np argument is not just modulus value, but one interleaved # with 0. This is to optimize post-condition... $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $addx = ($1>=2.23); } if (!$addx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $addx = ($1>=2.10); } if (!$addx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $addx = ($1>=12); } # int bn_mul_mont_gather5( $rp="%rdi"; # BN_ULONG *rp, $ap="%rsi"; # const BN_ULONG *ap, $bp="%rdx"; # const BN_ULONG *bp, $np="%rcx"; # const BN_ULONG *np, $n0="%r8"; # const BN_ULONG *n0, $num="%r9"; # int num, # int idx); # 0 to 2^5-1, "index" in $bp holding # pre-computed powers of a', interlaced # in such manner that b[0] is $bp[idx], # b[1] is [2^5+idx], etc. $lo0="%r10"; $hi0="%r11"; $hi1="%r13"; $i="%r14"; $j="%r15"; $m0="%rbx"; $m1="%rbp"; $code=<<___; .text .extern OPENSSL_ia32cap_P .globl bn_mul_mont_gather5 .type bn_mul_mont_gather5,\@function,6 .align 64 bn_mul_mont_gather5: test \$7,${num}d jnz .Lmul_enter ___ $code.=<<___ if ($addx); mov OPENSSL_ia32cap_P+8(%rip),%r11d ___ $code.=<<___; jmp .Lmul4x_enter .align 16 .Lmul_enter: mov ${num}d,${num}d mov %rsp,%rax mov `($win64?56:8)`(%rsp),%r10d # load 7th argument push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 ___ $code.=<<___ if ($win64); lea -0x28(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) ___ $code.=<<___; lea 2($num),%r11 neg %r11 lea (%rsp,%r11,8),%rsp # tp=alloca(8*(num+2)) and \$-1024,%rsp # minimize TLB usage mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp .Lmul_body: mov $bp,%r12 # reassign $bp ___ $bp="%r12"; $STRIDE=2**5*8; # 5 is "window size" $N=$STRIDE/4; # should match cache line size $code.=<<___; mov %r10,%r11 shr \$`log($N/8)/log(2)`,%r10 and \$`$N/8-1`,%r11 not %r10 lea .Lmagic_masks(%rip),%rax and \$`2**5/($N/8)-1`,%r10 # 5 is "window size" lea 96($bp,%r11,8),$bp # pointer within 1st cache line movq 0(%rax,%r10,8),%xmm4 # set of masks denoting which movq 8(%rax,%r10,8),%xmm5 # cache line contains element movq 16(%rax,%r10,8),%xmm6 # denoted by 7th argument movq 24(%rax,%r10,8),%xmm7 movq `0*$STRIDE/4-96`($bp),%xmm0 movq `1*$STRIDE/4-96`($bp),%xmm1 pand %xmm4,%xmm0 movq `2*$STRIDE/4-96`($bp),%xmm2 pand %xmm5,%xmm1 movq `3*$STRIDE/4-96`($bp),%xmm3 pand %xmm6,%xmm2 por %xmm1,%xmm0 pand %xmm7,%xmm3 por %xmm2,%xmm0 lea $STRIDE($bp),$bp por %xmm3,%xmm0 movq %xmm0,$m0 # m0=bp[0] mov ($n0),$n0 # pull n0[0] value mov ($ap),%rax xor $i,$i # i=0 xor $j,$j # j=0 movq `0*$STRIDE/4-96`($bp),%xmm0 movq `1*$STRIDE/4-96`($bp),%xmm1 pand %xmm4,%xmm0 movq `2*$STRIDE/4-96`($bp),%xmm2 pand %xmm5,%xmm1 mov $n0,$m1 mulq $m0 # ap[0]*bp[0] mov %rax,$lo0 mov ($np),%rax movq `3*$STRIDE/4-96`($bp),%xmm3 pand %xmm6,%xmm2 por %xmm1,%xmm0 pand %xmm7,%xmm3 imulq $lo0,$m1 # "tp[0]"*n0 mov %rdx,$hi0 por %xmm2,%xmm0 lea $STRIDE($bp),$bp por %xmm3,%xmm0 mulq $m1 # np[0]*m1 add %rax,$lo0 # discarded mov 8($ap),%rax adc \$0,%rdx mov %rdx,$hi1 lea 1($j),$j # j++ jmp .L1st_enter .align 16 .L1st: add %rax,$hi1 mov ($ap,$j,8),%rax adc \$0,%rdx add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] mov $lo0,$hi0 adc \$0,%rdx mov $hi1,-16(%rsp,$j,8) # tp[j-1] mov %rdx,$hi1 .L1st_enter: mulq $m0 # ap[j]*bp[0] add %rax,$hi0 mov ($np,$j,8),%rax adc \$0,%rdx lea 1($j),$j # j++ mov %rdx,$lo0 mulq $m1 # np[j]*m1 cmp $num,$j jne .L1st movq %xmm0,$m0 # bp[1] add %rax,$hi1 mov ($ap),%rax # ap[0] adc \$0,%rdx add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $hi1,-16(%rsp,$j,8) # tp[j-1] mov %rdx,$hi1 mov $lo0,$hi0 xor %rdx,%rdx add $hi0,$hi1 adc \$0,%rdx mov $hi1,-8(%rsp,$num,8) mov %rdx,(%rsp,$num,8) # store upmost overflow bit lea 1($i),$i # i++ jmp .Louter .align 16 .Louter: xor $j,$j # j=0 mov $n0,$m1 mov (%rsp),$lo0 movq `0*$STRIDE/4-96`($bp),%xmm0 movq `1*$STRIDE/4-96`($bp),%xmm1 pand %xmm4,%xmm0 movq `2*$STRIDE/4-96`($bp),%xmm2 pand %xmm5,%xmm1 mulq $m0 # ap[0]*bp[i] add %rax,$lo0 # ap[0]*bp[i]+tp[0] mov ($np),%rax adc \$0,%rdx movq `3*$STRIDE/4-96`($bp),%xmm3 pand %xmm6,%xmm2 por %xmm1,%xmm0 pand %xmm7,%xmm3 imulq $lo0,$m1 # tp[0]*n0 mov %rdx,$hi0 por %xmm2,%xmm0 lea $STRIDE($bp),$bp por %xmm3,%xmm0 mulq $m1 # np[0]*m1 add %rax,$lo0 # discarded mov 8($ap),%rax adc \$0,%rdx mov 8(%rsp),$lo0 # tp[1] mov %rdx,$hi1 lea 1($j),$j # j++ jmp .Linner_enter .align 16 .Linner: add %rax,$hi1 mov ($ap,$j,8),%rax adc \$0,%rdx add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] mov (%rsp,$j,8),$lo0 adc \$0,%rdx mov $hi1,-16(%rsp,$j,8) # tp[j-1] mov %rdx,$hi1 .Linner_enter: mulq $m0 # ap[j]*bp[i] add %rax,$hi0 mov ($np,$j,8),%rax adc \$0,%rdx add $hi0,$lo0 # ap[j]*bp[i]+tp[j] mov %rdx,$hi0 adc \$0,$hi0 lea 1($j),$j # j++ mulq $m1 # np[j]*m1 cmp $num,$j jne .Linner movq %xmm0,$m0 # bp[i+1] add %rax,$hi1 mov ($ap),%rax # ap[0] adc \$0,%rdx add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] mov (%rsp,$j,8),$lo0 adc \$0,%rdx mov $hi1,-16(%rsp,$j,8) # tp[j-1] mov %rdx,$hi1 xor %rdx,%rdx add $hi0,$hi1 adc \$0,%rdx add $lo0,$hi1 # pull upmost overflow bit adc \$0,%rdx mov $hi1,-8(%rsp,$num,8) mov %rdx,(%rsp,$num,8) # store upmost overflow bit lea 1($i),$i # i++ cmp $num,$i jb .Louter xor $i,$i # i=0 and clear CF! mov (%rsp),%rax # tp[0] lea (%rsp),$ap # borrow ap for tp mov $num,$j # j=num jmp .Lsub .align 16 .Lsub: sbb ($np,$i,8),%rax mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i] mov 8($ap,$i,8),%rax # tp[i+1] lea 1($i),$i # i++ dec $j # doesnn't affect CF! jnz .Lsub sbb \$0,%rax # handle upmost overflow bit xor $i,$i mov $num,$j # j=num .align 16 .Lcopy: # copy or in-place refresh mov (%rsp,$i,8),$ap mov ($rp,$i,8),$np xor $np,$ap # conditional select: and %rax,$ap # ((ap ^ np) & %rax) ^ np xor $np,$ap # ap = borrow?tp:rp mov $i,(%rsp,$i,8) # zap temporary vector mov $ap,($rp,$i,8) # rp[i]=tp[i] lea 1($i),$i sub \$1,$j jnz .Lcopy mov 8(%rsp,$num,8),%rsi # restore %rsp mov \$1,%rax ___ $code.=<<___ if ($win64); movaps -88(%rsi),%xmm6 movaps -72(%rsi),%xmm7 ___ $code.=<<___; mov -48(%rsi),%r15 mov -40(%rsi),%r14 mov -32(%rsi),%r13 mov -24(%rsi),%r12 mov -16(%rsi),%rbp mov -8(%rsi),%rbx lea (%rsi),%rsp .Lmul_epilogue: ret .size bn_mul_mont_gather5,.-bn_mul_mont_gather5 ___ {{{ my @A=("%r10","%r11"); my @N=("%r13","%rdi"); $code.=<<___; .type bn_mul4x_mont_gather5,\@function,6 .align 32 bn_mul4x_mont_gather5: .Lmul4x_enter: ___ $code.=<<___ if ($addx); and \$0x80100,%r11d cmp \$0x80100,%r11d je .Lmulx4x_enter ___ $code.=<<___; .byte 0x67 mov %rsp,%rax push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 ___ $code.=<<___ if ($win64); lea -0x28(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) ___ $code.=<<___; .byte 0x67 mov ${num}d,%r10d shl \$3,${num}d shl \$3+2,%r10d # 4*$num neg $num # -$num ############################################################## # ensure that stack frame doesn't alias with $aptr+4*$num # modulo 4096, which covers ret[num], am[num] and n[2*num] # (see bn_exp.c). this is done to allow memory disambiguation # logic do its magic. [excessive frame is allocated in order # to allow bn_from_mont8x to clear it.] # lea -64(%rsp,$num,2),%r11 sub $ap,%r11 and \$4095,%r11 cmp %r11,%r10 jb .Lmul4xsp_alt sub %r11,%rsp # align with $ap lea -64(%rsp,$num,2),%rsp # alloca(128+num*8) jmp .Lmul4xsp_done .align 32 .Lmul4xsp_alt: lea 4096-64(,$num,2),%r10 lea -64(%rsp,$num,2),%rsp # alloca(128+num*8) sub %r10,%r11 mov \$0,%r10 cmovc %r10,%r11 sub %r11,%rsp .Lmul4xsp_done: and \$-64,%rsp neg $num mov %rax,40(%rsp) .Lmul4x_body: call mul4x_internal mov 40(%rsp),%rsi # restore %rsp mov \$1,%rax ___ $code.=<<___ if ($win64); movaps -88(%rsi),%xmm6 movaps -72(%rsi),%xmm7 ___ $code.=<<___; mov -48(%rsi),%r15 mov -40(%rsi),%r14 mov -32(%rsi),%r13 mov -24(%rsi),%r12 mov -16(%rsi),%rbp mov -8(%rsi),%rbx lea (%rsi),%rsp .Lmul4x_epilogue: ret .size bn_mul4x_mont_gather5,.-bn_mul4x_mont_gather5 .type mul4x_internal,\@abi-omnipotent .align 32 mul4x_internal: shl \$5,$num mov `($win64?56:8)`(%rax),%r10d # load 7th argument lea 256(%rdx,$num),%r13 shr \$5,$num # restore $num ___ $bp="%r12"; $STRIDE=2**5*8; # 5 is "window size" $N=$STRIDE/4; # should match cache line size $tp=$i; $code.