// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package main import ( "bytes" "crypto/ecdsa" "crypto/elliptic" "crypto/rsa" "crypto/subtle" "crypto/x509" "encoding/asn1" "errors" "fmt" "io" "math/big" "net" "strconv" ) type clientHandshakeState struct { c *Conn serverHello *serverHelloMsg hello *clientHelloMsg suite *cipherSuite finishedHash finishedHash masterSecret []byte session *ClientSessionState finishedBytes []byte } func (c *Conn) clientHandshake() error { if c.config == nil { c.config = defaultConfig() } if len(c.config.ServerName) == 0 && !c.config.InsecureSkipVerify { return errors.New("tls: either ServerName or InsecureSkipVerify must be specified in the tls.Config") } c.sendHandshakeSeq = 0 c.recvHandshakeSeq = 0 nextProtosLength := 0 for _, proto := range c.config.NextProtos { if l := len(proto); l == 0 || l > 255 { return errors.New("tls: invalid NextProtos value") } else { nextProtosLength += 1 + l } } if nextProtosLength > 0xffff { return errors.New("tls: NextProtos values too large") } hello := &clientHelloMsg{ isDTLS: c.isDTLS, vers: c.config.maxVersion(), compressionMethods: []uint8{compressionNone}, random: make([]byte, 32), ocspStapling: true, serverName: c.config.ServerName, supportedCurves: c.config.curvePreferences(), supportedPoints: []uint8{pointFormatUncompressed}, nextProtoNeg: len(c.config.NextProtos) > 0, secureRenegotiation: []byte{}, alpnProtocols: c.config.NextProtos, duplicateExtension: c.config.Bugs.DuplicateExtension, channelIDSupported: c.config.ChannelID != nil, npnLast: c.config.Bugs.SwapNPNAndALPN, extendedMasterSecret: c.config.maxVersion() >= VersionTLS10, srtpProtectionProfiles: c.config.SRTPProtectionProfiles, srtpMasterKeyIdentifier: c.config.Bugs.SRTPMasterKeyIdentifer, } if c.config.Bugs.SendClientVersion != 0 { hello.vers = c.config.Bugs.SendClientVersion } if c.config.Bugs.NoExtendedMasterSecret { hello.extendedMasterSecret = false } if len(c.clientVerify) > 0 && !c.config.Bugs.EmptyRenegotiationInfo { if c.config.Bugs.BadRenegotiationInfo { hello.secureRenegotiation = append(hello.secureRenegotiation, c.clientVerify...) hello.secureRenegotiation[0] ^= 0x80 } else { hello.secureRenegotiation = c.clientVerify } } if c.config.Bugs.NoRenegotiationInfo { hello.secureRenegotiation = nil } possibleCipherSuites := c.config.cipherSuites() hello.cipherSuites = make([]uint16, 0, len(possibleCipherSuites)) NextCipherSuite: for _, suiteId := range possibleCipherSuites { for _, suite := range cipherSuites { if suite.id != suiteId { continue } // Don't advertise TLS 1.2-only cipher suites unless // we're attempting TLS 1.2. if hello.vers < VersionTLS12 && suite.flags&suiteTLS12 != 0 { continue } // Don't advertise non-DTLS cipher suites on DTLS. if c.isDTLS && suite.flags&suiteNoDTLS != 0 { continue } hello.cipherSuites = append(hello.cipherSuites, suiteId) continue NextCipherSuite } } if c.config.Bugs.SendFallbackSCSV { hello.cipherSuites = append(hello.cipherSuites, fallbackSCSV) } _, err := io.ReadFull(c.config.rand(), hello.random) if err != nil { c.sendAlert(alertInternalError) return errors.New("tls: short read from Rand: " + err.Error()) } if hello.vers >= VersionTLS12 && !c.config.Bugs.NoSignatureAndHashes && (c.cipherSuite == 0 || !c.config.Bugs.NoSignatureAlgorithmsOnRenego) { hello.signatureAndHashes = c.config.signatureAndHashesForClient() } var session *ClientSessionState var cacheKey string sessionCache := c.config.ClientSessionCache if c.config.Bugs.NeverResumeOnRenego && c.cipherSuite != 0 { sessionCache = nil } if sessionCache != nil { hello.ticketSupported = !c.config.SessionTicketsDisabled // Try to resume a previously negotiated TLS session, if // available. cacheKey = clientSessionCacheKey(c.conn.RemoteAddr(), c.config) candidateSession, ok := sessionCache.Get(cacheKey) if ok { ticketOk := !c.config.SessionTicketsDisabled || candidateSession.sessionTicket == nil // Check that the ciphersuite/version used for the // previous session are still valid. cipherSuiteOk := false for _, id := range hello.cipherSuites { if id == candidateSession.cipherSuite { cipherSuiteOk = true break } } versOk := candidateSession.vers >= c.config.minVersion() && candidateSession.vers <= c.config.maxVersion() if ticketOk && versOk && cipherSuiteOk { session = candidateSession } } } if session != nil { if session.sessionTicket != nil { hello.sessionTicket = session.sessionTicket if c.config.Bugs.CorruptTicket { hello.sessionTicket = make([]byte, len(session.sessionTicket)) copy(hello.sessionTicket, session.sessionTicket) if len(hello.sessionTicket) > 0 { offset := 40 if offset > len(hello.sessionTicket) { offset = len(hello.sessionTicket) - 1 } hello.sessionTicket[offset] ^= 0x40 } } // A random session ID is used to detect when the // server accepted the ticket and is resuming a session // (see RFC 5077). sessionIdLen := 16 if c.config.Bugs.OversizedSessionId { sessionIdLen = 33 } hello.sessionId = make([]byte, sessionIdLen) if _, err := io.ReadFull(c.config.rand(), hello.sessionId); err != nil { c.sendAlert(alertInternalError) return errors.New("tls: short read from Rand: " + err.Error()) } } else { hello.sessionId = session.sessionId } } var helloBytes []byte if c.config.Bugs.SendV2ClientHello { // Test that the peer left-pads random. hello.random[0] = 0 v2Hello := &v2ClientHelloMsg{ vers: hello.vers, cipherSuites: hello.cipherSuites, // No session resumption for V2ClientHello. sessionId: nil, challenge: hello.random[1:], } helloBytes = v2Hello.marshal() c.writeV2Record(helloBytes) } else { helloBytes = hello.marshal() c.writeRecord(recordTypeHandshake, helloBytes) } c.dtlsFlushHandshake() if err := c.simulatePacketLoss(nil); err != nil { return err } msg, err := c.readHandshake() if err != nil { return err } if c.isDTLS { helloVerifyRequest, ok := msg.(*helloVerifyRequestMsg) if ok { if helloVerifyRequest.vers != VersionTLS10 { // Per RFC 6347, the version field in // HelloVerifyRequest SHOULD be always DTLS // 1.0. Enforce this for testing purposes. return errors.New("dtls: bad HelloVerifyRequest version") } hello.raw = nil hello.cookie = helloVerifyRequest.cookie helloBytes = hello.marshal() c.writeRecord(recordTypeHandshake, helloBytes) c.dtlsFlushHandshake() if err := c.simulatePacketLoss(nil); err != nil { return err } msg, err = c.readHandshake() if err != nil { return err } } } serverHello, ok := msg.(*serverHelloMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(serverHello, msg) } c.vers, ok = c.config.mutualVersion(serverHello.vers) if !ok { c.sendAlert(alertProtocolVersion) return fmt.Errorf("tls: server selected unsupported protocol version %x", serverHello.vers) } c.haveVers = true suite := mutualCipherSuite(c.config.cipherSuites(), serverHello.cipherSuite) if suite == nil { c.sendAlert(alertHandshakeFailure) return fmt.Errorf("tls: server selected an unsupported cipher suite") } if len(c.clientVerify) > 0 && !c.config.Bugs.NoRenegotiationInfo { var expectedRenegInfo []byte expectedRenegInfo = append(expectedRenegInfo, c.clientVerify...) expectedRenegInfo = append(expectedRenegInfo, c.serverVerify...) if !bytes.Equal(serverHello.secureRenegotiation, expectedRenegInfo) { c.sendAlert(alertHandshakeFailure) return fmt.Errorf("tls: renegotiation mismatch") } } hs := &clientHandshakeState{ c: c, serverHello: serverHello, hello: hello, suite: suite, finishedHash: newFinishedHash(c.vers, suite), session: session, } hs.writeHash(helloBytes, hs.c.sendHandshakeSeq-1) hs.writeServerHash(hs.serverHello.marshal()) if c.config.Bugs.EarlyChangeCipherSpec > 0 { hs.establishKeys() c.writeRecord(recordTypeChangeCipherSpec, []byte{1}) } isResume, err := hs.processServerHello() if err != nil { return err } if isResume { if c.config.Bugs.EarlyChangeCipherSpec == 0 { if err := hs.establishKeys(); err != nil { return err } } if err := hs.readSessionTicket(); err != nil { return err } if err := hs.readFinished(); err != nil { return err } if err := hs.sendFinished(isResume); err != nil { return err } } else { if err := hs.doFullHandshake(); err != nil { return err } if err := hs.establishKeys(); err != nil { return err } if err := hs.sendFinished(isResume); err != nil { return err } // Most retransmits are triggered by a timeout, but the final // leg of the handshake is retransmited upon re-receiving a // Finished. if err := c.simulatePacketLoss(func() { c.writeRecord(recordTypeHandshake, hs.finishedBytes) c.dtlsFlushHandshake() }); err != nil { return err } if err := hs.readSessionTicket(); err != nil { return err } if err := hs.readFinished(); err != nil { return err } } if sessionCache != nil && hs.session != nil && session != hs.session { sessionCache.Put(cacheKey, hs.session) } c.didResume = isResume c.handshakeComplete = true c.cipherSuite = suite.id return nil } func (hs *clientHandshakeState) doFullHandshake() error { c := hs.c var leaf *x509.Certificate if hs.suite.flags&suitePSK == 0 { msg, err := c.readHandshake() if err != nil { return err } certMsg, ok := msg.(*certificateMsg) if !ok || len(certMsg.certificates) == 0 { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(certMsg, msg) } hs.writeServerHash(certMsg.marshal()) certs := make([]*x509.Certificate, len(certMsg.certificates)) for i, asn1Data := range certMsg.certificates { cert, err := x509.ParseCertificate(asn1Data) if err != nil { c.sendAlert(alertBadCertificate) return errors.New("tls: failed to parse certificate from server: " + err.Error()) } certs[i] = cert } leaf = certs[0] if !c.config.InsecureSkipVerify { opts := x509.VerifyOptions{ Roots: c.config.RootCAs, CurrentTime: c.config.time(), DNSName: c.config.ServerName, Intermediates: x509.NewCertPool(), } for i, cert := range certs { if i == 0 { continue } opts.Intermediates.AddCert(cert) } c.verifiedChains, err = leaf.Verify(opts) if err != nil { c.sendAlert(alertBadCertificate) return err } } switch leaf.PublicKey.(type) { case *rsa.PublicKey, *ecdsa.PublicKey: break default: c.sendAlert(alertUnsupportedCertificate) return fmt.Errorf("tls: server's certificate contains an unsupported type of public key: %T", leaf.PublicKey) } c.peerCertificates = certs } if hs.serverHello.ocspStapling { msg, err := c.readHandshake() if err != nil { return err } cs, ok := msg.(*certificateStatusMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(cs, msg) } hs.writeServerHash(cs.marshal()) if cs.statusType == statusTypeOCSP { c.ocspResponse = cs.response } } msg, err := c.readHandshake() if err != nil { return err } keyAgreement := hs.suite.ka(c.vers) skx, ok := msg.(*serverKeyExchangeMsg) if ok { hs.writeServerHash(skx.marshal()) err = keyAgreement.processServerKeyExchange(c.config, hs.hello, hs.serverHello, leaf, skx) if err != nil { c.sendAlert(alertUnexpectedMessage) return err } msg, err = c.readHandshake() if err != nil { return err } } var chainToSend *Certificate var certRequested bool certReq, ok := msg.