// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runner import ( "crypto" "crypto/ecdsa" "crypto/elliptic" "crypto/md5" "crypto/rand" "crypto/rsa" "crypto/sha1" "crypto/subtle" "crypto/x509" "encoding/asn1" "errors" "fmt" "io" "math/big" "./curve25519" ) var errClientKeyExchange = errors.New("tls: invalid ClientKeyExchange message") var errServerKeyExchange = errors.New("tls: invalid ServerKeyExchange message") // rsaKeyAgreement implements the standard TLS key agreement where the client // encrypts the pre-master secret to the server's public key. type rsaKeyAgreement struct { version uint16 clientVersion uint16 exportKey *rsa.PrivateKey } func (ka *rsaKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) { // Save the client version for comparison later. ka.clientVersion = versionToWire(clientHello.vers, clientHello.isDTLS) if !config.Bugs.RSAEphemeralKey { return nil, nil } // Generate an ephemeral RSA key to use instead of the real // one, as in RSA_EXPORT. key, err := rsa.GenerateKey(config.rand(), 512) if err != nil { return nil, err } ka.exportKey = key modulus := key.N.Bytes() exponent := big.NewInt(int64(key.E)).Bytes() serverRSAParams := make([]byte, 0, 2+len(modulus)+2+len(exponent)) serverRSAParams = append(serverRSAParams, byte(len(modulus)>>8), byte(len(modulus))) serverRSAParams = append(serverRSAParams, modulus...) serverRSAParams = append(serverRSAParams, byte(len(exponent)>>8), byte(len(exponent))) serverRSAParams = append(serverRSAParams, exponent...) var tls12HashId uint8 if ka.version >= VersionTLS12 { if tls12HashId, err = pickTLS12HashForSignature(signatureRSA, clientHello.signatureAndHashes, config.signatureAndHashesForServer()); err != nil { return nil, err } } digest, hashFunc, err := hashForServerKeyExchange(signatureRSA, tls12HashId, ka.version, clientHello.random, hello.random, serverRSAParams) if err != nil { return nil, err } privKey, ok := cert.PrivateKey.(*rsa.PrivateKey) if !ok { return nil, errors.New("RSA ephemeral key requires an RSA server private key") } sig, err := rsa.SignPKCS1v15(config.rand(), privKey, hashFunc, digest) if err != nil { return nil, errors.New("failed to sign RSA parameters: " + err.Error()) } skx := new(serverKeyExchangeMsg) sigAndHashLen := 0 if ka.version >= VersionTLS12 { sigAndHashLen = 2 } skx.key = make([]byte, len(serverRSAParams)+sigAndHashLen+2+len(sig)) copy(skx.key, serverRSAParams) k := skx.key[len(serverRSAParams):] if ka.version >= VersionTLS12 { k[0] = tls12HashId k[1] = signatureRSA k = k[2:] } k[0] = byte(len(sig) >> 8) k[1] = byte(len(sig)) copy(k[2:], sig) return skx, nil } func (ka *rsaKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { preMasterSecret := make([]byte, 48) _, err := io.ReadFull(config.rand(), preMasterSecret[2:]) if err != nil { return nil, err } if len(ckx.ciphertext) < 2 { return nil, errClientKeyExchange } ciphertext := ckx.ciphertext if version != VersionSSL30 { ciphertextLen := int(ckx.ciphertext[0])<<8 | int(ckx.ciphertext[1]) if ciphertextLen != len(ckx.ciphertext)-2 { return nil, errClientKeyExchange } ciphertext = ckx.ciphertext[2:] } key := cert.PrivateKey.(*rsa.PrivateKey) if ka.exportKey != nil { key = ka.exportKey } err = rsa.DecryptPKCS1v15SessionKey(config.rand(), key, ciphertext, preMasterSecret) if err != nil { return nil, err } // This check should be done in constant-time, but this is a testing // implementation. See the discussion at the end of section 7.4.7.1 of // RFC 4346. vers := uint16(preMasterSecret[0])<<8 | uint16(preMasterSecret[1]) if ka.clientVersion != vers { return nil, errors.New("tls: invalid version in RSA premaster") } return preMasterSecret, nil } func (ka *rsaKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error { return errors.New("tls: unexpected ServerKeyExchange") } func (ka *rsaKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { bad := config.Bugs.BadRSAClientKeyExchange preMasterSecret := make([]byte, 48) vers := clientHello.vers if bad == RSABadValueWrongVersion { vers ^= 1 } vers = versionToWire(vers, clientHello.isDTLS) preMasterSecret[0] = byte(vers >> 8) preMasterSecret[1] = byte(vers) _, err := io.ReadFull(config.rand(), preMasterSecret[2:]) if err != nil { return nil, nil, err } sentPreMasterSecret := preMasterSecret if bad == RSABadValueTooLong { sentPreMasterSecret = make([]byte, len(sentPreMasterSecret)+1) copy(sentPreMasterSecret, preMasterSecret) } else if bad == RSABadValueTooShort { sentPreMasterSecret = sentPreMasterSecret[:len(sentPreMasterSecret)-1] } encrypted, err := rsa.EncryptPKCS1v15(config.rand(), cert.PublicKey.