/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include "internal.h" #include "../bn/internal.h" #include "../internal.h" static int check_modulus_and_exponent_sizes(const RSA *rsa) { unsigned rsa_bits = BN_num_bits(rsa->n); if (rsa_bits > 16 * 1024) { OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE); return 0; } /* Mitigate DoS attacks by limiting the exponent size. 33 bits was chosen as * the limit based on the recommendations in [1] and [2]. Windows CryptoAPI * doesn't support values larger than 32 bits [3], so it is unlikely that * exponents larger than 32 bits are being used for anything Windows commonly * does. * * [1] https://www.imperialviolet.org/2012/03/16/rsae.html * [2] https://www.imperialviolet.org/2012/03/17/rsados.html * [3] https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx */ static const unsigned kMaxExponentBits = 33; if (BN_num_bits(rsa->e) > kMaxExponentBits) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); return 0; } /* Verify |n > e|. Comparing |rsa_bits| to |kMaxExponentBits| is a small * shortcut to comparing |n| and |e| directly. In reality, |kMaxExponentBits| * is much smaller than the minimum RSA key size that any application should * accept. */ if (rsa_bits <= kMaxExponentBits) { OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); return 0; } assert(BN_ucmp(rsa->n, rsa->e) > 0); return 1; } size_t rsa_default_size(const RSA *rsa) { return BN_num_bytes(rsa->n); } int rsa_default_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *in, size_t in_len, int padding) { const unsigned rsa_size = RSA_size(rsa); BIGNUM *f, *result; uint8_t *buf = NULL; BN_CTX *ctx = NULL; int i, ret = 0; if (max_out < rsa_size) { OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); return 0; } if (!check_modulus_and_exponent_sizes(rsa)) { return 0; } ctx = BN_CTX_new(); if (ctx == NULL) { goto err; } BN_CTX_start(ctx); f = BN_CTX_get(ctx); result = BN_CTX_get(ctx); buf = OPENSSL_malloc(rsa_size); if (!f || !result || !buf) { OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); goto err; } switch (padding) { case RSA_PKCS1_PADDING: i = RSA_padding_add_PKCS1_type_2(buf, rsa_size, in, in_len); break; case RSA_PKCS1_OAEP_PADDING: /* Use the default parameters: SHA-1 for both hashes and no label. */ i = RSA_padding_add_PKCS1_OAEP_mgf1(buf, rsa_size, in, in_len, NULL, 0, NULL, NULL); break; case RSA_NO_PADDING: i = RSA_padding_add_none(buf, rsa_size, in, in_len); break; default: OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); goto err; } if (i <= 0) { goto err; } if (BN_bin2bn(buf, rsa_size, f) == NULL) { goto err; } if (BN_ucmp(f, rsa->n) >= 0) { /* usually the padding functions would catch this */ OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); goto err; } if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) || !BN_mod_exp_mont(result, f, rsa->e, rsa->n, ctx, rsa->mont_n)) { goto err; } /* put in leading 0 bytes if the number is less than the length of the * modulus */ if (!BN_bn2bin_padded(out, rsa_size, result)) { OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); goto err; } *out_len = rsa_size; ret = 1; err: if (ctx != NULL) { BN_CTX_end(ctx); BN_CTX_free(ctx); } if (buf != NULL) { OPENSSL_cleanse(buf, rsa_size); OPENSSL_free(buf); } return ret; } /* MAX_BLINDINGS_PER_RSA defines the maximum number of cached BN_BLINDINGs per * RSA*. Then this limit is exceeded, BN_BLINDING objects will be created and * destroyed as needed. */ #define MAX_BLINDINGS_PER_RSA 1024 /* rsa_blinding_get returns a BN_BLINDING to use with |rsa|. It does this by * allocating one of the cached BN_BLINDING objects in |rsa->blindings|. If * none are free, the cache will be extended by a extra element and the new * BN_BLINDING is returned. * * On success, the index of the assigned BN_BLINDING is written to * |*index_used| and must be passed to |rsa_blinding_release| when finished. */ static BN_BLINDING *rsa_blinding_get(RSA *rsa, unsigned *index_used, BN_CTX *ctx) { assert(ctx != NULL); assert(rsa->mont_n != NULL); BN_BLINDING *ret = NULL; BN_BLINDING **new_blindings; uint8_t *new_blindings_inuse; char overflow = 0; CRYPTO_MUTEX_lock_write(&rsa->lock); unsigned i; for (i = 0; i < rsa->num_blindings; i++) { if (rsa->blindings_inuse[i] == 0) { rsa->blindings_inuse[i] = 1; ret = rsa->blindings[i]; *index_used = i; break; } } if (ret != NULL) { CRYPTO_MUTEX_unlock_write(&rsa->lock); return ret; } overflow = rsa->num_blindings >= MAX_BLINDINGS_PER_RSA; /* We didn't find a free BN_BLINDING to use so increase the length of * the arrays by one and use the newly created element. */ CRYPTO_MUTEX_unlock_write(&rsa->lock); ret = BN_BLINDING_new(); if (ret == NULL) { return NULL; } if (overflow) { /* We cannot add any more cached BN_BLINDINGs so we use |ret| * and mark it for destruction in |rsa_blinding_release|. */ *index_used = MAX_BLINDINGS_PER_RSA; return ret; } CRYPTO_MUTEX_lock_write(&rsa->lock); new_blindings = OPENSSL_malloc(sizeof(BN_BLINDING *) * (rsa->num_blindings + 1)); if (new_blindings == NULL) { goto err1; } OPENSSL_memcpy(new_blindings, rsa->blindings, sizeof(BN_BLINDING *) * rsa->num_blindings); new_blindings[rsa->num_blindings] = ret; new_blindings_inuse = OPENSSL_malloc(rsa->num_blindings + 1); if (new_blindings_inuse == NULL) { goto err2; } OPENSSL_memcpy(new_blindings_inuse, rsa->blindings_inuse, rsa->num_blindings); new_blindings_inuse[rsa->num_blindings] = 1; *index_used = rsa->num_blindings; OPENSSL_free(rsa->blindings); rsa->blindings = new_blindings; OPENSSL_free(rsa->blindings_inuse); rsa->blindings_inuse = new_blindings_inuse; rsa->num_blindings++; CRYPTO_MUTEX_unlock_write(&rsa->lock); return ret; err2: OPENSSL_free(new_blindings); err1: CRYPTO_MUTEX_unlock_write(&rsa->lock); BN_BLINDING_free(ret); return NULL; } /* rsa_blinding_release marks the cached BN_BLINDING at the given index as free * for other threads to use. */ static void rsa_blinding_release(RSA *rsa, BN_BLINDING *blinding, unsigned blinding_index) { if (blinding_index == MAX_BLINDINGS_PER_RSA) { /* This blinding wasn't cached. */ BN_BLINDING_free(blinding); return; } CRYPTO_MUTEX_lock_write(&rsa->lock); rsa->blindings_inuse[blinding_index] = 0; CRYPTO_MUTEX_unlock_write(&rsa->lock); } /* signing */ int rsa_default_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *in, size_t in_len, int padding) { const unsigned rsa_size = RSA_size(rsa); uint8_t *buf = NULL; int i, ret = 0; if (max_out < rsa_size) { OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); return 0; } buf = OPENSSL_malloc(rsa_size); if (buf == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); goto err; } switch (padding) { case RSA_PKCS1_PADDING: i = RSA_padding_add_PKCS1_type_1(buf, rsa_size, in, in_len); break; case RSA_NO_PADDING: i = RSA_padding_add_none(buf, rsa_size, in, in_len); break; default: OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); goto