=<<___; mov %r10,%r11 shr \$`log($N/8)/log(2)`,%r10 and \$`$N/8-1`,%r11 not %r10 lea .Lmagic_masks(%rip),%rax and \$`2**5/($N/8)-1`,%r10 # 5 is "window size" lea 96(%rdx,%r11,8),$bp # pointer within 1st cache line movq 0(%rax,%r10,8),%xmm4 # set of masks denoting which movq 8(%rax,%r10,8),%xmm5 # cache line contains element add \$7,%r11 movq 16(%rax,%r10,8),%xmm6 # denoted by 7th argument movq 24(%rax,%r10,8),%xmm7 and \$7,%r11 movq `0*$STRIDE/4-96`($bp),%xmm0 lea $STRIDE($bp),$tp # borrow $tp movq `1*$STRIDE/4-96`($bp),%xmm1 pand %xmm4,%xmm0 movq `2*$STRIDE/4-96`($bp),%xmm2 pand %xmm5,%xmm1 movq `3*$STRIDE/4-96`($bp),%xmm3 pand %xmm6,%xmm2 .byte 0x67 por %xmm1,%xmm0 movq `0*$STRIDE/4-96`($tp),%xmm1 .byte 0x67 pand %xmm7,%xmm3 .byte 0x67 por %xmm2,%xmm0 movq `1*$STRIDE/4-96`($tp),%xmm2 .byte 0x67 pand %xmm4,%xmm1 .byte 0x67 por %xmm3,%xmm0 movq `2*$STRIDE/4-96`($tp),%xmm3 movq %xmm0,$m0 # m0=bp[0] movq `3*$STRIDE/4-96`($tp),%xmm0 mov %r13,16+8(%rsp) # save end of b[num] mov $rp, 56+8(%rsp) # save $rp mov ($n0),$n0 # pull n0[0] value mov ($ap),%rax lea ($ap,$num),$ap # end of a[num] neg $num mov $n0,$m1 mulq $m0 # ap[0]*bp[0] mov %rax,$A[0] mov ($np),%rax pand %xmm5,%xmm2 pand %xmm6,%xmm3 por %xmm2,%xmm1 imulq $A[0],$m1 # "tp[0]"*n0 ############################################################## # $tp is chosen so that writing to top-most element of the # vector occurs just "above" references to powers table, # "above" modulo cache-line size, which effectively precludes # possibility of memory disambiguation logic failure when # accessing the table. # lea 64+8(%rsp,%r11,8),$tp mov %rdx,$A[1] pand %xmm7,%xmm0 por %xmm3,%xmm1 lea 2*$STRIDE($bp),$bp por %xmm1,%xmm0 mulq $m1 # np[0]*m1 add %rax,$A[0] # discarded mov 8($ap,$num),%rax adc \$0,%rdx mov %rdx,$N[1] mulq $m0 add %rax,$A[1] mov 16*1($np),%rax # interleaved with 0, therefore 16*n adc \$0,%rdx mov %rdx,$A[0] mulq $m1 add %rax,$N[1] mov 16($ap,$num),%rax adc \$0,%rdx add $A[1],$N[1] lea 4*8($num),$j # j=4 lea 16*4($np),$np adc \$0,%rdx mov $N[1],($tp) mov %rdx,$N[0] jmp .L1st4x .align 32 .L1st4x: mulq $m0 # ap[j]*bp[0] add %rax,$A[0] mov -16*2($np),%rax lea 32($tp),$tp adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap,$j),%rax adc \$0,%rdx add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[0],-24($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[0] add %rax,$A[1] mov -16*1($np),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap,$j),%rax adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[1],-16($tp) # tp[j-1] mov %rdx,$N[0] mulq $m0 # ap[j]*bp[0] add %rax,$A[0] mov 16*0($np),%rax adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov 8($ap,$j),%rax adc \$0,%rdx add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[0],-8($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[0] add %rax,$A[1] mov 16*1($np),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov 16($ap,$j),%rax adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] lea 16*4($np),$np adc \$0,%rdx mov $N[1],($tp) # tp[j-1] mov %rdx,$N[0] add \$32,$j # j+=4 jnz .L1st4x mulq $m0 # ap[j]*bp[0] add %rax,$A[0] mov -16*2($np),%rax lea 32($tp),$tp adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap),%rax adc \$0,%rdx add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[0],-24($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[0] add %rax,$A[1] mov -16*1($np),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap,$num),%rax # ap[0] adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[1],-16($tp) # tp[j-1] mov %rdx,$N[0] movq %xmm0,$m0 # bp[1] lea ($np,$num,2),$np # rewind $np xor $N[1],$N[1] add $A[0],$N[0] adc \$0,$N[1] mov $N[0],-8($tp) jmp .Louter4x .align 32 .Louter4x: mov ($tp,$num),$A[0] mov $n0,$m1 mulq $m0 # ap[0]*bp[i] add %rax,$A[0] # ap[0]*bp[i]+tp[0] mov ($np),%rax adc \$0,%rdx movq `0*$STRIDE/4-96`($bp),%xmm0 movq `1*$STRIDE/4-96`($bp),%xmm1 pand %xmm4,%xmm0 movq `2*$STRIDE/4-96`($bp),%xmm2 pand %xmm5,%xmm1 movq `3*$STRIDE/4-96`($bp),%xmm3 imulq $A[0],$m1 # tp[0]*n0 .byte 0x67 mov %rdx,$A[1] mov $N[1],($tp) # store upmost overflow bit pand %xmm6,%xmm2 por %xmm1,%xmm0 pand %xmm7,%xmm3 por %xmm2,%xmm0 lea ($tp,$num),$tp # rewind $tp lea $STRIDE($bp),$bp por %xmm3,%xmm0 mulq $m1 # np[0]*m1 add %rax,$A[0] # "$N[0]", discarded mov 8($ap,$num),%rax adc \$0,%rdx mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov 16*1($np),%rax # interleaved with 0, therefore 16*n adc \$0,%rdx add 8($tp),$A[1] # +tp[1] adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov 16($ap,$num),%rax adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[i]+tp[j] lea 4*8($num),$j # j=4 lea 16*4($np),$np adc \$0,%rdx mov %rdx,$N[0] jmp .Linner4x .align 32 .Linner4x: mulq $m0 # ap[j]*bp[i] add %rax,$A[0] mov -16*2($np),%rax adc \$0,%rdx add 16($tp),$A[0] # ap[j]*bp[i]+tp[j] lea 32($tp),$tp adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap,$j),%rax adc \$0,%rdx add $A[0],$N[0] adc \$0,%rdx mov $N[1],-32($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov -16*1($np),%rax adc \$0,%rdx add -8($tp),$A[1] adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap,$j),%rax adc \$0,%rdx add $A[1],$N[1] adc \$0,%rdx mov $N[0],-24($tp) # tp[j-1] mov %rdx,$N[0] mulq $m0 # ap[j]*bp[i] add %rax,$A[0] mov 16*0($np),%rax adc \$0,%rdx add ($tp),$A[0] # ap[j]*bp[i]+tp[j] adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov 8($ap,$j),%rax adc \$0,%rdx add $A[0],$N[0] adc \$0,%rdx mov $N[1],-16($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov 16*1($np),%rax adc \$0,%rdx add 8($tp),$A[1] adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov 16($ap,$j),%rax adc \$0,%rdx add $A[1],$N[1] lea 16*4($np),$np adc \$0,%rdx mov $N[0],-8($tp) # tp[j-1] mov %rdx,$N[0] add \$32,$j # j+=4 jnz .Linner4x mulq $m0 # ap[j]*bp[i] add %rax,$A[0] mov -16*2($np),%rax adc \$0,%rdx add 16($tp),$A[0] # ap[j]*bp[i]+tp[j] lea 32($tp),$tp adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap),%rax adc \$0,%rdx add $A[0],$N[0] adc \$0,%rdx mov $N[1],-32($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov $m1,%rax mov -16*1($np),$m1 adc \$0,%rdx add -8($tp),$A[1] adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap,$num),%rax # ap[0] adc \$0,%rdx add $A[1],$N[1] adc \$0,%rdx mov $N[0],-24($tp) # tp[j-1] mov %rdx,$N[0] movq %xmm0,$m0 # bp[i+1] mov $N[1],-16($tp) # tp[j-1] lea ($np,$num,2),$np # rewind $np xor $N[1],$N[1] add $A[0],$N[0] adc \$0,$N[1] add ($tp),$N[0] # pull upmost overflow bit adc \$0,$N[1] # upmost overflow bit mov $N[0],-8($tp) cmp 16+8(%rsp),$bp jb .Louter4x ___ if (1) { $code.=<<___; sub $N[0],$m1 # compare top-most words adc $j,$j # $j is zero or $j,$N[1] xor \$1,$N[1] lea ($tp,$num),%rbx # tptr in .sqr4x_sub lea ($np,$N[1],8),%rbp # nptr in .sqr4x_sub mov %r9,%rcx sar \$3+2,%rcx # cf=0 mov 56+8(%rsp),%rdi # rptr in .sqr4x_sub jmp .Lsqr4x_sub ___ } else { my @ri=("%rax",$bp,$m0,$m1); my $rp="%rdx"; $code.=<<___ xor \$1,$N[1] lea ($tp,$num),$tp # rewind $tp sar \$5,$num # cf=0 lea ($np,$N[1],8),$np mov 56+8(%rsp),$rp # restore $rp jmp .Lsub4x .align 32 .Lsub4x: .byte 0x66 mov 8*0($tp),@ri[0] mov 8*1($tp),@ri[1] .byte 0x66 sbb 16*0($np),@ri[0] mov 8*2($tp),@ri[2] sbb 16*1($np),@ri[1] mov 3*8($tp),@ri[3] lea 4*8($tp),$tp sbb 16*2($np),@ri[2] mov @ri[0],8*0($rp) sbb 16*3($np),@ri[3] lea 16*4($np),$np mov @ri[1],8*1($rp) mov @ri[2],8*2($rp) mov @ri[3],8*3($rp) lea 8*4($rp),$rp inc $num jnz .Lsub4x ret ___ } $code.=<<___; .size mul4x_internal,.-mul4x_internal ___ }}} {{{ ###################################################################### # void bn_power5( my $rptr="%rdi"; # BN_ULONG *rptr, my $aptr="%rsi"; # const BN_ULONG *aptr, my $bptr="%rdx"; # const void *table, my $nptr="%rcx"; # const BN_ULONG *nptr, my $n0 ="%r8"; # const BN_ULONG *n0); my $num ="%r9"; # int num, has to be divisible by 8 # int pwr my ($i,$j,$tptr)=("%rbp","%rcx",$rptr); my @A0=("%r10","%r11"); my @A1=("%r12","%r13"); my ($a0,$a1,$ai)=("%r14","%r15","%rbx"); $code.=<<___; .globl bn_power5 .type bn_power5,\@function,6 .align 32 bn_power5: ___ $code.=<<___ if ($addx); mov OPENSSL_ia32cap_P+8(%rip),%r11d and \$0x80100,%r11d cmp \$0x80100,%r11d je .Lpowerx5_enter ___ $code.=<<___; mov %rsp,%rax push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 ___ $code.=<<___ if ($win64); lea -0x28(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) ___ $code.