/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #if !defined(_POSIX_C_SOURCE) #define _POSIX_C_SOURCE 201410L #endif #include #if !defined(OPENSSL_WINDOWS) #include #include #include #include #include #include #else #include OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include #include OPENSSL_MSVC_PRAGMA(warning(pop)) #endif #include #include #include #include #include namespace bssl { #if !defined(OPENSSL_WINDOWS) static int closesocket(int sock) { return close(sock); } static void PrintSocketError(const char *func) { perror(func); } #else static void PrintSocketError(const char *func) { fprintf(stderr, "%s: %d\n", func, WSAGetLastError()); } #endif class ScopedSocket { public: ScopedSocket(int sock) : sock_(sock) {} ~ScopedSocket() { closesocket(sock_); } private: const int sock_; }; static bool TestSocketConnect() { static const char kTestMessage[] = "test"; int listening_sock = socket(AF_INET, SOCK_STREAM, 0); if (listening_sock == -1) { PrintSocketError("socket"); return false; } ScopedSocket listening_sock_closer(listening_sock); struct sockaddr_in sin; memset(&sin, 0, sizeof(sin)); sin.sin_family = AF_INET; if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) { PrintSocketError("inet_pton"); return false; } if (bind(listening_sock, (struct sockaddr *)&sin, sizeof(sin)) != 0) { PrintSocketError("bind"); return false; } if (listen(listening_sock, 1)) { PrintSocketError("listen"); return false; } socklen_t sockaddr_len = sizeof(sin); if (getsockname(listening_sock, (struct sockaddr *)&sin, &sockaddr_len) || sockaddr_len != sizeof(sin)) { PrintSocketError("getsockname"); return false; } char hostname[80]; BIO_snprintf(hostname, sizeof(hostname), "%s:%d", "127.0.0.1", ntohs(sin.sin_port)); ScopedBIO bio(BIO_new_connect(hostname)); if (!bio) { fprintf(stderr, "BIO_new_connect failed.\n"); return false; } if (BIO_write(bio.get(), kTestMessage, sizeof(kTestMessage)) != sizeof(kTestMessage)) { fprintf(stderr, "BIO_write failed.\n"); ERR_print_errors_fp(stderr); return false; } int sock = accept(listening_sock, (struct sockaddr *) &sin, &sockaddr_len); if (sock == -1) { PrintSocketError("accept"); return false; } ScopedSocket sock_closer(sock); char buf[5]; if (recv(sock, buf, sizeof(buf), 0) != sizeof(kTestMessage)) { PrintSocketError("read"); return false; } if (memcmp(buf, kTestMessage, sizeof(kTestMessage))) { return false; } return true; } // BioReadZeroCopyWrapper is a wrapper around the zero-copy APIs to make // testing easier. static size_t BioReadZeroCopyWrapper(BIO *bio, uint8_t *data, size_t len) { uint8_t *read_buf; size_t read_buf_offset; size_t available_bytes; size_t len_read = 0; do { if (!BIO_zero_copy_get_read_buf(bio, &read_buf, &read_buf_offset, &available_bytes)) { return 0; } available_bytes = std::min(available_bytes, len - len_read); memmove(data + len_read, read_buf + read_buf_offset, available_bytes); BIO_zero_copy_get_read_buf_done(bio, available_bytes); len_read += available_bytes; } while (len - len_read > 0 && available_bytes > 0); return len_read; } // BioWriteZeroCopyWrapper is a wrapper around the zero-copy APIs to make // testing easier. static size_t BioWriteZeroCopyWrapper(BIO *bio, const uint8_t *data, size_t len) { uint8_t *write_buf; size_t write_buf_offset; size_t available_bytes; size_t len_written = 0; do { if (!BIO_zero_copy_get_write_buf(bio, &write_buf, &write_buf_offset, &available_bytes)) { return 0; } available_bytes = std::min(available_bytes, len - len_written); memmove(write_buf + write_buf_offset, data + len_written, available_bytes); BIO_zero_copy_get_write_buf_done(bio, available_bytes); len_written += available_bytes; } while (len - len_written > 0 && available_bytes > 0); return len_written; } static bool TestZeroCopyBioPairs() { // Test read and write, especially triggering the ring buffer wrap-around. uint8_t bio1_application_send_buffer[1024]; uint8_t bio2_application_recv_buffer[1024]; const size_t kLengths[] = {254, 255, 256, 257, 510, 511, 512, 513}; // These trigger ring buffer wrap around. const size_t kPartialLengths[] = {0, 1, 2, 3, 128, 255, 256, 257, 511, 512}; static const size_t kBufferSize = 512; srand(1); for (size_t i = 0; i < sizeof(bio1_application_send_buffer); i++) { bio1_application_send_buffer[i] = rand() & 255; } // Transfer bytes from bio1_application_send_buffer to // bio2_application_recv_buffer in various ways. for (size_t i = 0; i < sizeof(kLengths) / sizeof(kLengths[0]); i++) { for (size_t j = 0; j < sizeof(kPartialLengths) / sizeof(kPartialLengths[0]); j++) { size_t total_write = 0; size_t total_read = 0; BIO *bio1, *bio2; if (!BIO_new_bio_pair(&bio1, kBufferSize, &bio2, kBufferSize)) { return false; } ScopedBIO bio1_scoper(bio1); ScopedBIO bio2_scoper(bio2); total_write += BioWriteZeroCopyWrapper( bio1, bio1_application_send_buffer, kLengths[i]); // This tests interleaved read/write calls. Do a read between zero copy // write calls. uint8_t *write_buf; size_t write_buf_offset; size_t available_bytes; if (!BIO_zero_copy_get_write_buf(bio1, &write_buf, &write_buf_offset, &available_bytes)) { return false; } // Free kPartialLengths[j] bytes in the beginning of bio1 write buffer. // This enables ring buffer wrap around for the next write. total_read += BIO_read(bio2, bio2_application_recv_buffer + total_read, kPartialLengths[j]); size_t interleaved_write_len = std::min(kPartialLengths[j], available_bytes); // Write the data for the interleaved write call. If the buffer becomes // empty after a read, the write offset is normally set to 0. Check that // this does not happen for interleaved read/write and that // |write_buf_offset| is still valid. memcpy(write_buf + write_buf_offset, bio1_application_send_buffer + total_write, interleaved_write_len); if (BIO_zero_copy_get_write_buf_done(bio1, interleaved_write_len)) { total_write += interleaved_write_len; } // Do another write in case |write_buf_offset| was wrapped. total_write += BioWriteZeroCopyWrapper( bio1, bio1_application_send_buffer + total_write, kPartialLengths[j] - interleaved_write_len); // Drain the rest. size_t bytes_left = BIO_pending(bio2); total_read += BioReadZeroCopyWrapper( bio2, bio2_application_recv_buffer + total_read, bytes_left); if (total_read != total_write) { fprintf(stderr, "Lengths not equal in round (%u, %u)\n", (unsigned)i, (unsigned)j); return false; } if (total_read > kLengths[i] + kPartialLengths[j]) { fprintf(stderr, "Bad lengths in round (%u, %u)\n", (unsigned)i, (unsigned)j); return false; } if (memcmp(bio1_application_send_buffer, bio2_application_recv_buffer, total_read) != 0) { fprintf(stderr, "Buffers not equal in round (%u, %u)\n", (unsigned)i, (unsigned)j); return false; } } } return true; } static bool TestPrintf() { // Test a short output, a very long one, and various sizes around // 256 (the size of the buffer) to ensure edge cases are correct. static const size_t kLengths[] = { 5, 250, 251, 252, 253, 254, 1023 }; ScopedBIO bio(BIO_new(BIO_s_mem())); if (!bio) { fprintf(stderr, "BIO_new failed\n"); return false; } for (size_t i = 0; i < sizeof(kLengths) / sizeof(kLengths[0]); i++) { char string[1024]; if (kLengths[i] >= sizeof(string)) { fprintf(stderr, "Bad test string length\n"); return false; } memset(string, 