err; } if (i <= 0) { goto err; } if (!RSA_private_transform(rsa, out, buf, rsa_size)) { goto err; } *out_len = rsa_size; ret = 1; err: if (buf != NULL) { OPENSSL_cleanse(buf, rsa_size); OPENSSL_free(buf); } return ret; } int rsa_default_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *in, size_t in_len, int padding) { const unsigned rsa_size = RSA_size(rsa); int r = -1; uint8_t *buf = NULL; int ret = 0; if (max_out < rsa_size) { OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); return 0; } if (padding == RSA_NO_PADDING) { buf = out; } else { /* Allocate a temporary buffer to hold the padded plaintext. */ buf = OPENSSL_malloc(rsa_size); if (buf == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); goto err; } } if (in_len != rsa_size) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN); goto err; } if (!RSA_private_transform(rsa, buf, in, rsa_size)) { goto err; } switch (padding) { case RSA_PKCS1_PADDING: r = RSA_padding_check_PKCS1_type_2(out, rsa_size, buf, rsa_size); break; case RSA_PKCS1_OAEP_PADDING: /* Use the default parameters: SHA-1 for both hashes and no label. */ r = RSA_padding_check_PKCS1_OAEP_mgf1(out, rsa_size, buf, rsa_size, NULL, 0, NULL, NULL); break; case RSA_NO_PADDING: r = rsa_size; break; default: OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); goto err; } if (r < 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED); } else { *out_len = r; ret = 1; } err: if (padding != RSA_NO_PADDING && buf != NULL) { OPENSSL_cleanse(buf, rsa_size); OPENSSL_free(buf); } return ret; } static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx); int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *in, size_t in_len, int padding) { if (rsa->n == NULL || rsa->e == NULL) { OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); return 0; } const unsigned rsa_size = RSA_size(rsa); BIGNUM *f, *result; int r = -1; if (max_out < rsa_size) { OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); return 0; } if (in_len != rsa_size) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN); return 0; } if (!check_modulus_and_exponent_sizes(rsa)) { return 0; } BN_CTX *ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } int ret = 0; uint8_t *buf = NULL; BN_CTX_start(ctx); f = BN_CTX_get(ctx); result = BN_CTX_get(ctx); if (f == NULL || result == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); goto err; } if (padding == RSA_NO_PADDING) { buf = out; } else { /* Allocate a temporary buffer to hold the padded plaintext. */ buf = OPENSSL_malloc(rsa_size); if (buf == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); goto err; } } if (BN_bin2bn(in, in_len, f) == NULL) { goto err; } if (BN_ucmp(f, rsa->n) >= 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); goto err; } if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) || !BN_mod_exp_mont(result, f, rsa->e, rsa->n, ctx, rsa->mont_n)) { goto err; } if (!BN_bn2bin_padded(buf, rsa_size, result)) { OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); goto err; } switch (padding) { case RSA_PKCS1_PADDING: r = RSA_padding_check_PKCS1_type_1(out, rsa_size, buf, rsa_size); break; case RSA_NO_PADDING: r = rsa_size; break; default: OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); goto err; } if (r < 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED); } else { *out_len = r; ret = 1; } err: BN_CTX_end(ctx); BN_CTX_free(ctx); if (buf != out) { OPENSSL_free(buf); } return