=<<___; mov ${num}d,%r10d shl \$3,${num}d # convert $num to bytes shl \$3+2,%r10d # 4*$num neg $num mov ($n0),$n0 # *n0 ############################################################## # ensure that stack frame doesn't alias with $aptr+4*$num # modulo 4096, which covers ret[num], am[num] and n[2*num] # (see bn_exp.c). this is done to allow memory disambiguation # logic do its magic. # lea -64(%rsp,$num,2),%r11 sub $aptr,%r11 and \$4095,%r11 cmp %r11,%r10 jb .Lpwr_sp_alt sub %r11,%rsp # align with $aptr lea -64(%rsp,$num,2),%rsp # alloca(frame+2*$num) jmp .Lpwr_sp_done .align 32 .Lpwr_sp_alt: lea 4096-64(,$num,2),%r10 # 4096-frame-2*$num lea -64(%rsp,$num,2),%rsp # alloca(frame+2*$num) sub %r10,%r11 mov \$0,%r10 cmovc %r10,%r11 sub %r11,%rsp .Lpwr_sp_done: and \$-64,%rsp mov $num,%r10 neg $num ############################################################## # Stack layout # # +0 saved $num, used in reduction section # +8 &t[2*$num], used in reduction section # +32 saved *n0 # +40 saved %rsp # +48 t[2*$num] # mov $n0, 32(%rsp) mov %rax, 40(%rsp) # save original %rsp .Lpower5_body: movq $rptr,%xmm1 # save $rptr movq $nptr,%xmm2 # save $nptr movq %r10, %xmm3 # -$num movq $bptr,%xmm4 call __bn_sqr8x_internal call __bn_sqr8x_internal call __bn_sqr8x_internal call __bn_sqr8x_internal call __bn_sqr8x_internal movq %xmm2,$nptr movq %xmm4,$bptr mov $aptr,$rptr mov 40(%rsp),%rax lea 32(%rsp),$n0 call mul4x_internal mov 40(%rsp),%rsi # restore %rsp mov \$1,%rax mov -48(%rsi),%r15 mov -40(%rsi),%r14 mov -32(%rsi),%r13 mov -24(%rsi),%r12 mov -16(%rsi),%rbp mov -8(%rsi),%rbx lea (%rsi),%rsp .Lpower5_epilogue: ret .size bn_power5,.-bn_power5 .globl bn_sqr8x_internal .hidden bn_sqr8x_internal .type bn_sqr8x_internal,\@abi-omnipotent .align 32 bn_sqr8x_internal: __bn_sqr8x_internal: ############################################################## # Squaring part: # # a) multiply-n-add everything but a[i]*a[i]; # b) shift result of a) by 1 to the left and accumulate # a[i]*a[i] products; # ############################################################## # a[1]a[0] # a[2]a[0] # a[3]a[0] # a[2]a[1] # a[4]a[0] # a[3]a[1] # a[5]a[0] # a[4]a[1] # a[3]a[2] # a[6]a[0] # a[5]a[1] # a[4]a[2] # a[7]a[0] # a[6]a[1] # a[5]a[2] # a[4]a[3] # a[7]a[1] # a[6]a[2] # a[5]a[3] # a[7]a[2] # a[6]a[3] # a[5]a[4] # a[7]a[3] # a[6]a[4] # a[7]a[4] # a[6]a[5] # a[7]a[5] # a[7]a[6] # a[1]a[0] # a[2]a[0] # a[3]a[0] # a[4]a[0] # a[5]a[0] # a[6]a[0] # a[7]a[0] # a[2]a[1] # a[3]a[1] # a[4]a[1] # a[5]a[1] # a[6]a[1] # a[7]a[1] # a[3]a[2] # a[4]a[2] # a[5]a[2] # a[6]a[2] # a[7]a[2] # a[4]a[3] # a[5]a[3] # a[6]a[3] # a[7]a[3] # a[5]a[4] # a[6]a[4] # a[7]a[4] # a[6]a[5] # a[7]a[5] # a[7]a[6] # a[0]a[0] # a[1]a[1] # a[2]a[2] # a[3]a[3] # a[4]a[4] # a[5]a[5] # a[6]a[6] # a[7]a[7] lea 32(%r10),$i # $i=-($num-32) lea ($aptr,$num),$aptr # end of a[] buffer, ($aptr,$i)=&ap[2] mov $num,$j # $j=$num # comments apply to $num==8 case mov -32($aptr,$i),$a0 # a[0] lea 48+8(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] mov -24($aptr,$i),%rax # a[1] lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] mov -16($aptr,$i),$ai # a[2] mov %rax,$a1 mul $a0 # a[1]*a[0] mov %rax,$A0[0] # a[1]*a[0] mov $ai,%rax # a[2] mov %rdx,$A0[1] mov $A0[0],-24($tptr,$i) # t[1] mul $a0 # a[2]*a[0] add %rax,$A0[1] mov $ai,%rax adc \$0,%rdx mov $A0[1],-16($tptr,$i) # t[2] mov %rdx,$A0[0] mov -8($aptr,$i),$ai # a[3] mul $a1 # a[2]*a[1] mov %rax,$A1[0] # a[2]*a[1]+t[3] mov $ai,%rax mov %rdx,$A1[1] lea ($i),$j mul $a0 # a[3]*a[0] add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] mov $ai,%rax mov %rdx,$A0[1] adc \$0,$A0[1] add $A1[0],$A0[0] adc \$0,$A0[1] mov $A0[0],-8($tptr,$j) # t[3] jmp .Lsqr4x_1st .align 32 .Lsqr4x_1st: mov ($aptr,$j),$ai # a[4] mul $a1 # a[3]*a[1] add %rax,$A1[1] # a[3]*a[1]+t[4] mov $ai,%rax mov %rdx,$A1[0] adc \$0,$A1[0] mul $a0 # a[4]*a[0] add %rax,$A0[1] # a[4]*a[0]+a[3]*a[1]+t[4] mov $ai,%rax # a[3] mov 8($aptr,$j),$ai # a[5] mov %rdx,$A0[0] adc \$0,$A0[0] add $A1[1],$A0[1] adc \$0,$A0[0] mul $a1 # a[4]*a[3] add %rax,$A1[0] # a[4]*a[3]+t[5] mov $ai,%rax mov $A0[1],($tptr,$j) # t[4] mov %rdx,$A1[1] adc \$0,$A1[1] mul $a0 # a[5]*a[2] add %rax,$A0[0] # a[5]*a[2]+a[4]*a[3]+t[5] mov $ai,%rax mov 16($aptr,$j),$ai # a[6] mov %rdx,$A0[1] adc \$0,$A0[1] add $A1[0],$A0[0] adc \$0,$A0[1] mul $a1 # a[5]*a[3] add %rax,$A1[1] # a[5]*a[3]+t[6] mov $ai,%rax mov $A0[0],8($tptr,$j) # t[5] mov %rdx,$A1[0] adc \$0,$A1[0] mul $a0 # a[6]*a[2] add %rax,$A0[1] # a[6]*a[2]+a[5]*a[3]+t[6] mov $ai,%rax # a[3] mov 24($aptr,$j),$ai # a[7] mov %rdx,$A0[0] adc \$0,$A0[0] add $A1[1],$A0[1] adc \$0,$A0[0] mul $a1 # a[6]*a[5] add %rax,$A1[0] # a[6]*a[5]+t[7] mov $ai,%rax mov $A0[1],16($tptr,$j) # t[6] mov %rdx,$A1[1] adc \$0,$A1[1] lea 32($j),$j mul $a0 # a[7]*a[4] add %rax,$A0[0] # a[7]*a[4]+a[6]*a[5]+t[6] mov $ai,%rax mov %rdx,$A0[1] adc \$0,$A0[1] add $A1[0],$A0[0] adc \$0,$A0[1] mov $A0[0],-8($tptr,$j) # t[7] cmp \$0,$j jne .Lsqr4x_1st mul $a1 # a[7]*a[5] add %rax,$A1[1] lea 16($i),$i adc \$0,%rdx add $A0[1],$A1[1] adc \$0,%rdx mov $A1[1],($tptr) # t[8] mov %rdx,$A1[0] mov %rdx,8($tptr) # t[9] jmp .Lsqr4x_outer .align 32 .Lsqr4x_outer: # comments apply to $num==6 case mov -32($aptr,$i),$a0 # a[0] lea 48+8(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] mov -24($aptr,$i),%rax # a[1] lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] mov -16($aptr,$i),$ai # a[2] mov %rax,$a1 mul $a0 # a[1]*a[0] mov -24($tptr,$i),$A0[0] # t[1] add %rax,$A0[0] # a[1]*a[0]+t[1] mov $ai,%rax # a[2] adc \$0,%rdx mov $A0[0],-24($tptr,$i) # t[1] mov %rdx,$A0[1] mul $a0 # a[2]*a[0] add %rax,$A0[1] mov $ai,%rax adc \$0,%rdx add -16($tptr,$i),$A0[1] # a[2]*a[0]+t[2] mov %rdx,$A0[0] adc \$0,$A0[0] mov $A0[1],-16($tptr,$i) # t[2] xor $A1[0],$A1[0] mov -8($aptr,$i),$ai # a[3] mul $a1 # a[2]*a[1] add %rax,$A1[0] # a[2]*a[1]+t[3] mov $ai,%rax adc \$0,%rdx add -8($tptr,$i),$A1[0] mov %rdx,$A1[1] adc \$0,$A1[1] mul $a0 # a[3]*a[0] add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] mov $ai,%rax adc \$0,%rdx add $A1[0],$A0[0] mov %rdx,$A0[1] adc \$0,$A0[1] mov $A0[0],-8($tptr,$i) # t[3] lea ($i),$j jmp .Lsqr4x_inner .align 32 .Lsqr4x_inner: mov ($aptr,$j),$ai # a[4] mul $a1 # a[3]*a[1] add %rax,$A1[1] # a[3]*a[1]+t[4] mov $ai,%rax mov %rdx,$A1[0] adc \$0,$A1[0] add ($tptr,$j),$A1[1] adc \$0,$A1[0] .byte 0x67 mul $a0 # a[4]*a[0] add %rax,$A0[1] # a[4]*a[0]+a[3]*a[1]+t[4] mov $ai,%rax # a[3] mov 8($aptr,$j),$ai # a[5] mov %rdx,$A0[0] adc \$0,$A0[0] add $A1[1],$A0[1] adc \$0,$A0[0] mul $a1 # a[4]*a[3] add %rax,$A1[0] # a[4]*a[3]+t[5] mov $A0[1],($tptr,$j) # t[4] mov $ai,%rax mov %rdx,$A1[1] adc \$0,$A1[1] add 8($tptr,$j),$A1[0] lea 16($j),$j # j++ adc \$0,$A1[1] mul $a0 # a[5]*a[2] add %rax,$A0[0] # a[5]*a[2]+a[4]*a[3]+t[5] mov $ai,%rax adc \$0,%rdx add $A1[0],$A0[0] mov %rdx,$A0[1] adc \$0,$A0[1] mov $A0[0],-8($tptr,$j) # t[5], "preloaded t[1]" below cmp \$0,$j jne .Lsqr4x_inner .byte 0x67 mul $a1 # a[5]*a[3] add %rax,$A1[1] adc \$0,%rdx add $A0[1],$A1[1] adc \$0,%rdx mov $A1[1],($tptr) # t[6], "preloaded t[2]" below mov %rdx,$A1[0] mov %rdx,8($tptr) # t[7], "preloaded t[3]" below add \$16,$i jnz .Lsqr4x_outer # comments apply to $num==4 case mov -32($aptr),$a0 # a[0] lea 48+8(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] mov -24($aptr),%rax # a[1] lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] mov -16($aptr),$ai # a[2] mov %rax,$a1 mul $a0 # a[1]*a[0] add %rax,$A0[0] # a[1]*a[0]+t[1], preloaded t[1] mov $ai,%rax # a[2] mov %rdx,$A0[1] adc \$0,$A0[1] mul $a0 # a[2]*a[0] add %rax,$A0[1] mov $ai,%rax mov $A0[0],-24($tptr) # t[1] mov %rdx,$A0[0] adc \$0,$A0[0] add $A1[1],$A0[1] # a[2]*a[0]+t[2], preloaded t[2] mov -8($aptr),$ai # a[3] adc \$0,$A0[0] mul $a1 # a[2]*a[1] add %rax,$A1[0] # a[2]*a[1]+t[3], preloaded t[3] mov $ai,%rax mov $A0[1],-16($tptr) # t[2] mov %rdx,$A1[1] adc \$0,$A1[1] mul $a0 # a[3]*a[0] add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] mov $ai,%rax mov %rdx,$A0[1] adc \$0,$A0[1] add $A1[0],$A0[0] adc \$0,$A0[1] mov $A0[0],-8($tptr) # t[3] mul $a1 # a[3]*a[1] add %rax,$A1[1] mov -16($aptr),%rax # a[2] adc \$0,%rdx add $A0[1],$A1[1] adc \$0,%rdx mov $A1[1],($tptr) # t[4] mov %rdx,$A1[0] mov %rdx,8($tptr) # t[5] mul $ai # a[2]*a[3] ___ { my ($shift,$carry)=($a0,$a1); my @S=(@A1,$ai,$n0); $code.