'a', sizeof(string)); string[kLengths[i]] = '\0'; int ret = BIO_printf(bio.get(), "test %s", string); if (ret < 0 || static_cast(ret) != 5 + kLengths[i]) { fprintf(stderr, "BIO_printf failed: %d\n", ret); return false; } const uint8_t *contents; size_t len; if (!BIO_mem_contents(bio.get(), &contents, &len)) { fprintf(stderr, "BIO_mem_contents failed\n"); return false; } if (len != 5 + kLengths[i] || strncmp((const char *)contents, "test ", 5) != 0 || strncmp((const char *)contents + 5, string, kLengths[i]) != 0) { fprintf(stderr, "Contents did not match: %.*s\n", (int)len, contents); return false; } if (!BIO_reset(bio.get())) { fprintf(stderr, "BIO_reset failed\n"); return false; } } return true; } static bool ReadASN1(bool should_succeed, const uint8_t *data, size_t data_len, size_t expected_len, size_t max_len) { ScopedBIO bio(BIO_new_mem_buf(data, data_len)); uint8_t *out; size_t out_len; int ok = BIO_read_asn1(bio.get(), &out, &out_len, max_len); if (!ok) { out = nullptr; } ScopedBytes out_storage(out); if (should_succeed != (ok == 1)) { return false; } if (should_succeed && (out_len != expected_len || memcmp(data, out, expected_len) != 0)) { return false; } return true; } static bool TestASN1() { static const uint8_t kData1[] = {0x30, 2, 1, 2, 0, 0}; static const uint8_t kData2[] = {0x30, 3, 1, 2}; /* truncated */ static const uint8_t kData3[] = {0x30, 0x81, 1, 1}; /* should be short len */ static const uint8_t kData4[] = {0x30, 0x82, 0, 1, 1}; /* zero padded. */ if (!ReadASN1(true, kData1, sizeof(kData1), 4, 100) || !ReadASN1(false, kData2, sizeof(kData2), 0, 100) || !ReadASN1(false, kData3, sizeof(kData3), 0, 100) || !ReadASN1(false, kData4, sizeof(kData4), 0, 100)) { return false; } static const size_t kLargePayloadLen = 8000; static const uint8_t kLargePrefix[] = {0x30, 0x82, kLargePayloadLen >> 8, kLargePayloadLen & 0xff}; ScopedBytes large(reinterpret_cast( OPENSSL_malloc(sizeof(kLargePrefix) + kLargePayloadLen))); if (!large) { return false; } memset(large.get() + sizeof(kLargePrefix), 0, kLargePayloadLen); memcpy(large.get(), kLargePrefix, sizeof(kLargePrefix)); if (!ReadASN1(true, large.get(), sizeof(kLargePrefix) + kLargePayloadLen, sizeof(kLargePrefix) + kLargePayloadLen, kLargePayloadLen * 2)) { fprintf(stderr, "Large payload test failed.\n"); return false; } if (!ReadASN1(false, large.get(), sizeof(kLargePrefix) + kLargePayloadLen, sizeof(kLargePrefix) + kLargePayloadLen, kLargePayloadLen - 1)) { fprintf(stderr, "max_len test failed.\n"); return false; } static const uint8_t kIndefPrefix[] = {0x30, 0x80}; memcpy(large.get(), kIndefPrefix, sizeof(kIndefPrefix)); if (!ReadASN1(true, large.get(), sizeof(kLargePrefix) + kLargePayloadLen, sizeof(kLargePrefix) + kLargePayloadLen, kLargePayloadLen*2)) { fprintf(stderr, "indefinite length test failed.\n"); return false; } if (!ReadASN1(false, large.get(), sizeof(kLargePrefix) + kLargePayloadLen, sizeof(kLargePrefix) + kLargePayloadLen, kLargePayloadLen-1)) { fprintf(stderr, "indefinite length, max_len test failed.\n"); return false; } return true; } } // namespace bssl int main(void) { CRYPTO_library_init(); #if defined(OPENSSL_WINDOWS) // Initialize Winsock. WORD wsa_version = MAKEWORD(2, 2); WSADATA wsa_data; int wsa_err = WSAStartup(wsa_version, &wsa_data); if (wsa_err != 0) { fprintf(stderr, "WSAStartup failed: %d\n", wsa_err); return 1; } if (wsa_data.wVersion != wsa_version) { fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion); return 1; } #endif if (!bssl::TestSocketConnect() || !bssl::TestPrintf() || !bssl::TestZeroCopyBioPairs() || !bssl::TestASN1()) { return 1; } printf("PASS\n"); return 0; }