(*certificateRequestMsg) if ok { certRequested = true // RFC 4346 on the certificateAuthorities field: // A list of the distinguished names of acceptable certificate // authorities. These distinguished names may specify a desired // distinguished name for a root CA or for a subordinate CA; // thus, this message can be used to describe both known roots // and a desired authorization space. If the // certificate_authorities list is empty then the client MAY // send any certificate of the appropriate // ClientCertificateType, unless there is some external // arrangement to the contrary. hs.writeServerHash(certReq.marshal()) var rsaAvail, ecdsaAvail bool for _, certType := range certReq.certificateTypes { switch certType { case CertTypeRSASign: rsaAvail = true case CertTypeECDSASign: ecdsaAvail = true } } // We need to search our list of client certs for one // where SignatureAlgorithm is RSA and the Issuer is in // certReq.certificateAuthorities findCert: for i, chain := range c.config.Certificates { if !rsaAvail && !ecdsaAvail { continue } for j, cert := range chain.Certificate { x509Cert := chain.Leaf // parse the certificate if this isn't the leaf // node, or if chain.Leaf was nil if j != 0 || x509Cert == nil { if x509Cert, err = x509.ParseCertificate(cert); err != nil { c.sendAlert(alertInternalError) return errors.New("tls: failed to parse client certificate #" + strconv.Itoa(i) + ": " + err.Error()) } } switch { case rsaAvail && x509Cert.PublicKeyAlgorithm == x509.RSA: case ecdsaAvail && x509Cert.PublicKeyAlgorithm == x509.ECDSA: default: continue findCert } if len(certReq.certificateAuthorities) == 0 { // they gave us an empty list, so just take the // first RSA cert from c.config.Certificates chainToSend = &chain break findCert } for _, ca := range certReq.certificateAuthorities { if bytes.Equal(x509Cert.RawIssuer, ca) { chainToSend = &chain break findCert } } } } msg, err = c.readHandshake() if err != nil { return err } } shd, ok := msg.(*serverHelloDoneMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(shd, msg) } hs.writeServerHash(shd.marshal()) // If the server requested a certificate then we have to send a // Certificate message, even if it's empty because we don't have a // certificate to send. if certRequested { certMsg := new(certificateMsg) if chainToSend != nil { certMsg.certificates = chainToSend.Certificate } hs.writeClientHash(certMsg.marshal()) c.writeRecord(recordTypeHandshake, certMsg.marshal()) } preMasterSecret, ckx, err := keyAgreement.generateClientKeyExchange(c.config, hs.hello, leaf) if err != nil { c.sendAlert(alertInternalError) return err } if ckx != nil { if c.config.Bugs.EarlyChangeCipherSpec < 2 { hs.writeClientHash(ckx.marshal()) } c.writeRecord(recordTypeHandshake, ckx.marshal()) } if hs.serverHello.extendedMasterSecret && c.vers >= VersionTLS10 { hs.masterSecret = extendedMasterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.finishedHash) c.extendedMasterSecret = true } else { if c.config.Bugs.RequireExtendedMasterSecret { return errors.New("tls: extended master secret required but not supported by peer") } hs.masterSecret = masterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.hello.random, hs.serverHello.random) } if chainToSend != nil { var signed []byte certVerify := &certificateVerifyMsg{ hasSignatureAndHash: c.vers >= VersionTLS12, } // Determine the hash to sign. var signatureType uint8 switch c.config.Certificates[0].PrivateKey.