=<<___; add \$16,$i xor $shift,$shift sub $num,$i # $i=16-$num xor $carry,$carry add $A1[0],%rax # t[5] adc \$0,%rdx mov %rax,8($tptr) # t[5] mov %rdx,16($tptr) # t[6] mov $carry,24($tptr) # t[7] mov -16($aptr,$i),%rax # a[0] lea 48+8(%rsp),$tptr xor $A0[0],$A0[0] # t[0] mov 8($tptr),$A0[1] # t[1] lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift shr \$63,$A0[0] lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[1] # | t[2*i]>>63 mov 16($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov 24($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[0] mov -8($aptr,$i),%rax # a[i+1] # prefetch mov $S[0],($tptr) adc %rdx,$S[1] lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift mov $S[1],8($tptr) sbb $carry,$carry # mov cf,$carry shr \$63,$A0[0] lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[3] # | t[2*i]>>63 mov 32($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov 40($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[2] mov 0($aptr,$i),%rax # a[i+1] # prefetch mov $S[2],16($tptr) adc %rdx,$S[3] lea 16($i),$i mov $S[3],24($tptr) sbb $carry,$carry # mov cf,$carry lea 64($tptr),$tptr jmp .Lsqr4x_shift_n_add .align 32 .Lsqr4x_shift_n_add: lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift shr \$63,$A0[0] lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[1] # | t[2*i]>>63 mov -16($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov -8($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[0] mov -8($aptr,$i),%rax # a[i+1] # prefetch mov $S[0],-32($tptr) adc %rdx,$S[1] lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift mov $S[1],-24($tptr) sbb $carry,$carry # mov cf,$carry shr \$63,$A0[0] lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[3] # | t[2*i]>>63 mov 0($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov 8($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[2] mov 0($aptr,$i),%rax # a[i+1] # prefetch mov $S[2],-16($tptr) adc %rdx,$S[3] lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift mov $S[3],-8($tptr) sbb $carry,$carry # mov cf,$carry shr \$63,$A0[0] lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[1] # | t[2*i]>>63 mov 16($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov 24($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[0] mov 8($aptr,$i),%rax # a[i+1] # prefetch mov $S[0],0($tptr) adc %rdx,$S[1] lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift mov $S[1],8($tptr) sbb $carry,$carry # mov cf,$carry shr \$63,$A0[0] lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[3] # | t[2*i]>>63 mov 32($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov 40($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[2] mov 16($aptr,$i),%rax # a[i+1] # prefetch mov $S[2],16($tptr) adc %rdx,$S[3] mov $S[3],24($tptr) sbb $carry,$carry # mov cf,$carry lea 64($tptr),$tptr add \$32,$i jnz .Lsqr4x_shift_n_add lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift .byte 0x67 shr \$63,$A0[0] lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[1] # | t[2*i]>>63 mov -16($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov -8($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[0] mov -8($aptr),%rax # a[i+1] # prefetch mov $S[0],-32($tptr) adc %rdx,$S[1] lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1|shift mov $S[1],-24($tptr) sbb $carry,$carry # mov cf,$carry shr \$63,$A0[0] lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[3] # | t[2*i]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf adc %rax,$S[2] adc %rdx,$S[3] mov $S[2],-16($tptr) mov $S[3],-8($tptr) ___ } ###################################################################### # Montgomery reduction part, "word-by-word" algorithm. # # This new path is inspired by multiple submissions from Intel, by # Shay Gueron, Vlad Krasnov, Erdinc Ozturk, James Guilford, # Vinodh Gopal... { my ($nptr,$tptr,$carry,$m0)=("%rbp","%rdi","%rsi","%rbx"); $code.=<<___; movq %xmm2,$nptr sqr8x_reduction: xor %rax,%rax lea ($nptr,$num,2),%rcx # end of n[] lea 48+8(%rsp,$num,2),%rdx # end of t[] buffer mov %rcx,0+8(%rsp) lea 48+8(%rsp,$num),$tptr # end of initial t[] window mov %rdx,8+8(%rsp) neg $num jmp .L8x_reduction_loop .align 32 .L8x_reduction_loop: lea ($tptr,$num),$tptr # start of current t[] window .byte 0x66 mov 8*0($tptr),$m0 mov 8*1($tptr),%r9 mov 8*2($tptr),%r10 mov 8*3($tptr),%r11 mov 8*4($tptr),%r12 mov 8*5($tptr),%r13 mov 8*6($tptr),%r14 mov 8*7($tptr),%r15 mov %rax,(%rdx) # store top-most carry bit lea 8*8($tptr),$tptr .byte 0x67 mov $m0,%r8 imulq 32+8(%rsp),$m0 # n0*a[0] mov 16*0($nptr),%rax # n[0] mov \$8,%ecx jmp .L8x_reduce .align 32 .L8x_reduce: mulq $m0 mov 16*1($nptr),%rax # n[1] neg %r8 mov %rdx,%r8 adc \$0,%r8 mulq $m0 add %rax,%r9 mov 16*2($nptr),%rax adc \$0,%rdx add %r9,%r8 mov $m0,48-8+8(%rsp,%rcx,8) # put aside n0*a[i] mov %rdx,%r9 adc \$0,%r9 mulq $m0 add %rax,%r10 mov 16*3($nptr),%rax adc \$0,%rdx add %r10,%r9 mov 32+8(%rsp),$carry # pull n0, borrow $carry mov %rdx,%r10 adc \$0,%r10 mulq $m0 add %rax,%r11 mov 16*4($nptr),%rax adc \$0,%rdx imulq %r8,$carry # modulo-scheduled add %r11,%r10 mov %rdx,%r11 adc \$0,%r11 mulq $m0 add %rax,%r12 mov 16*5($nptr),%rax adc \$0,%rdx add %r12,%r11 mov %rdx,%r12 adc \$0,%r12 mulq $m0 add %rax,%r13 mov 16*6($nptr),%rax adc \$0,%rdx add %r13,%r12 mov %rdx,%r13 adc \$0,%r13 mulq $m0 add %rax,%r14 mov 16*7($nptr),%rax adc \$0,%rdx add %r14,%r13 mov %rdx,%r14 adc \$0,%r14 mulq $m0 mov $carry,$m0 # n0*a[i] add %rax,%r15 mov 16*0($nptr),%rax # n[0] adc \$0,%rdx add %r15,%r14 mov %rdx,%r15 adc \$0,%r15 dec %ecx jnz .L8x_reduce lea 16*8($nptr),$nptr xor %rax,%rax mov 8+8(%rsp),%rdx # pull end of t[] cmp 0+8(%rsp),$nptr # end of n[]? jae .L8x_no_tail .byte 0x66 add 8*0($tptr),%r8 adc 8*1($tptr),%r9 adc 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 sbb $carry,$carry # top carry mov 48+56+8(%rsp),$m0 # pull n0*a[0] mov \$8,%ecx mov 16*0($nptr),%rax jmp .L8x_tail .align 32 .L8x_tail: mulq $m0 add %rax,%r8 mov 16*1($nptr),%rax mov %r8,($tptr) # save result mov %rdx,%r8 adc \$0,%r8 mulq $m0 add %rax,%r9 mov 16*2($nptr),%rax adc \$0,%rdx add %r9,%r8 lea 8($tptr),$tptr # $tptr++ mov %rdx,%r9 adc \$0,%r9 mulq $m0 add %rax,%r10 mov 16*3($nptr),%rax adc \$0,%rdx add %r10,%r9 mov %rdx,%r10 adc \$0,%r10 mulq $m0 add %rax,%r11 mov 16*4($nptr),%rax adc \$0,%rdx add %r11,%r10 mov %rdx,%r11 adc \$0,%r11 mulq $m0 add %rax,%r12 mov 16*5($nptr),%rax adc \$0,%rdx add %r12,%r11 mov %rdx,%r12 adc \$0,%r12 mulq $m0 add %rax,%r13 mov 16*6($nptr),%rax adc \$0,%rdx add %r13,%r12 mov %rdx,%r13 adc \$0,%r13 mulq $m0 add %rax,%r14 mov 16*7($nptr),%rax adc \$0,%rdx add %r14,%r13 mov %rdx,%r14 adc \$0,%r14 mulq $m0 mov 48-16+8(%rsp,%rcx,8),$m0# pull n0*a[i] add %rax,%r15 adc \$0,%rdx add %r15,%r14 mov 16*0($nptr),%rax # pull n[0] mov %rdx,%r15 adc \$0,%r15 dec %ecx jnz .L8x_tail lea 16*8($nptr),$nptr mov 8+8(%rsp),%rdx # pull end of t[] cmp 0+8(%rsp),$nptr # end of n[]? jae .L8x_tail_done # break out of loop mov 48+56+8(%rsp),$m0 # pull n0*a[0] neg $carry mov 8*0($nptr),%rax # pull n[0] adc 8*0($tptr),%r8 adc 8*1($tptr),%r9 adc 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 sbb $carry,$carry # top carry mov \$8,%ecx jmp .L8x_tail .align 32 .L8x_tail_done: add (%rdx),%r8 # can this overflow? xor %rax,%rax neg $carry .L8x_no_tail: adc 8*0($tptr),%r8 adc 8*1($tptr),%r9 adc 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 adc \$0,%rax # top-most carry mov -16($nptr),%rcx # np[num-1] xor $carry,$carry movq %xmm2,$nptr # restore $nptr mov %r8,8*0($tptr) # store top 512 bits mov %r9,8*1($tptr) movq %xmm3,$num # $num is %r9, can't be moved upwards mov %r10,8*2($tptr) mov %r11,8*3($tptr) mov %r12,8*4($tptr) mov %r13,8*5($tptr) mov %r14,8*6($tptr) mov %r15,8*7($tptr) lea 8*8($tptr),$tptr cmp %rdx,$tptr # end of t[]? jb .L8x_reduction_loop ___ } ############################################################## # Post-condition, 4x unrolled # { my ($tptr,$nptr)=("%rbx","%rbp"); $code.=<<___; #xor %rsi,%rsi # %rsi was $carry above sub %r15,%rcx # compare top-most words lea (%rdi,$num),$tptr # %rdi was $tptr above adc %rsi,%rsi mov $num,%rcx or %rsi,%rax movq %xmm1,$rptr # restore $rptr xor \$1,%rax movq %xmm1,$aptr # prepare for back-to-back call lea ($nptr,%rax,8),$nptr sar \$3+2,%rcx # cf=0 jmp .Lsqr4x_sub .align 32 .Lsqr4x_sub: .byte 0x66 mov 8*0($tptr),%r12 mov 8*1($tptr),%r13 sbb 16*0($nptr),%r12 mov 8*2($tptr),%r14 sbb 16*1($nptr),%r13 mov 8*3($tptr),%r15 lea 8*4($tptr),$tptr sbb 16*2($nptr),%r14 mov %r12,8*0($rptr) sbb 16*3($nptr),%r15 lea 16*4($nptr),$nptr mov %r13,8*1($rptr) mov %r14,8*2($rptr) mov %r15,8*3($rptr) lea 8*4($rptr),$rptr inc %rcx # pass %cf jnz .Lsqr4x_sub ___ } $code.