ret; } int rsa_default_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, size_t len) { BIGNUM *f, *result; BN_CTX *ctx = NULL; unsigned blinding_index = 0; BN_BLINDING *blinding = NULL; int ret = 0; ctx = BN_CTX_new(); if (ctx == NULL) { goto err; } BN_CTX_start(ctx); f = BN_CTX_get(ctx); result = BN_CTX_get(ctx); if (f == NULL || result == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); goto err; } if (BN_bin2bn(in, len, f) == NULL) { goto err; } if (BN_ucmp(f, rsa->n) >= 0) { /* Usually the padding functions would catch this. */ OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); goto err; } if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx)) { OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); goto err; } /* We cannot do blinding or verification without |e|, and continuing without * those countermeasures is dangerous. However, the Java/Android RSA API * requires support for keys where only |d| and |n| (and not |e|) are known. * The callers that require that bad behavior set |RSA_FLAG_NO_BLINDING|. */ int disable_security = (rsa->flags & RSA_FLAG_NO_BLINDING) && rsa->e == NULL; if (!disable_security) { /* Keys without public exponents must have blinding explicitly disabled to * be used. */ if (rsa->e == NULL) { OPENSSL_PUT_ERROR(RSA, RSA_R_NO_PUBLIC_EXPONENT); goto err; } blinding = rsa_blinding_get(rsa, &blinding_index, ctx); if (blinding == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); goto err; } if (!BN_BLINDING_convert(f, blinding, rsa->e, rsa->mont_n, ctx)) { goto err; } } if (rsa->p != NULL && rsa->q != NULL && rsa->e != NULL && rsa->dmp1 != NULL && rsa->dmq1 != NULL && rsa->iqmp != NULL) { if (!mod_exp(result, f, rsa, ctx)) { goto err; } } else if (!BN_mod_exp_mont_consttime(result, f, rsa->d, rsa->n, ctx, rsa->mont_n)) { goto err; } /* Verify the result to protect against fault attacks as described in the * 1997 paper "On the Importance of Checking Cryptographic Protocols for * Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Some * implementations do this only when the CRT is used, but we do it in all * cases. Section 6 of the aforementioned paper describes an attack that * works when the CRT isn't used. That attack is much less likely to succeed * than the CRT attack, but there have likely been improvements since 1997. * * This check is cheap assuming |e| is small; it almost always is. */ if (!disable_security) { BIGNUM *vrfy = BN_CTX_get(ctx); if (vrfy == NULL || !BN_mod_exp_mont(vrfy, result, rsa->e, rsa->n, ctx, rsa->mont_n) || !BN_equal_consttime(vrfy, f)) { OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); goto err; } if (!BN_BLINDING_invert(result, blinding, rsa->mont_n, ctx)) { goto err; } } if (!BN_bn2bin_padded(out, len, result)) { OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); goto err; } ret = 1; err: if (ctx != NULL) { BN_CTX_end(ctx); BN_CTX_free(ctx); } if (blinding != NULL) { rsa_blinding_release(rsa, blinding, blinding_index); } return ret; } static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) { assert(ctx != NULL); assert(rsa->n != NULL); assert(rsa->e != NULL); assert(rsa->d != NULL); assert(rsa->p != NULL); assert(rsa->q != NULL); assert(rsa->dmp1 != NULL); assert(rsa->dmq1 != NULL); assert(rsa->iqmp != NULL); BIGNUM *r1, *m1, *vrfy; int ret = 0; size_t i, num_additional_primes = 0; if (rsa->additional_primes != NULL) { num_additional_primes = sk_RSA_additional_prime_num(rsa->additional_primes); } BN_CTX_start(ctx); r1 = BN_CTX_get(ctx); m1 = BN_CTX_get(ctx); vrfy = BN_CTX_get(ctx); if (r1 == NULL || m1 == NULL || vrfy == NULL) { goto err; } if (!BN_MONT_CTX_set_locked(&rsa->mont_p, &rsa->lock, rsa->p, ctx) || !BN_MONT_CTX_set_locked(&rsa->mont_q, &rsa->lock, rsa->q, ctx)) { goto err; } if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx)) { goto err; } /* compute I mod q */ if (!BN_mod(r1, I, rsa->q, ctx)) { goto err; } /* compute r1^dmq1 mod q */ if (!BN_mod_exp_mont_consttime(m1, r1, rsa->dmq1, rsa->q, ctx, rsa->mont_q)) { goto err; } /* compute I mod p */ if (!BN_mod(r1, I, rsa->p, ctx)) { goto err; } /* compute r1^dmp1 mod p */ if (!BN_mod_exp_mont_consttime(r0, r1, rsa->dmp1, rsa->p, ctx, rsa->mont_p)) { goto err; } if (!BN_sub(r0, r0, m1)) { goto err; } /* This will help stop the size of r0 increasing, which does * affect the multiply if it optimised for a power of 2 size */ if (BN_is_negative(r0)) { if (!BN_add(r0, r0, rsa->p)) { goto err; } } if (!BN_mul(r1, r0, rsa->iqmp, ctx)) { goto err; } if (!BN_mod(r0, r1, rsa->p, ctx)) { goto err; } /* If p < q it is occasionally possible for the correction of * adding 'p' if r0 is negative above to leave the result still * negative. This can break the private key operations: the following * second correction should *always* correct this rare occurrence. * This will *never* happen with OpenSSL generated keys because * they ensure p > q [steve] */ if (BN_is_negative(r0)) { if (!BN_add(r0, r0, rsa->p)) { goto err; } } if (!BN_mul(r1, r0, rsa->q, ctx)) { goto err; } if (!BN_add(r0, r1, m1)) { goto err; } for (i = 0; i < num_additional_primes; i++) { /* multi-prime RSA. */ RSA_additional_prime *ap = sk_RSA_additional_prime_value(rsa->additional_primes, i); /* c will already point to a BIGNUM with the correct flags. */ if (!BN_mod(r1, I, ap->prime, ctx)) { goto err; } if (!BN_MONT_CTX_set_locked(&ap->mont, &rsa->lock, ap->prime, ctx) || !BN_mod_exp_mont_consttime(m1, r1, ap->exp, ap->prime, ctx, ap->mont)) { goto err; } if (!BN_sub(m1, m1, r0) || !BN_mul(m1, m1, ap->coeff, ctx) || !BN_mod(m1, m1, ap->prime, ctx) || (BN_is_negative(m1) && !BN_add(m1, m1, ap->prime)) || !BN_mul(m1, m1, ap->r, ctx) || !BN_add(r0, r0, m1)) { goto err; } } ret = 1; err: BN_CTX_end(ctx); return ret; } int rsa_default_multi_prime_keygen(RSA *rsa, int bits, int num_primes, BIGNUM *e_value, BN_GENCB *cb) { BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *r3 = NULL, *tmp; BIGNUM local_r0, local_p; BIGNUM *pr0, *p; int prime_bits, ok = -1, n = 0, i, j; BN_CTX *ctx = NULL; STACK_OF(RSA_additional_prime) *additional_primes = NULL; if (num_primes < 2) { ok = 0; /* we set our own err */ OPENSSL_PUT_ERROR(RSA, RSA_R_MUST_HAVE_AT_LEAST_TWO_PRIMES); goto err; } ctx = BN_CTX_new(); if (ctx == NULL) { goto err; } BN_CTX_start(ctx); r0 = BN_CTX_get(ctx); r1 = BN_CTX_get(ctx); r2 = BN_CTX_get(ctx); r3 = BN_CTX_get(ctx); if (r0 == NULL || r1 == NULL || r2 == NULL || r3 == NULL) { goto err; } if (num_primes > 2) { additional_primes = sk_RSA_additional_prime_new_null(); if (additional_primes == NULL) { goto err; } } for (i = 2; i < num_primes; i++) { RSA_additional_prime *ap = OPENSSL_malloc(sizeof(RSA_additional_prime)); if (ap == NULL) { goto err; } OPENSSL_memset(ap, 0, sizeof(RSA_additional_prime)); ap->prime = BN_new(); ap->exp = BN_new(); ap->coeff = BN_new(); ap->r = BN_new(); if (ap->prime == NULL || ap->exp == NULL || ap->coeff == NULL || ap->r == NULL || !sk_RSA_additional_prime_push(additional_primes, ap)) { RSA_additional_prime_free(ap); goto err; } } /* We need the RSA components non-NULL */ if (!rsa->n && ((rsa->n = BN_new()) == NULL)) { goto err; } if (!rsa->d && ((rsa->d = BN_new()) == NULL)) { goto err; } if (!rsa->e && ((rsa->e = BN_new()) == NULL)) { goto err; } if (!rsa->p && ((rsa->p = BN_new()) == NULL)) { goto err; } if (!rsa->q && ((rsa->q = BN_new()) == NULL)) { goto err; } if (!rsa->dmp1 && ((rsa->dmp1 = BN_new()) == NULL)) { goto err; } if (!rsa->dmq1 && ((rsa->dmq1 = BN_new()) == NULL)) { goto err; } if (!rsa->iqmp && ((rsa->iqmp = BN_new()) == NULL)) { goto err; } if (!BN_copy(rsa->e, e_value)) { goto err; } /* generate p and q */ prime_bits = (bits + (num_primes - 1)) / num_primes; for (;;) { if (!BN_generate_prime_ex(rsa->p, prime_bits, 0, NULL, NULL, cb) || !BN_sub(r2, rsa->p, BN_value_one()) || !BN_gcd(r1, r2, rsa->e, ctx)) { goto err; } if (BN_is_one(r1)) { break; } if (!BN_GENCB_call(cb, 2, n++)) { goto err; } } if (!BN_GENCB_call(cb, 3, 0)) { goto err; } prime_bits = ((bits - prime_bits) + (num_primes - 2)) / (num_primes - 1); for (;;) { /* When generating ridiculously small keys, we can get stuck * continually regenerating the same prime values. Check for * this and bail if it happens 3 times. */ unsigned int degenerate = 0; do { if (!BN_generate_prime_ex(rsa->q, prime_bits, 0, NULL, NULL, cb)) { goto err; } } while ((BN_cmp(rsa->p, rsa->q) == 0) && (++degenerate < 3)); if (degenerate == 3) { ok = 0; /* we set our own err */ OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); goto err; } if (!BN_sub(r2, rsa->q, BN_value_one()) || !BN_gcd(r1, r2, rsa->e, ctx)) { goto err; } if (BN_is_one(r1)) { break; } if (!BN_GENCB_call(cb, 2, n++)) { goto err; } } if (!BN_GENCB_call(cb, 3, 1) || !BN_mul(rsa->n, rsa->p, rsa->q, ctx)) { goto err; } for (i = 2; i < num_primes; i++) { RSA_additional_prime *ap = sk_RSA_additional_prime_value(additional_primes, i - 2); prime_bits = ((bits - BN_num_bits(rsa->n)) + (num_primes - (i + 1))) / (num_primes - i); for (;;) { if (!BN_generate_prime_ex(ap->prime, prime_bits, 0, NULL, NULL, cb)) { goto err; } if (BN_cmp(rsa->p, ap->prime) == 0 || BN_cmp(rsa->q, ap->prime) == 0) { continue; } for (j = 0; j < i - 2; j++) { if (BN_cmp(sk_RSA_additional_prime_value(additional_primes, j)->prime, ap->prime) == 0) { break; } } if (j != i - 2) { continue; } if (!BN_sub(r2, ap->prime, BN_value_one()) || !BN_gcd(r1, r2, rsa->e, ctx)) { goto err; } if (!BN_is_one(r1)) { continue; } if (i != num_primes - 1) { break; } /* For the last prime we'll check that it makes n large enough. In the * two prime case this isn't a problem because we generate primes with * the top two bits set and so the product is always of the expected * size. In the multi prime case, this doesn't follow. */ if (!BN_mul(r1, rsa->n, ap->prime, ctx)) { goto err; } if (BN_num_bits(r1) == (unsigned) bits) { break; } if (!BN_GENCB_call(cb, 2, n++)) { goto err; } } /* ap->r is is the product of all the primes prior to the current one * (including p and q). */ if (!BN_copy(ap->r, rsa->n)) { goto err; } if (i == num_primes - 1) { /* In the case of the last prime, we calculated n as |r1| in the loop * above. */ if (!BN_copy(rsa->n, r1)) { goto err; } } else if (!BN_mul(rsa->n, rsa->n, ap->prime, ctx)) { goto err; } if (!BN_GENCB_call(cb, 3, 1)) { goto err; } } if (BN_cmp(rsa->p, rsa->q) < 0) { tmp = rsa->p; rsa->p = rsa->q; rsa->q = tmp; } /* calculate d */ if (!BN_sub(r1, rsa->p, BN_value_one())) { goto err; /* p-1 */ } if (!BN_sub(r2, rsa->q, BN_value_one())) { goto err; /* q-1 */ } if (!BN_mul(r0, r1, r2, ctx)) { goto err; /* (p-1)(q-1) */ } for (i = 2; i < num_primes; i++) { RSA_additional_prime *ap = sk_RSA_additional_prime_value(additional_primes, i - 2); if (!BN_sub(r3, ap->prime, BN_value_one()) || !BN_mul(r0, r0, r3, ctx)) { goto err; } } pr0 = &local_r0; BN_with_flags(pr0, r0, BN_FLG_CONSTTIME); if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) { goto err; /* d */ } /* calculate d mod (p-1) */ if (!BN_mod(rsa->dmp1, rsa->d, r1, ctx)) { goto err; } /* calculate d mod (q-1) */ if (!BN_mod(rsa->dmq1, rsa->d, r2, ctx)) { goto err; } /* Calculate inverse of q mod p. Note that although RSA key generation is far * from constant-time, |bn_mod_inverse_secret_prime| uses the same modular * exponentation logic as in RSA private key operations and, if the RSAZ-1024 * code is enabled, will be optimized for common RSA prime sizes. */ p = &local_p; BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME); if (!BN_MONT_CTX_set_locked(&rsa->mont_p, &rsa->lock, rsa->p, ctx) || !bn_mod_inverse_secret_prime(rsa->iqmp, rsa->q, p, ctx, rsa->mont_p)) { goto err; } for (i = 2; i < num_primes; i++) { RSA_additional_prime *ap = sk_RSA_additional_prime_value(additional_primes, i - 2); if (!BN_sub(ap->exp, ap->prime, BN_value_one()) || !BN_mod(ap->exp, rsa->d, ap->exp, ctx) || !BN_MONT_CTX_set_locked(&ap->mont, &rsa->lock, ap->prime, ctx) || !bn_mod_inverse_secret_prime(ap->coeff, ap->r, ap->prime, ctx, ap->mont)) { goto err; } } rsa->additional_primes = additional_primes; additional_primes = NULL; /* The key generation process is complex and thus error-prone. It could be * disastrous to generate and then use a bad key so double-check that the key * makes sense. */ ok = RSA_check_key(rsa); if (!ok) { OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR); } err: if (ok == -1) { OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); ok = 0; } if (ctx != NULL) { BN_CTX_end(ctx); BN_CTX_free(ctx); } sk_RSA_additional_prime_pop_free(additional_primes, RSA_additional_prime_free); return ok; } int rsa_default_keygen(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) { return rsa_default_multi_prime_keygen(rsa, bits, 2 /* num primes */, e_value, cb); } /* All of the methods are NULL to make it easier for the compiler/linker to drop * unused functions. The wrapper functions will select the appropriate * |rsa_default_*| implementation. */ const RSA_METHOD RSA_default_method = { { 0 /* references */, 1 /* is_static */, }, NULL /* app_data */, NULL /* init */, NULL /* finish (defaults to rsa_default_finish) */, NULL /* size (defaults to rsa_default_size) */, NULL /* sign */, NULL /* verify */, NULL /* encrypt (defaults to rsa_default_encrypt) */, NULL /* sign_raw (defaults to rsa_default_sign_raw) */, NULL /* decrypt (defaults to rsa_default_decrypt) */, NULL /* verify_raw (defaults to rsa_default_verify_raw) */, NULL /* private_transform (defaults to rsa_default_private_transform) */, NULL /* mod_exp (ignored) */, NULL /* bn_mod_exp (ignored) */, RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE, NULL /* keygen (defaults to rsa_default_keygen) */, NULL /* multi_prime_keygen (defaults to rsa_default_multi_prime_keygen) */, NULL /* supports_digest */, };