(type) { case *ecdsa.PrivateKey: signatureType = signatureECDSA case *rsa.PrivateKey: signatureType = signatureRSA default: c.sendAlert(alertInternalError) return errors.New("unknown private key type") } if c.config.Bugs.IgnorePeerSignatureAlgorithmPreferences { certReq.signatureAndHashes = c.config.signatureAndHashesForClient() } certVerify.signatureAndHash, err = hs.finishedHash.selectClientCertSignatureAlgorithm(certReq.signatureAndHashes, c.config.signatureAndHashesForClient(), signatureType) if err != nil { c.sendAlert(alertInternalError) return err } digest, hashFunc, err := hs.finishedHash.hashForClientCertificate(certVerify.signatureAndHash, hs.masterSecret) if err != nil { c.sendAlert(alertInternalError) return err } switch key := c.config.Certificates[0].PrivateKey.(type) { case *ecdsa.PrivateKey: var r, s *big.Int r, s, err = ecdsa.Sign(c.config.rand(), key, digest) if err == nil { signed, err = asn1.Marshal(ecdsaSignature{r, s}) } case *rsa.PrivateKey: signed, err = rsa.SignPKCS1v15(c.config.rand(), key, hashFunc, digest) default: err = errors.New("unknown private key type") } if err != nil { c.sendAlert(alertInternalError) return errors.New("tls: failed to sign handshake with client certificate: " + err.Error()) } certVerify.signature = signed hs.writeClientHash(certVerify.marshal()) c.writeRecord(recordTypeHandshake, certVerify.marshal()) } c.dtlsFlushHandshake() hs.finishedHash.discardHandshakeBuffer() return nil } func (hs *clientHandshakeState) establishKeys() error { c := hs.c clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV := keysFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.hello.random, hs.serverHello.random, hs.suite.macLen, hs.suite.keyLen, hs.suite.ivLen) var clientCipher, serverCipher interface{} var clientHash, serverHash macFunction if hs.suite.cipher != nil { clientCipher = hs.suite.cipher(clientKey, clientIV, false /* not for reading */) clientHash = hs.suite.mac(c.vers, clientMAC) serverCipher = hs.suite.cipher(serverKey, serverIV, true /* for reading */) serverHash = hs.suite.mac(c.vers, serverMAC) } else { clientCipher = hs.suite.aead(clientKey, clientIV) serverCipher = hs.suite.aead(serverKey, serverIV) } c.in.prepareCipherSpec(c.vers, serverCipher, serverHash) c.out.prepareCipherSpec(c.vers, clientCipher, clientHash) return nil } func (hs *clientHandshakeState) serverResumedSession() bool { // If the server responded with the same sessionId then it means the // sessionTicket is being used to resume a TLS session. return hs.session != nil && hs.hello.sessionId != nil && bytes.Equal(hs.serverHello.sessionId, hs.hello.sessionId) } func (hs *clientHandshakeState) processServerHello() (bool, error) { c := hs.c if hs.serverHello.compressionMethod != compressionNone { c.sendAlert(alertUnexpectedMessage) return false, errors.New("tls: server selected unsupported compression format") } clientDidNPN := hs.hello.nextProtoNeg clientDidALPN := len(hs.hello.alpnProtocols) > 0 serverHasNPN := hs.serverHello.nextProtoNeg serverHasALPN := len(hs.serverHello.alpnProtocol) > 0 if !clientDidNPN && serverHasNPN { c.sendAlert(alertHandshakeFailure) return false, errors.New("server advertised unrequested NPN extension") } if !clientDidALPN && serverHasALPN { c.sendAlert(alertHandshakeFailure) return false, errors.New("server advertised unrequested ALPN extension") } if serverHasNPN && serverHasALPN { c.sendAlert(alertHandshakeFailure) return false, errors.New("server advertised both NPN and ALPN extensions") } if serverHasALPN { c.clientProtocol = hs.serverHello.alpnProtocol c.clientProtocolFallback = false c.usedALPN = true } if !hs.hello.channelIDSupported && hs.serverHello.channelIDRequested { c.sendAlert(alertHandshakeFailure) return false, errors.New("server advertised unrequested Channel ID extension") } if hs.serverHello.srtpProtectionProfile != 0 { if hs.serverHello.srtpMasterKeyIdentifier != "" { return false, errors.New("tls: server selected SRTP MKI value") } found := false for _, p := range c.config.SRTPProtectionProfiles { if p == hs.serverHello.srtpProtectionProfile { found = true break } } if !found { return false, errors.New("tls: server advertised unsupported SRTP profile") } c.srtpProtectionProfile = hs.serverHello.srtpProtectionProfile } if hs.serverResumedSession() { // Restore masterSecret and peerCerts from previous state hs.masterSecret = hs.session.masterSecret c.peerCertificates = hs.session.serverCertificates c.extendedMasterSecret = hs.session.extendedMasterSecret hs.finishedHash.discardHandshakeBuffer() return true, nil } return false, nil } func (hs *clientHandshakeState) readFinished() error { c := hs.c c.readRecord(recordTypeChangeCipherSpec) if err := c.in.error(); err != nil { return err } msg, err := c.readHandshake() if err != nil { return err } serverFinished, ok := msg.(*finishedMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(serverFinished, msg) } if c.config.Bugs.EarlyChangeCipherSpec == 0 { verify := hs.finishedHash.serverSum(hs.masterSecret) if len(verify) != len(serverFinished.verifyData) || subtle.ConstantTimeCompare(verify, serverFinished.verifyData) != 1 { c.sendAlert(alertHandshakeFailure) return errors.New("tls: server's Finished message was incorrect") } } c.serverVerify = append(c.serverVerify[:0], serverFinished.verifyData...) hs.writeServerHash(serverFinished.marshal()) return nil } func (hs *clientHandshakeState) readSessionTicket() error { c := hs.c // Create a session with no server identifier. Either a // session ID or session ticket will be attached. session := &ClientSessionState{ vers: c.vers, cipherSuite: hs.suite.id, masterSecret: hs.masterSecret, handshakeHash: hs.finishedHash.server.Sum(nil), serverCertificates: c.peerCertificates, } if !hs.serverHello.ticketSupported { if hs.session == nil && len(hs.serverHello.sessionId) > 0 { session.sessionId = hs.serverHello.sessionId hs.session = session } return nil } msg, err := c.readHandshake() if err != nil { return err } sessionTicketMsg, ok := msg.(*newSessionTicketMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(sessionTicketMsg, msg) } session.sessionTicket = sessionTicketMsg.ticket hs.session = session hs.writeServerHash(sessionTicketMsg.marshal()) return nil } func (hs *clientHandshakeState) sendFinished(isResume bool) error { c := hs.c var postCCSBytes []byte seqno := hs.c.sendHandshakeSeq if hs.serverHello.nextProtoNeg { nextProto := new(nextProtoMsg) proto, fallback := mutualProtocol(c.config.NextProtos, hs.serverHello.nextProtos) nextProto.proto = proto c.clientProtocol = proto c.clientProtocolFallback = fallback nextProtoBytes := nextProto.marshal() hs.writeHash(nextProtoBytes, seqno) seqno++ postCCSBytes = append(postCCSBytes, nextProtoBytes...) } if hs.serverHello.channelIDRequested { encryptedExtensions := new(encryptedExtensionsMsg) if c.config.ChannelID.Curve != elliptic.P256() { return fmt.Errorf("tls: Channel ID is not on P-256.") } var resumeHash []byte if isResume { resumeHash = hs.session.handshakeHash } r, s, err := ecdsa.Sign(c.config.rand(), c.config.ChannelID, hs.finishedHash.hashForChannelID(resumeHash)) if