=<<___; mov $num,%r10 # prepare for back-to-back call neg $num # restore $num ret .size bn_sqr8x_internal,.-bn_sqr8x_internal ___ { $code.=<<___; .globl bn_from_montgomery .type bn_from_montgomery,\@abi-omnipotent .align 32 bn_from_montgomery: testl \$7,`($win64?"48(%rsp)":"%r9d")` jz bn_from_mont8x xor %eax,%eax ret .size bn_from_montgomery,.-bn_from_montgomery .type bn_from_mont8x,\@function,6 .align 32 bn_from_mont8x: .byte 0x67 mov %rsp,%rax push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 ___ $code.=<<___ if ($win64); lea -0x28(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) ___ $code.=<<___; .byte 0x67 mov ${num}d,%r10d shl \$3,${num}d # convert $num to bytes shl \$3+2,%r10d # 4*$num neg $num mov ($n0),$n0 # *n0 ############################################################## # ensure that stack frame doesn't alias with $aptr+4*$num # modulo 4096, which covers ret[num], am[num] and n[2*num] # (see bn_exp.c). this is done to allow memory disambiguation # logic do its magic. # lea -64(%rsp,$num,2),%r11 sub $aptr,%r11 and \$4095,%r11 cmp %r11,%r10 jb .Lfrom_sp_alt sub %r11,%rsp # align with $aptr lea -64(%rsp,$num,2),%rsp # alloca(frame+2*$num) jmp .Lfrom_sp_done .align 32 .Lfrom_sp_alt: lea 4096-64(,$num,2),%r10 # 4096-frame-2*$num lea -64(%rsp,$num,2),%rsp # alloca(frame+2*$num) sub %r10,%r11 mov \$0,%r10 cmovc %r10,%r11 sub %r11,%rsp .Lfrom_sp_done: and \$-64,%rsp mov $num,%r10 neg $num ############################################################## # Stack layout # # +0 saved $num, used in reduction section # +8 &t[2*$num], used in reduction section # +32 saved *n0 # +40 saved %rsp # +48 t[2*$num] # mov $n0, 32(%rsp) mov %rax, 40(%rsp) # save original %rsp .Lfrom_body: mov $num,%r11 lea 48(%rsp),%rax pxor %xmm0,%xmm0 jmp .Lmul_by_1 .align 32 .Lmul_by_1: movdqu ($aptr),%xmm1 movdqu 16($aptr),%xmm2 movdqu 32($aptr),%xmm3 movdqa %xmm0,(%rax,$num) movdqu 48($aptr),%xmm4 movdqa %xmm0,16(%rax,$num) .byte 0x48,0x8d,0xb6,0x40,0x00,0x00,0x00 # lea 64($aptr),$aptr movdqa %xmm1,(%rax) movdqa %xmm0,32(%rax,$num) movdqa %xmm2,16(%rax) movdqa %xmm0,48(%rax,$num) movdqa %xmm3,32(%rax) movdqa %xmm4,48(%rax) lea 64(%rax),%rax sub \$64,%r11 jnz .Lmul_by_1 movq $rptr,%xmm1 movq $nptr,%xmm2 .byte 0x67 mov $nptr,%rbp movq %r10, %xmm3 # -num ___ $code.=<<___ if ($addx); mov OPENSSL_ia32cap_P+8(%rip),%r11d and \$0x80100,%r11d cmp \$0x80100,%r11d jne .Lfrom_mont_nox lea (%rax,$num),$rptr call sqrx8x_reduction pxor %xmm0,%xmm0 lea 48(%rsp),%rax mov 40(%rsp),%rsi # restore %rsp jmp .Lfrom_mont_zero .align 32 .Lfrom_mont_nox: ___ $code.=<<___; call sqr8x_reduction pxor %xmm0,%xmm0 lea 48(%rsp),%rax mov 40(%rsp),%rsi # restore %rsp jmp .Lfrom_mont_zero .align 32 .Lfrom_mont_zero: movdqa %xmm0,16*0(%rax) movdqa %xmm0,16*1(%rax) movdqa %xmm0,16*2(%rax) movdqa %xmm0,16*3(%rax) lea 16*4(%rax),%rax sub \$32,$num jnz .Lfrom_mont_zero mov \$1,%rax mov -48(%rsi),%r15 mov -40(%rsi),%r14 mov -32(%rsi),%r13 mov -24(%rsi),%r12 mov -16(%rsi),%rbp mov -8(%rsi),%rbx lea (%rsi),%rsp .Lfrom_epilogue: ret .size bn_from_mont8x,.-bn_from_mont8x ___ } }}} if ($addx) {{{ my $bp="%rdx"; # restore original value $code.=<<___; .type bn_mulx4x_mont_gather5,\@function,6 .align 32 bn_mulx4x_mont_gather5: .Lmulx4x_enter: .byte 0x67 mov %rsp,%rax push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 ___ $code.=<<___ if ($win64); lea -0x28(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) ___ $code.=<<___; .byte 0x67 mov ${num}d,%r10d shl \$3,${num}d # convert $num to bytes shl \$3+2,%r10d # 4*$num neg $num # -$num mov ($n0),$n0 # *n0 ############################################################## # ensure that stack frame doesn't alias with $aptr+4*$num # modulo 4096, which covers a[num], ret[num] and n[2*num] # (see bn_exp.c). this is done to allow memory disambiguation # logic do its magic. [excessive frame is allocated in order # to allow bn_from_mont8x to clear it.] # lea -64(%rsp,$num,2),%r11 sub $ap,%r11 and \$4095,%r11 cmp %r11,%r10 jb .Lmulx4xsp_alt sub %r11,%rsp # align with $aptr lea -64(%rsp,$num,2),%rsp # alloca(frame+$num) jmp .Lmulx4xsp_done .align 32 .Lmulx4xsp_alt: lea 4096-64(,$num,2),%r10 # 4096-frame-$num lea -64(%rsp,$num,2),%rsp # alloca(frame+$num) sub %r10,%r11 mov \$0,%r10 cmovc %r10,%r11 sub %r11,%rsp .Lmulx4xsp_done: and \$-64,%rsp # ensure alignment ############################################################## # Stack layout # +0 -num # +8 off-loaded &b[i] # +16 end of b[num] # +24 inner counter # +32 saved n0 # +40 saved %rsp # +48 # +56 saved rp # +64 tmp[num+1] # mov $n0, 32(%rsp) # save *n0 mov %rax,40(%rsp) # save original %rsp .Lmulx4x_body: call mulx4x_internal mov 40(%rsp),%rsi # restore %rsp mov \$1,%rax ___ $code.=<<___ if ($win64); movaps -88(%rsi),%xmm6 movaps -72(%rsi),%xmm7 ___ $code.=<<___; mov -48(%rsi),%r15 mov -40(%rsi),%r14 mov -32(%rsi),%r13 mov -24(%rsi),%r12 mov -16(%rsi),%rbp mov -8(%rsi),%rbx lea (%rsi),%rsp .Lmulx4x_epilogue: ret .size bn_mulx4x_mont_gather5,.-bn_mulx4x_mont_gather5 .type mulx4x_internal,\@abi-omnipotent .align 32 mulx4x_internal: .byte 0x4c,0x89,0x8c,0x24,0x08,0x00,0x00,0x00 # mov $num,8(%rsp) # save -$num .byte 0x67 neg $num # restore $num shl \$5,$num lea 256($bp,$num),%r13 shr \$5+5,$num mov `($win64?56:8)`(%rax),%r10d # load 7th argument sub \$1,$num mov %r13,16+8(%rsp) # end of b[num] mov $num,24+8(%rsp) # inner counter mov $rp, 56+8(%rsp) # save $rp ___ my ($aptr, $bptr, $nptr, $tptr, $mi, $bi, $zero, $num)= ("%rsi","%rdi","%rcx","%rbx","%r8","%r9","%rbp","%rax"); my $rptr=$bptr; my $STRIDE=2**5*8; # 5 is "window size" my $N=$STRIDE/4; # should match cache line size $code.=<<___; mov %r10,%r11 shr \$`log($N/8)/log(2)`,%r10 and \$`$N/8-1`,%r11 not %r10 lea .Lmagic_masks(%rip),%rax and \$`2**5/($N/8)-1`,%r10 # 5 is "window size" lea 96($bp,%r11,8),$bptr # pointer within 1st cache line movq 0(%rax,%r10,8),%xmm4 # set of masks denoting which movq 8(%rax,%r10,8),%xmm5 # cache line contains element add \$7,%r11 movq 16(%rax,%r10,8),%xmm6 # denoted by 7th argument movq 24(%rax,%r10,8),%xmm7 and \$7,%r11 movq `0*$STRIDE/4-96`($bptr),%xmm0 lea $STRIDE($bptr),$tptr # borrow $tptr movq `1*$STRIDE/4-96`($bptr),%xmm1 pand %xmm4,%xmm0 movq `2*$STRIDE/4-96`($bptr),%xmm2 pand %xmm5,%xmm1 movq `3*$STRIDE/4-96`($bptr),%xmm3 pand %xmm6,%xmm2 por %xmm1,%xmm0 movq `0*$STRIDE/4-96`($tptr),%xmm1 pand %xmm7,%xmm3 por %xmm2,%xmm0 movq `1*$STRIDE/4-96`($tptr),%xmm2 por %xmm3,%xmm0 .byte 0x67,0x67 pand %xmm4,%xmm1 movq `2*$STRIDE/4-96`($tptr),%xmm3 movq %xmm0,%rdx # bp[0] movq `3*$STRIDE/4-96`($tptr),%xmm0 lea 2*$STRIDE($bptr),$bptr # next &b[i] pand %xmm5,%xmm2 .byte 0x67,0x67 pand %xmm6,%xmm3 ############################################################## # $tptr is chosen so that writing to top-most element of the # vector occurs just "above" references to powers table, # "above" modulo cache-line size, which effectively precludes # possibility of memory disambiguation logic failure when # accessing the table. # lea 64+8*4+8(%rsp,%r11,8),$tptr mov %rdx,$bi mulx 0*8($aptr),$mi,%rax # a[0]*b[0] mulx 1*8($aptr),%r11,%r12 # a[1]*b[0] add %rax,%r11 mulx 2*8($aptr),%rax,%r13 # ... adc %rax,%r12 adc \$0,%r13 mulx 3*8($aptr),%rax,%r14 mov $mi,%r15 imulq 32+8(%rsp),$mi # "t[0]"*n0 xor $zero,$zero # cf=0, of=0 mov $mi,%rdx por %xmm2,%xmm1 pand %xmm7,%xmm0 por %xmm3,%xmm1 mov $bptr,8+8(%rsp) # off-load &b[i] por %xmm1,%xmm0 .byte 0x48,0x8d,0xb6,0x20,0x00,0x00,0x00 # lea 4*8($aptr),$aptr adcx %rax,%r13 adcx $zero,%r14 # cf=0 mulx 0*16($nptr),%rax,%r10 adcx %rax,%r15 # discarded adox %r11,%r10 mulx 1*16($nptr),%rax,%r11 adcx %rax,%r10 adox %r12,%r11 mulx 2*16($nptr),%rax,%r12 mov 24+8(%rsp),$bptr # counter value .byte 0x66 mov %r10,-8*4($tptr) adcx %rax,%r11 adox %r13,%r12 mulx 3*16($nptr),%rax,%r15 .byte 0x67,0x67 mov $bi,%rdx mov %r11,-8*3($tptr) adcx %rax,%r12 adox $zero,%r15 # of=0 .byte 0x48,0x8d,0x89,0x40,0x00,0x00,0x00 # lea 4*16($nptr),$nptr mov %r12,-8*2($tptr) #jmp .Lmulx4x_1st .align 32 .Lmulx4x_1st: adcx $zero,%r15 # cf=0, modulo-scheduled mulx 0*8($aptr),%r10,%rax # a[4]*b[0] adcx %r14,%r10 mulx 1*8($aptr),%r11,%r14 # a[5]*b[0] adcx %rax,%r11 mulx 2*8($aptr),%r12,%rax # ... adcx %r14,%r12 mulx 3*8($aptr),%r13,%r14 .byte 0x67,0x67 mov $mi,%rdx adcx %rax,%r13 adcx $zero,%r14 # cf=0 lea 4*8($aptr),$aptr lea 4*8($tptr),$tptr adox %r15,%r10 mulx 0*16($nptr),%rax,%r15 adcx %rax,%r10 adox %r15,%r11 mulx 1*16($nptr),%rax,%r15 adcx %rax,%r11 adox %r15,%r12 mulx 2*16($nptr),%rax,%r15 mov %r10,-5*8($tptr) adcx %rax,%r12 mov %r11,-4*8($tptr) adox %r15,%r13 mulx 3*16($nptr),%rax,%r15 mov $bi,%rdx mov %r12,-3*8($tptr) adcx %rax,%r13 adox $zero,%r15 lea 4*16($nptr),$nptr mov %r13,-2*8($tptr) dec $bptr # of=0, pass cf jnz .Lmulx4x_1st mov 8(%rsp),$num # load -num movq %xmm0,%rdx # bp[1] adc $zero,%r15 # modulo-scheduled lea ($aptr,$num),$aptr # rewind $aptr add %r15,%r14 mov 8+8(%rsp),$bptr # re-load &b[i] adc $zero,$zero # top-most carry mov %r14,-1*8($tptr) jmp .Lmulx4x_outer .align 32 .Lmulx4x_outer: mov $zero,($tptr) # save top-most carry lea 4*8($tptr,$num),$tptr # rewind $tptr mulx 0*8($aptr),$mi,%r11 # a[0]*b[i] xor $zero,$zero # cf=0, of=0 mov %rdx,$bi mulx 1*8($aptr),%r14,%r12 # a[1]*b[i] adox -4*8($tptr),$mi # +t[0] adcx %r14,%r11 mulx 2*8($aptr),%r15,%r13 # ... adox -3*8($tptr),%r11 adcx %r15,%r12 mulx 3*8($aptr),%rdx,%r14 adox -2*8($tptr),%r12 adcx %rdx,%r13 lea ($nptr,$num,2),$nptr # rewind $nptr lea 4*8($aptr),$aptr adox -1*8($tptr),%r13 adcx $zero,%r14 adox $zero,%r14 .byte 0x67 mov $mi,%r15 imulq 32+8(%rsp),$mi # "t[0]"*n0 movq `0*$STRIDE/4-96`($bptr),%xmm0 .byte 0x67,0x67 mov $mi,%rdx movq `1*$STRIDE/4-96`($bptr),%xmm1 .byte 0x67 pand %xmm4,%xmm0 movq `2*$STRIDE/4-96`($bptr),%xmm2 .byte 0x67 pand %xmm5,%xmm1 movq `3*$STRIDE/4-96`($bptr),%xmm3 add \$$STRIDE,$bptr # next &b[i] .byte 0x67 pand %xmm6,%xmm2 por %xmm1,%xmm0 pand %xmm7,%xmm3 xor $zero,$zero # cf=0, of=0 mov $bptr,8+8(%rsp) # off-load &b[i] mulx 0*16($nptr),%rax,%r10 adcx %rax,%r15 # discarded adox %r11,%r10 mulx 1*16($nptr),%rax,%r11 adcx %rax,%r10 adox %r12,%r11 mulx 2*16($nptr),%rax,%r12 adcx %rax,%r11 adox %r13,%r12 mulx 3*16($nptr),%rax,%r15 mov $bi,%rdx por %xmm2,%xmm0 mov 24+8(%rsp),$bptr # counter value mov %r10,-8*4($tptr) por %xmm3,%xmm0 adcx %rax,%r12 mov %r11,-8*3($tptr) adox $zero,%r15 # of=0 mov %r12,-8*2($tptr) lea 4*16($nptr),$nptr jmp .Lmulx4x_inner .align 32 .Lmulx4x_inner: mulx 0*8($aptr),%r10,%rax # a[4]*b[i] adcx $zero,%r15 # cf=0, modulo-scheduled adox %r14,%r10 mulx 1*8($aptr),%r11,%r14 # a[5]*b[i] adcx 0*8($tptr),%r10 adox %rax,%r11 mulx 2*8($aptr),%r12,%rax # ... adcx 1*8($tptr),%r11 adox %r14,%r12 mulx 3*8($aptr),%r13,%r14 mov $mi,%rdx adcx 2*8($tptr),%r12 adox %rax,%r13 adcx 3*8($tptr),%r13 adox $zero,%r14 # of=0 lea 4*8($aptr),$aptr lea 4*8($tptr),$tptr adcx $zero,%r14 # cf=0 adox %r15,%r10 mulx 0*16($nptr),%rax,%r15 adcx %rax,%r10 adox %r15,%r11 mulx 1*16($nptr),%rax,%r15 adcx %rax,%r11 adox %r15,%r12 mulx 2*16($nptr),%rax,%r15 mov %r10,-5*8($tptr) adcx %rax,%r12 adox %r15,%r13 mov %r11,-4*8($tptr) mulx 3*16($nptr),%rax,%r15 mov $bi,%rdx lea 4*16($nptr),$nptr mov %r12,-3*8($tptr) adcx %rax,%r13 adox $zero,%r15 mov %r13,-2*8($tptr) dec $bptr # of=0, pass cf jnz .Lmulx4x_inner mov 0+8(%rsp),$num # load -num movq %xmm0,%rdx # bp[i+1] adc $zero,%r15 # modulo-scheduled sub 0*8($tptr),$bptr # pull top-most carry to %cf mov 8+8(%rsp),$bptr # re-load &b[i] mov 16+8(%rsp),%r10 adc %r15,%r14 lea ($aptr,$num),$aptr # rewind $aptr adc $zero,$zero # top-most carry mov %r14,-1*8($tptr) cmp %r10,$bptr jb .Lmulx4x_outer mov -16($nptr),%r10 xor %r15,%r15 sub %r14,%r10 # compare top-most words adc %r15,%r15 or %r15,$zero xor \$1,$zero lea ($tptr,$num),%rdi # rewind $tptr lea ($nptr,$num,2),$nptr # rewind $nptr .byte 0x67,0x67 sar \$3+2,$num # cf=0 lea ($nptr,$zero,8),%rbp mov 56+8(%rsp),%rdx # restore rp mov $num,%rcx jmp .Lsqrx4x_sub # common post-condition .size mulx4x_internal,.-mulx4x_internal ___ } { ###################################################################### # void bn_power5( my $rptr="%rdi"; # BN_ULONG *rptr, my $aptr="%rsi"; # const BN_ULONG *aptr, my $bptr="%rdx"; # const void *table, my $nptr="%rcx"; # const BN_ULONG *nptr, my $n0 ="%r8"; # const BN_ULONG *n0); my $num ="%r9"; # int num, has to be divisible by 8 # int pwr); my ($i,$j,$tptr)=("%rbp","%rcx",$rptr); my @A0=("%r10","%r11"); my @A1=("%r12","%r13"); my ($a0,$a1,$ai)=("%r14","%r15","%rbx"); $code.=<<___; .type bn_powerx5,\@function,6 .align 32 bn_powerx5: .Lpowerx5_enter: .byte 0x67 mov %rsp,%rax push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 ___ $code.=<<___ if ($win64); lea -0x28(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) ___ $code.=<<___; .byte 0x67 mov ${num}d,%r10d shl \$3,${num}d # convert $num to bytes shl \$3+2,%r10d # 4*$num neg $num mov ($n0),$n0 # *n0 ############################################################## # ensure that stack frame doesn't alias with $aptr+4*$num # modulo 4096, which covers ret[num], am[num] and n[2*num] # (see bn_exp.c). this is done to allow memory disambiguation # logic do its magic. # lea -64(%rsp,$num,2),%r11 sub $aptr,%r11 and \$4095,%r11 cmp %r11,%r10 jb .Lpwrx_sp_alt sub %r11,%rsp # align with $aptr lea -64(%rsp,$num,2),%rsp # alloca(frame+2*$num) jmp .Lpwrx_sp_done .align 32 .Lpwrx_sp_alt: lea 4096-64(,$num,2),%r10 # 4096-frame-2*$num lea -64(%rsp,$num,2),%rsp # alloca(frame+2*$num) sub %r10,%r11 mov \$0,%r10 cmovc %r10,%r11 sub %r11,%rsp .Lpwrx_sp_done: and \$-64,%rsp mov $num,%r10 neg $num ############################################################## # Stack layout # # +0 saved $num, used in reduction section # +8 &t[2*$num], used in reduction section # +16 intermediate carry bit # +24 top-most carry bit, used in reduction section # +32 saved *n0 # +40 saved %rsp # +48 t[2*$num] # pxor %xmm0,%xmm0 movq $rptr,%xmm1 # save $rptr movq $nptr,%xmm2 # save $nptr movq %r10, %xmm3 # -$num movq $bptr,%xmm4 mov $n0, 32(%rsp) mov %rax, 40(%rsp) # save original %rsp .Lpowerx5_body: call __bn_sqrx8x_internal call __bn_sqrx8x_internal call __bn_sqrx8x_internal call __bn_sqrx8x_internal call __bn_sqrx8x_internal mov %r10,$num # -num mov $aptr,$rptr movq %xmm2,$nptr movq %xmm4,$bptr mov 40(%rsp),%rax call mulx4x_internal mov 40(%rsp),%rsi # restore %rsp mov \$1,%rax ___ $code.=<<___ if ($win64); movaps -88(%rsi),%xmm6 movaps -72(%rsi),%xmm7 ___ $code.=<<___; mov -48(%rsi),%r15 mov -40(%rsi),%r14 mov -32(%rsi),%r13 mov -24(%rsi),%r12 mov -16(%rsi),%rbp mov -8(%rsi),%rbx lea (%rsi),%rsp .Lpowerx5_epilogue: ret .size bn_powerx5,.-bn_powerx5 .globl bn_sqrx8x_internal .hidden bn_sqrx8x_internal .type bn_sqrx8x_internal,\@abi-omnipotent .align 32 bn_sqrx8x_internal: __bn_sqrx8x_internal: ################################################################## # Squaring part: # # a) multiply-n-add everything but a[i]*a[i]; # b) shift result of a) by 1 to the left and accumulate # a[i]*a[i] products; # ################################################################## # a[7]a[7]a[6]a[6]a[5]a[5]a[4]a[4]a[3]a[3]a[2]a[2]a[1]a[1]a[0]a[0] # a[1]a[0] # a[2]a[0] # a[3]a[0] # a[2]a[1] # a[3]a[1] # a[3]a[2] # # a[4]a[0] # a[5]a[0] # a[6]a[0] # a[7]a[0] # a[4]a[1] # a[5]a[1] # a[6]a[1] # a[7]a[1] # a[4]a[2] # a[5]a[2] # a[6]a[2] # a[7]a[2] # a[4]a[3] # a[5]a[3] # a[6]a[3] # a[7]a[3] # # a[5]a[4] # a[6]a[4] # a[7]a[4] # a[6]a[5] # a[7]a[5] # a[7]a[6] # a[7]a[7]a[6]a[6]a[5]a[5]a[4]a[4]a[3]a[3]a[2]a[2]a[1]a[1]a[0]a[0] ___ { my ($zero,$carry)=("%rbp","%rcx"); my $aaptr=$zero; $code.