err != nil { return err } channelID := make([]byte, 128) writeIntPadded(channelID[0:32], c.config.ChannelID.X) writeIntPadded(channelID[32:64], c.config.ChannelID.Y) writeIntPadded(channelID[64:96], r) writeIntPadded(channelID[96:128], s) encryptedExtensions.channelID = channelID c.channelID = &c.config.ChannelID.PublicKey encryptedExtensionsBytes := encryptedExtensions.marshal() hs.writeHash(encryptedExtensionsBytes, seqno) seqno++ postCCSBytes = append(postCCSBytes, encryptedExtensionsBytes...) } finished := new(finishedMsg) if c.config.Bugs.EarlyChangeCipherSpec == 2 { finished.verifyData = hs.finishedHash.clientSum(nil) } else { finished.verifyData = hs.finishedHash.clientSum(hs.masterSecret) } if c.config.Bugs.BadFinished { finished.verifyData[0]++ } c.clientVerify = append(c.clientVerify[:0], finished.verifyData...) hs.finishedBytes = finished.marshal() hs.writeHash(hs.finishedBytes, seqno) postCCSBytes = append(postCCSBytes, hs.finishedBytes...) if c.config.Bugs.FragmentAcrossChangeCipherSpec { c.writeRecord(recordTypeHandshake, postCCSBytes[:5]) postCCSBytes = postCCSBytes[5:] } c.dtlsFlushHandshake() if !c.config.Bugs.SkipChangeCipherSpec && c.config.Bugs.EarlyChangeCipherSpec == 0 { c.writeRecord(recordTypeChangeCipherSpec, []byte{1}) } if c.config.Bugs.AppDataAfterChangeCipherSpec != nil { c.writeRecord(recordTypeApplicationData, c.config.Bugs.AppDataAfterChangeCipherSpec) } if c.config.Bugs.AlertAfterChangeCipherSpec != 0 { c.sendAlert(c.config.Bugs.AlertAfterChangeCipherSpec) return errors.New("tls: simulating post-CCS alert") } if !c.config.Bugs.SkipFinished { c.writeRecord(recordTypeHandshake, postCCSBytes) c.dtlsFlushHandshake() } return nil } func (hs *clientHandshakeState) writeClientHash(msg []byte) { // writeClientHash is called before writeRecord. hs.writeHash(msg, hs.c.sendHandshakeSeq) } func (hs *clientHandshakeState) writeServerHash(msg []byte) { // writeServerHash is called after readHandshake. hs.writeHash(msg, hs.c.recvHandshakeSeq-1) } func (hs *clientHandshakeState) writeHash(msg []byte, seqno uint16) { if hs.c.isDTLS { // This is somewhat hacky. DTLS hashes a slightly different format. // First, the TLS header. hs.finishedHash.Write(msg[:4]) // Then the sequence number and reassembled fragment offset (always 0). hs.finishedHash.Write([]byte{byte(seqno >> 8), byte(seqno), 0, 0, 0}) // Then the reassembled fragment (always equal to the message length). hs.finishedHash.Write(msg[1:4]) // And then the message body. hs.finishedHash.Write(msg[4:]) } else { hs.finishedHash.Write(msg) } } // clientSessionCacheKey returns a key used to cache sessionTickets that could // be used to resume previously negotiated TLS sessions with a server. func clientSessionCacheKey(serverAddr net.Addr, config *Config) string { if len(config.ServerName) > 0 { return config.ServerName } return serverAddr.String() } // mutualProtocol finds the mutual Next Protocol Negotiation or ALPN protocol // given list of possible protocols and a list of the preference order. The // first list must not be empty. It returns the resulting protocol and flag // indicating if the fallback case was reached. func mutualProtocol(protos, preferenceProtos []string) (string, bool) { for _, s := range preferenceProtos { for _, c := range protos { if s == c { return s, false } } } return protos[0], true } // writeIntPadded writes x into b, padded up with leading zeros as // needed. func writeIntPadded(b []byte, x *big.Int) { for i := range b { b[i] = 0 } xb := x.Bytes() copy(b[len(b)-len(xb):], xb) }