=<<___; lea 48+8(%rsp),$tptr lea ($aptr,$num),$aaptr mov $num,0+8(%rsp) # save $num mov $aaptr,8+8(%rsp) # save end of $aptr jmp .Lsqr8x_zero_start .align 32 .byte 0x66,0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00 .Lsqrx8x_zero: .byte 0x3e movdqa %xmm0,0*8($tptr) movdqa %xmm0,2*8($tptr) movdqa %xmm0,4*8($tptr) movdqa %xmm0,6*8($tptr) .Lsqr8x_zero_start: # aligned at 32 movdqa %xmm0,8*8($tptr) movdqa %xmm0,10*8($tptr) movdqa %xmm0,12*8($tptr) movdqa %xmm0,14*8($tptr) lea 16*8($tptr),$tptr sub \$64,$num jnz .Lsqrx8x_zero mov 0*8($aptr),%rdx # a[0], modulo-scheduled #xor %r9,%r9 # t[1], ex-$num, zero already xor %r10,%r10 xor %r11,%r11 xor %r12,%r12 xor %r13,%r13 xor %r14,%r14 xor %r15,%r15 lea 48+8(%rsp),$tptr xor $zero,$zero # cf=0, cf=0 jmp .Lsqrx8x_outer_loop .align 32 .Lsqrx8x_outer_loop: mulx 1*8($aptr),%r8,%rax # a[1]*a[0] adcx %r9,%r8 # a[1]*a[0]+=t[1] adox %rax,%r10 mulx 2*8($aptr),%r9,%rax # a[2]*a[0] adcx %r10,%r9 adox %rax,%r11 .byte 0xc4,0xe2,0xab,0xf6,0x86,0x18,0x00,0x00,0x00 # mulx 3*8($aptr),%r10,%rax # ... adcx %r11,%r10 adox %rax,%r12 .byte 0xc4,0xe2,0xa3,0xf6,0x86,0x20,0x00,0x00,0x00 # mulx 4*8($aptr),%r11,%rax adcx %r12,%r11 adox %rax,%r13 mulx 5*8($aptr),%r12,%rax adcx %r13,%r12 adox %rax,%r14 mulx 6*8($aptr),%r13,%rax adcx %r14,%r13 adox %r15,%rax mulx 7*8($aptr),%r14,%r15 mov 1*8($aptr),%rdx # a[1] adcx %rax,%r14 adox $zero,%r15 adc 8*8($tptr),%r15 mov %r8,1*8($tptr) # t[1] mov %r9,2*8($tptr) # t[2] sbb $carry,$carry # mov %cf,$carry xor $zero,$zero # cf=0, of=0 mulx 2*8($aptr),%r8,%rbx # a[2]*a[1] mulx 3*8($aptr),%r9,%rax # a[3]*a[1] adcx %r10,%r8 adox %rbx,%r9 mulx 4*8($aptr),%r10,%rbx # ... adcx %r11,%r9 adox %rax,%r10 .byte 0xc4,0xe2,0xa3,0xf6,0x86,0x28,0x00,0x00,0x00 # mulx 5*8($aptr),%r11,%rax adcx %r12,%r10 adox %rbx,%r11 .byte 0xc4,0xe2,0x9b,0xf6,0x9e,0x30,0x00,0x00,0x00 # mulx 6*8($aptr),%r12,%rbx adcx %r13,%r11 adox %r14,%r12 .byte 0xc4,0x62,0x93,0xf6,0xb6,0x38,0x00,0x00,0x00 # mulx 7*8($aptr),%r13,%r14 mov 2*8($aptr),%rdx # a[2] adcx %rax,%r12 adox %rbx,%r13 adcx %r15,%r13 adox $zero,%r14 # of=0 adcx $zero,%r14 # cf=0 mov %r8,3*8($tptr) # t[3] mov %r9,4*8($tptr) # t[4] mulx 3*8($aptr),%r8,%rbx # a[3]*a[2] mulx 4*8($aptr),%r9,%rax # a[4]*a[2] adcx %r10,%r8 adox %rbx,%r9 mulx 5*8($aptr),%r10,%rbx # ... adcx %r11,%r9 adox %rax,%r10 .byte 0xc4,0xe2,0xa3,0xf6,0x86,0x30,0x00,0x00,0x00 # mulx 6*8($aptr),%r11,%rax adcx %r12,%r10 adox %r13,%r11 .byte 0xc4,0x62,0x9b,0xf6,0xae,0x38,0x00,0x00,0x00 # mulx 7*8($aptr),%r12,%r13 .byte 0x3e mov 3*8($aptr),%rdx # a[3] adcx %rbx,%r11 adox %rax,%r12 adcx %r14,%r12 mov %r8,5*8($tptr) # t[5] mov %r9,6*8($tptr) # t[6] mulx 4*8($aptr),%r8,%rax # a[4]*a[3] adox $zero,%r13 # of=0 adcx $zero,%r13 # cf=0 mulx 5*8($aptr),%r9,%rbx # a[5]*a[3] adcx %r10,%r8 adox %rax,%r9 mulx 6*8($aptr),%r10,%rax # ... adcx %r11,%r9 adox %r12,%r10 mulx 7*8($aptr),%r11,%r12 mov 4*8($aptr),%rdx # a[4] mov 5*8($aptr),%r14 # a[5] adcx %rbx,%r10 adox %rax,%r11 mov 6*8($aptr),%r15 # a[6] adcx %r13,%r11 adox $zero,%r12 # of=0 adcx $zero,%r12 # cf=0 mov %r8,7*8($tptr) # t[7] mov %r9,8*8($tptr) # t[8] mulx %r14,%r9,%rax # a[5]*a[4] mov 7*8($aptr),%r8 # a[7] adcx %r10,%r9 mulx %r15,%r10,%rbx # a[6]*a[4] adox %rax,%r10 adcx %r11,%r10 mulx %r8,%r11,%rax # a[7]*a[4] mov %r14,%rdx # a[5] adox %rbx,%r11 adcx %r12,%r11 #adox $zero,%rax # of=0 adcx $zero,%rax # cf=0 mulx %r15,%r14,%rbx # a[6]*a[5] mulx %r8,%r12,%r13 # a[7]*a[5] mov %r15,%rdx # a[6] lea 8*8($aptr),$aptr adcx %r14,%r11 adox %rbx,%r12 adcx %rax,%r12 adox $zero,%r13 .byte 0x67,0x67 mulx %r8,%r8,%r14 # a[7]*a[6] adcx %r8,%r13 adcx $zero,%r14 cmp 8+8(%rsp),$aptr je .Lsqrx8x_outer_break neg $carry # mov $carry,%cf mov \$-8,%rcx mov $zero,%r15 mov 8*8($tptr),%r8 adcx 9*8($tptr),%r9 # +=t[9] adcx 10*8($tptr),%r10 # ... adcx 11*8($tptr),%r11 adc 12*8($tptr),%r12 adc 13*8($tptr),%r13 adc 14*8($tptr),%r14 adc 15*8($tptr),%r15 lea ($aptr),$aaptr lea 2*64($tptr),$tptr sbb %rax,%rax # mov %cf,$carry mov -64($aptr),%rdx # a[0] mov %rax,16+8(%rsp) # offload $carry mov $tptr,24+8(%rsp) #lea 8*8($tptr),$tptr # see 2*8*8($tptr) above xor %eax,%eax # cf=0, of=0 jmp .Lsqrx8x_loop .align 32 .Lsqrx8x_loop: mov %r8,%rbx mulx 0*8($aaptr),%rax,%r8 # a[8]*a[i] adcx %rax,%rbx # +=t[8] adox %r9,%r8 mulx 1*8($aaptr),%rax,%r9 # ... adcx %rax,%r8 adox %r10,%r9 mulx 2*8($aaptr),%rax,%r10 adcx %rax,%r9 adox %r11,%r10 mulx 3*8($aaptr),%rax,%r11 adcx %rax,%r10 adox %r12,%r11 .byte 0xc4,0x62,0xfb,0xf6,0xa5,0x20,0x00,0x00,0x00 # mulx 4*8($aaptr),%rax,%r12 adcx %rax,%r11 adox %r13,%r12 mulx 5*8($aaptr),%rax,%r13 adcx %rax,%r12 adox %r14,%r13 mulx 6*8($aaptr),%rax,%r14 mov %rbx,($tptr,%rcx,8) # store t[8+i] mov \$0,%ebx adcx %rax,%r13 adox %r15,%r14 .byte 0xc4,0x62,0xfb,0xf6,0xbd,0x38,0x00,0x00,0x00 # mulx 7*8($aaptr),%rax,%r15 mov 8($aptr,%rcx,8),%rdx # a[i] adcx %rax,%r14 adox %rbx,%r15 # %rbx is 0, of=0 adcx %rbx,%r15 # cf=0 .byte 0x67 inc %rcx # of=0 jnz .Lsqrx8x_loop lea 8*8($aaptr),$aaptr mov \$-8,%rcx cmp 8+8(%rsp),$aaptr # done? je .Lsqrx8x_break sub 16+8(%rsp),%rbx # mov 16(%rsp),%cf .byte 0x66 mov -64($aptr),%rdx adcx 0*8($tptr),%r8 adcx 1*8($tptr),%r9 adc 2*8($tptr),%r10 adc 3*8($tptr),%r11 adc 4*8($tptr),%r12 adc 5*8($tptr),%r13 adc 6*8($tptr),%r14 adc 7*8($tptr),%r15 lea 8*8($tptr),$tptr .byte 0x67 sbb %rax,%rax # mov %cf,%rax xor %ebx,%ebx # cf=0, of=0 mov %rax,16+8(%rsp) # offload carry jmp .Lsqrx8x_loop .align 32 .Lsqrx8x_break: sub 16+8(%rsp),%r8 # consume last carry mov 24+8(%rsp),$carry # initial $tptr, borrow $carry mov 0*8($aptr),%rdx # a[8], modulo-scheduled xor %ebp,%ebp # xor $zero,$zero mov %r8,0*8($tptr) cmp $carry,$tptr # cf=0, of=0 je .Lsqrx8x_outer_loop mov %r9,1*8($tptr) mov 1*8($carry),%r9 mov %r10,2*8($tptr) mov 2*8($carry),%r10 mov %r11,3*8($tptr) mov 3*8($carry),%r11 mov %r12,4*8($tptr) mov 4*8($carry),%r12 mov %r13,5*8($tptr) mov 5*8($carry),%r13 mov %r14,6*8($tptr) mov 6*8($carry),%r14 mov %r15,7*8($tptr) mov 7*8($carry),%r15 mov $carry,$tptr jmp .Lsqrx8x_outer_loop .align 32 .Lsqrx8x_outer_break: mov %r9,9*8($tptr) # t[9] movq %xmm3,%rcx # -$num mov %r10,10*8($tptr) # ... mov %r11,11*8($tptr) mov %r12,12*8($tptr) mov %r13,13*8($tptr) mov %r14,14*8($tptr) ___ } { my $i="%rcx"; $code.=<<___; lea 48+8(%rsp),$tptr mov ($aptr,$i),%rdx # a[0] mov 8($tptr),$A0[1] # t[1] xor $A0[0],$A0[0] # t[0], of=0, cf=0 mov 0+8(%rsp),$num # restore $num adox $A0[1],$A0[1] mov 16($tptr),$A1[0] # t[2] # prefetch mov 24($tptr),$A1[1] # t[3] # prefetch #jmp .Lsqrx4x_shift_n_add # happens to be aligned .align 32 .Lsqrx4x_shift_n_add: mulx %rdx,%rax,%rbx adox $A1[0],$A1[0] adcx $A0[0],%rax .byte 0x48,0x8b,0x94,0x0e,0x08,0x00,0x00,0x00 # mov 8($aptr,$i),%rdx # a[i+1] # prefetch .byte 0x4c,0x8b,0x97,0x20,0x00,0x00,0x00 # mov 32($tptr),$A0[0] # t[2*i+4] # prefetch adox $A1[1],$A1[1] adcx $A0[1],%rbx mov 40($tptr),$A0[1] # t[2*i+4+1] # prefetch mov %rax,0($tptr) mov %rbx,8($tptr) mulx %rdx,%rax,%rbx adox $A0[0],$A0[0] adcx $A1[0],%rax mov 16($aptr,$i),%rdx # a[i+2] # prefetch mov 48($tptr),$A1[0] # t[2*i+6] # prefetch adox $A0[1],$A0[1] adcx $A1[1],%rbx mov 56($tptr),$A1[1] # t[2*i+6+1] # prefetch mov %rax,16($tptr) mov %rbx,24($tptr) mulx %rdx,%rax,%rbx adox $A1[0],$A1[0] adcx $A0[0],%rax mov 24($aptr,$i),%rdx # a[i+3] # prefetch lea 32($i),$i mov 64($tptr),$A0[0] # t[2*i+8] # prefetch adox $A1[1],$A1[1] adcx $A0[1],%rbx mov 72($tptr),$A0[1] # t[2*i+8+1] # prefetch mov %rax,32($tptr) mov %rbx,40($tptr) mulx %rdx,%rax,%rbx adox $A0[0],$A0[0] adcx $A1[0],%rax jrcxz .Lsqrx4x_shift_n_add_break .byte 0x48,0x8b,0x94,0x0e,0x00,0x00,0x00,0x00 # mov 0($aptr,$i),%rdx # a[i+4] # prefetch adox $A0[1],$A0[1] adcx $A1[1],%rbx mov 80($tptr),$A1[0] # t[2*i+10] # prefetch mov 88($tptr),$A1[1] # t[2*i+10+1] # prefetch mov %rax,48($tptr) mov %rbx,56($tptr) lea 64($tptr),$tptr nop jmp .Lsqrx4x_shift_n_add .align 32 .Lsqrx4x_shift_n_add_break: adcx $A1[1],%rbx mov %rax,48($tptr) mov %rbx,56($tptr) lea 64($tptr),$tptr # end of t[] buffer ___ } ###################################################################### # Montgomery reduction part, "word-by-word" algorithm. # # This new path is inspired by multiple submissions from Intel, by # Shay Gueron, Vlad Krasnov, Erdinc Ozturk, James Guilford, # Vinodh Gopal... { my ($nptr,$carry,$m0)=("%rbp","%rsi","%rdx"); $code.=<<___; movq %xmm2,$nptr sqrx8x_reduction: xor %eax,%eax # initial top-most carry bit mov 32+8(%rsp),%rbx # n0 mov 48+8(%rsp),%rdx # "%r8", 8*0($tptr) lea -128($nptr,$num,2),%rcx # end of n[] #lea 48+8(%rsp,$num,2),$tptr # end of t[] buffer mov %rcx, 0+8(%rsp) # save end of n[] mov $tptr,8+8(%rsp) # save end of t[] lea 48+8(%rsp),$tptr # initial t[] window jmp .Lsqrx8x_reduction_loop .align 32 .Lsqrx8x_reduction_loop: mov 8*1($tptr),%r9 mov 8*2($tptr),%r10 mov 8*3($tptr),%r11 mov 8*4($tptr),%r12 mov %rdx,%r8 imulq %rbx,%rdx # n0*a[i] mov 8*5($tptr),%r13 mov 8*6($tptr),%r14 mov 8*7($tptr),%r15 mov %rax,24+8(%rsp) # store top-most carry bit lea 8*8($tptr),$tptr xor $carry,$carry # cf=0,of=0 mov \$-8,%rcx jmp .Lsqrx8x_reduce .align 32 .Lsqrx8x_reduce: mov %r8, %rbx mulx 16*0($nptr),%rax,%r8 # n[0] adcx %rbx,%rax # discarded adox %r9,%r8 mulx 16*1($nptr),%rbx,%r9 # n[1] adcx %rbx,%r8 adox %r10,%r9 mulx 16*2($nptr),%rbx,%r10 adcx %rbx,%r9 adox %r11,%r10 mulx 16*3($nptr),%rbx,%r11 adcx %rbx,%r10 adox %r12,%r11 .byte 0xc4,0x62,0xe3,0xf6,0xa5,0x40,0x00,0x00,0x00 # mulx 16*4($nptr),%rbx,%r12 mov %rdx,%rax mov %r8,%rdx adcx %rbx,%r11 adox %r13,%r12 mulx 32+8(%rsp),%rbx,%rdx # %rdx discarded mov %rax,%rdx mov %rax,64+48+8(%rsp,%rcx,8) # put aside n0*a[i] mulx 16*5($nptr),%rax,%r13 adcx %rax,%r12 adox %r14,%r13 mulx 16*6($nptr),%rax,%r14 adcx %rax,%r13 adox %r15,%r14 mulx 16*7($nptr),%rax,%r15 mov %rbx,%rdx adcx %rax,%r14 adox $carry,%r15 # $carry is 0 adcx $carry,%r15 # cf=0 .byte 0x67,0x67,0x67 inc %rcx # of=0 jnz .Lsqrx8x_reduce mov $carry,%rax # xor %rax,%rax cmp 0+8(%rsp),$nptr # end of n[]? jae .Lsqrx8x_no_tail mov 48+8(%rsp),%rdx # pull n0*a[0] add 8*0($tptr),%r8 lea 16*8($nptr),$nptr mov \$-8,%rcx adcx 8*1($tptr),%r9 adcx 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 lea 8*8($tptr),$tptr sbb %rax,%rax # top carry xor $carry,$carry # of=0, cf=0 mov %rax,16+8(%rsp) jmp .Lsqrx8x_tail .align 32 .Lsqrx8x_tail: mov %r8,%rbx mulx 16*0($nptr),%rax,%r8 adcx %rax,%rbx adox %r9,%r8 mulx 16*1($nptr),%rax,%r9 adcx %rax,%r8 adox %r10,%r9 mulx 16*2($nptr),%rax,%r10 adcx %rax,%r9 adox %r11,%r10 mulx 16*3($nptr),%rax,%r11 adcx %rax,%r10 adox %r12,%r11 .byte 0xc4,0x62,0xfb,0xf6,0xa5,0x40,0x00,0x00,0x00 # mulx 16*4($nptr),%rax,%r12 adcx %rax,%r11 adox %r13,%r12 mulx 16*5($nptr),%rax,%r13 adcx %rax,%r12 adox %r14,%r13 mulx 16*6($nptr),%rax,%r14 adcx %rax,%r13 adox %r15,%r14 mulx 16*7($nptr),%rax,%r15 mov 72+48+8(%rsp,%rcx,8),%rdx # pull n0*a[i] adcx %rax,%r14 adox $carry,%r15 mov %rbx,($tptr,%rcx,8) # save result mov %r8,%rbx adcx $carry,%r15 # cf=0 inc %rcx # of=0 jnz .Lsqrx8x_tail cmp 0+8(%rsp),$nptr # end of n[]? jae .Lsqrx8x_tail_done # break out of loop sub 16+8(%rsp),$carry # mov 16(%rsp),%cf mov 48+8(%rsp),%rdx # pull n0*a[0] lea 16*8($nptr),$nptr adc 8*0($tptr),%r8 adc 8*1($tptr),%r9 adc 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 lea 8*8($tptr),$tptr sbb %rax,%rax sub \$8,%rcx # mov \$-8,%rcx xor $carry,$carry # of=0, cf=0 mov %rax,16+8(%rsp) jmp .Lsqrx8x_tail .align 32 .Lsqrx8x_tail_done: add 24+8(%rsp),%r8 # can this overflow? mov $carry,%rax # xor %rax,%rax sub 16+8(%rsp),$carry # mov 16(%rsp),%cf .Lsqrx8x_no_tail: # %cf is 0 if jumped here adc 8*0($tptr),%r8 movq %xmm3,%rcx adc 8*1($tptr),%r9 mov 16*7($nptr),$carry movq %xmm2,$nptr # restore $nptr adc 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 adc %rax,%rax # top-most carry mov 32+8(%rsp),%rbx # n0 mov 8*8($tptr,%rcx),%rdx # modulo-scheduled "%r8" mov %r8,8*0($tptr) # store top 512 bits lea 8*8($tptr),%r8 # borrow %r8 mov %r9,8*1($tptr) mov %r10,8*2($tptr) mov %r11,8*3($tptr) mov %r12,8*4($tptr) mov %r13,8*5($tptr) mov %r14,8*6($tptr) mov %r15,8*7($tptr) lea 8*8($tptr,%rcx),$tptr # start of current t[] window cmp 8+8(%rsp),%r8 # end of t[]? jb .Lsqrx8x_reduction_loop ___ } ############################################################## # Post-condition, 4x unrolled # { my ($rptr,$nptr)=("%rdx","%rbp"); my @ri=map("%r$_",(10..13)); my @ni=map("%r$_",(14..15)); $code.=<<___; xor %rbx,%rbx sub %r15,%rsi # compare top-most words adc %rbx,%rbx mov %rcx,%r10 # -$num .byte 0x67 or %rbx,%rax .byte 0x67 mov %rcx,%r9 # -$num xor \$1,%rax sar \$3+2,%rcx # cf=0 #lea 48+8(%rsp,%r9),$tptr lea ($nptr,%rax,8),$nptr movq %xmm1,$rptr # restore $rptr movq %xmm1,$aptr # prepare for back-to-back call jmp .Lsqrx4x_sub .align 32 .Lsqrx4x_sub: .byte 0x66 mov 8*0($tptr),%r12 mov 8*1($tptr),%r13 sbb 16*0($nptr),%r12 mov 8*2($tptr),%r14 sbb 16*1($nptr),%r13 mov 8*3($tptr),%r15 lea 8*4($tptr),$tptr sbb 16*2($nptr),%r14 mov %r12,8*0($rptr) sbb 16*3($nptr),%r15 lea 16*4($nptr),$nptr mov %r13,8*1($rptr) mov %r14,8*2($rptr) mov %r15,8*3($rptr) lea 8*4($rptr),$rptr inc %rcx jnz .Lsqrx4x_sub ___ } $code.=<<___; neg %r9 # restore $num ret .size bn_sqrx8x_internal,.-bn_sqrx8x_internal ___ }}} { my ($inp,$num,$tbl,$idx)=$win64?("%rcx","%edx","%r8", "%r9d") : # Win64 order ("%rdi","%esi","%rdx","%ecx"); # Unix order my $out=$inp; my $STRIDE=2**5*8; my $N=$STRIDE/4; $code.=<<___; .globl bn_get_bits5 .type bn_get_bits5,\@abi-omnipotent .align 16 bn_get_bits5: mov $inp,%r10 mov $num,%ecx shr \$3,$num movzw (%r10,$num),%eax and \$7,%ecx shrl %cl,%eax and \$31,%eax ret .size bn_get_bits5,.-bn_get_bits5 .globl bn_scatter5 .type bn_scatter5,\@abi-omnipotent .align 16 bn_scatter5: cmp \$0, $num jz .Lscatter_epilogue lea ($tbl,$idx,8),$tbl .Lscatter: mov ($inp),%rax lea 8($inp),$inp mov %rax,($tbl) lea 32*8($tbl),$tbl sub \$1,$num jnz .Lscatter .Lscatter_epilogue: ret .size bn_scatter5,.-bn_scatter5 .globl bn_gather5 .type bn_gather5,\@abi-omnipotent .align 16 bn_gather5: ___ $code.=<<___ if ($win64); .LSEH_begin_bn_gather5: # I can't trust assembler to use specific encoding:-( .byte 0x48,0x83,0xec,0x28 #sub \$0x28,%rsp .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp) .byte 0x0f,0x29,0x7c,0x24,0x10 #movdqa %xmm7,0x10(%rsp) ___ $code.=<<___; mov $idx,%r11d shr \$`log($N/8)/log(2)`,$idx and \$`$N/8-1`,%r11 not $idx lea .Lmagic_masks(%rip),%rax and \$`2**5/($N/8)-1`,$idx # 5 is "window size" lea 128($tbl,%r11,8),$tbl # pointer within 1st cache line movq 0(%rax,$idx,8),%xmm4 # set of masks denoting which movq 8(%rax,$idx,8),%xmm5 # cache line contains element movq 16(%rax,$idx,8),%xmm6 # denoted by 7th argument movq 24(%rax,$idx,8),%xmm7 jmp .Lgather .align 16 .Lgather: movq `0*$STRIDE/4-128`($tbl),%xmm0 movq `1*$STRIDE/4-128`($tbl),%xmm1 pand %xmm4,%xmm0 movq `2*$STRIDE/4-128`($tbl),%xmm2 pand %xmm5,%xmm1 movq `3*$STRIDE/4-128`($tbl),%xmm3 pand %xmm6,%xmm2 por %xmm1,%xmm0 pand %xmm7,%xmm3 .byte 0x67,0x67 por %xmm2,%xmm0 lea $STRIDE($tbl),$tbl por %xmm3,%xmm0 movq %xmm0,($out) # m0=bp[0] lea 8($out),$out sub \$1,$num jnz .Lgather ___ $code.=<<___ if ($win64); movaps (%rsp),%xmm6 movaps 0x10(%rsp),%xmm7 lea 0x28(%rsp),%rsp ___ $code.=<<___; ret .LSEH_end_bn_gather5: .size bn_gather5,.-bn_gather5 ___ } $code.=<<___; .align 64 .Lmagic_masks: .long 0,0, 0,0, 0,0, -1,-1 .long 0,0, 0,0, 0,0, 0,0 .asciz "Montgomery Multiplication with scatter/gather for x86_64, CRYPTOGAMS by " ___ # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type mul_handler,\@abi-omnipotent .align 16 mul_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # end of prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail lea .Lmul_epilogue(%rip),%r10 cmp %r10,%rbx jb .Lbody_40 mov 192($context),%r10 # pull $num mov 8(%rax,%r10,8),%rax # pull saved stack pointer jmp .Lbody_proceed .Lbody_40: mov 40(%rax),%rax # pull saved stack pointer .Lbody_proceed: movaps -88(%rax),%xmm0 movaps -72(%rax),%xmm1 mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 movups %xmm0,512($context) # restore context->Xmm6 movups %xmm1,528($context) # restore context->Xmm7 .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size mul_handler,.-mul_handler .section .pdata .align 4 .rva .LSEH_begin_bn_mul_mont_gather5 .rva .LSEH_end_bn_mul_mont_gather5 .rva .LSEH_info_bn_mul_mont_gather5 .rva .LSEH_begin_bn_mul4x_mont_gather5 .rva .LSEH_end_bn_mul4x_mont_gather5 .rva .LSEH_info_bn_mul4x_mont_gather5 .rva .LSEH_begin_bn_power5 .rva .LSEH_end_bn_power5 .rva .LSEH_info_bn_power5 .rva .LSEH_begin_bn_from_mont8x .rva .LSEH_end_bn_from_mont8x .rva .LSEH_info_bn_from_mont8x ___ $code.=<<___ if ($addx); .rva .LSEH_begin_bn_mulx4x_mont_gather5 .rva .LSEH_end_bn_mulx4x_mont_gather5 .rva .LSEH_info_bn_mulx4x_mont_gather5 .rva .LSEH_begin_bn_powerx5 .rva .LSEH_end_bn_powerx5 .rva .LSEH_info_bn_powerx5 ___ $code.=<<___; .rva .LSEH_begin_bn_gather5 .rva .LSEH_end_bn_gather5 .rva .LSEH_info_bn_gather5 .section .xdata .align 8 .LSEH_info_bn_mul_mont_gather5: .byte 9,0,0,0 .rva mul_handler .rva .Lmul_body,.Lmul_epilogue # HandlerData[] .align 8 .LSEH_info_bn_mul4x_mont_gather5: .byte 9,0,0,0 .rva mul_handler .rva .Lmul4x_body,.Lmul4x_epilogue # HandlerData[] .align 8 .LSEH_info_bn_power5: .byte 9,0,0,0 .rva mul_handler .rva .Lpower5_body,.Lpower5_epilogue # HandlerData[] .align 8 .LSEH_info_bn_from_mont8x: .byte 9,0,0,0 .rva mul_handler .rva .Lfrom_body,.Lfrom_epilogue # HandlerData[] ___ $code.=<<___ if ($addx); .align 8 .LSEH_info_bn_mulx4x_mont_gather5: .byte 9,0,0,0 .rva mul_handler .rva .Lmulx4x_body,.Lmulx4x_epilogue # HandlerData[] .align 8 .LSEH_info_bn_powerx5: .byte 9,0,0,0 .rva mul_handler .rva .Lpowerx5_body,.Lpowerx5_epilogue # HandlerData[] ___ $code.=<<___; .align 8 .LSEH_info_bn_gather5: .byte 0x01,0x0d,0x05,0x00 .byte 0x0d,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7 .byte 0x08,0x68,0x00,0x00 #movaps (rsp),xmm6 .byte 0x04,0x42,0x00,0x00 #sub rsp,0x28 .align 8 ___ } $code =~ s/\`([^\`]*)\`/eval($1)/gem; print $code; close STDOUT;