(*rsa.PublicKey), sentPreMasterSecret) if err != nil { return nil, nil, err } if bad == RSABadValueCorrupt { encrypted[len(encrypted)-1] ^= 1 // Clear the high byte to ensure |encrypted| is still below the RSA modulus. encrypted[0] = 0 } ckx := new(clientKeyExchangeMsg) if clientHello.vers != VersionSSL30 { ckx.ciphertext = make([]byte, len(encrypted)+2) ckx.ciphertext[0] = byte(len(encrypted) >> 8) ckx.ciphertext[1] = byte(len(encrypted)) copy(ckx.ciphertext[2:], encrypted) } else { ckx.ciphertext = encrypted } return preMasterSecret, ckx, nil } // sha1Hash calculates a SHA1 hash over the given byte slices. func sha1Hash(slices [][]byte) []byte { hsha1 := sha1.New() for _, slice := range slices { hsha1.Write(slice) } return hsha1.Sum(nil) } // md5SHA1Hash implements TLS 1.0's hybrid hash function which consists of the // concatenation of an MD5 and SHA1 hash. func md5SHA1Hash(slices [][]byte) []byte { md5sha1 := make([]byte, md5.Size+sha1.Size) hmd5 := md5.New() for _, slice := range slices { hmd5.Write(slice) } copy(md5sha1, hmd5.Sum(nil)) copy(md5sha1[md5.Size:], sha1Hash(slices)) return md5sha1 } // hashForServerKeyExchange hashes the given slices and returns their digest // and the identifier of the hash function used. The hashFunc argument is only // used for >= TLS 1.2 and precisely identifies the hash function to use. func hashForServerKeyExchange(sigType, hashFunc uint8, version uint16, slices ...[]byte) ([]byte, crypto.Hash, error) { if version >= VersionTLS12 { hash, err := lookupTLSHash(hashFunc) if err != nil { return nil, 0, err } h := hash.New() for _, slice := range slices { h.Write(slice) } return h.Sum(nil), hash, nil } if sigType == signatureECDSA { return sha1Hash(slices), crypto.SHA1, nil } return md5SHA1Hash(slices), crypto.MD5SHA1, nil } // pickTLS12HashForSignature returns a TLS 1.2 hash identifier for signing a // ServerKeyExchange given the signature type being used and the client's // advertized list of supported signature and hash combinations. func pickTLS12HashForSignature(sigType uint8, clientList, serverList []signatureAndHash) (uint8, error) { if len(clientList) == 0 { // If the client didn't specify any signature_algorithms // extension then we can assume that it supports SHA1. See // http://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 return hashSHA1, nil } for _, sigAndHash := range clientList { if sigAndHash.signature != sigType { continue } if isSupportedSignatureAndHash(sigAndHash, serverList) { return sigAndHash.hash, nil } } return 0, errors.New("tls: client doesn't support any common hash functions") } // A ecdhCurve is an instance of ECDH-style key agreement for TLS. type ecdhCurve interface { // generateKeypair generates a keypair using rand. It returns the // encoded public key. generateKeypair(rand io.Reader) (publicKey []byte, err error) // computeSecret performs a key exchange against peerKey and returns // the resulting shared secret. computeSecret(peerKey []byte) (preMasterSecret []byte, err error) } // ellipticECDHCurve implements ecdhCurve with an elliptic.Curve. type ellipticECDHCurve struct { curve elliptic.Curve privateKey []byte } func (e *ellipticECDHCurve) generateKeypair(rand io.Reader) (publicKey []byte, err error) { var x, y *big.Int e.privateKey, x, y, err = elliptic.GenerateKey(e.curve, rand) if err != nil { return nil, err } return elliptic.Marshal(e.curve, x, y), nil } func (e *ellipticECDHCurve) computeSecret(peerKey []byte) (preMasterSecret []byte, err error) { x, y := elliptic.Unmarshal(e.curve, peerKey) if x == nil { return nil, errors.New("tls: invalid peer key") } x, _ = e.curve.ScalarMult(x, y, e.privateKey) preMasterSecret = make([]byte, (e.curve.Params().BitSize+7)>>3) xBytes := x.Bytes() copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes) return preMasterSecret, nil } // x25519ECDHCurve implements ecdhCurve with X25519. type x25519ECDHCurve struct { privateKey [32]byte } func (e *x25519ECDHCurve) generateKeypair(rand io.Reader) (publicKey []byte, err error) { _, err = io.ReadFull(rand, e.privateKey[:]) if err != nil { return } var out [32]byte curve25519.ScalarBaseMult(&out, &e.privateKey) return out[:], nil } func (e *x25519ECDHCurve) computeSecret(peerKey []byte) (preMasterSecret []byte, err error) { if len(peerKey) != 32 { return nil, errors.New("tls: invalid peer key") } var out, peerKeyCopy [32]byte copy(peerKeyCopy[:], peerKey) curve25519.ScalarMult(&out, &e.privateKey, &peerKeyCopy) // Per RFC 7748, reject the all-zero value in constant time. var zeros [32]byte if subtle.ConstantTimeCompare(zeros[:], out[:]) == 1 { return nil, errors.New("tls: X25519 value with wrong order") } return out[:], nil } func curveForCurveID(id CurveID) (ecdhCurve, bool) { switch id { case CurveP224: return &ellipticECDHCurve{curve: elliptic.P224()}, true case CurveP256: return &ellipticECDHCurve{curve: elliptic.P256()}, true case CurveP384: return &ellipticECDHCurve{curve: elliptic.P384()}, true case CurveP521: return &ellipticECDHCurve{curve: elliptic.P521()}, true case CurveX25519: return &x25519ECDHCurve{}, true default: return nil, false } } // keyAgreementAuthentication is a helper interface that specifies how // to authenticate the ServerKeyExchange parameters. type keyAgreementAuthentication interface { signParameters(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, params []byte) (*serverKeyExchangeMsg, error) verifyParameters(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, params []byte, sig []byte) error } // nilKeyAgreementAuthentication does not authenticate the key // agreement parameters. type nilKeyAgreementAuthentication struct{} func (ka *nilKeyAgreementAuthentication) signParameters(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, params []byte) (*serverKeyExchangeMsg, error) { skx := new(serverKeyExchangeMsg) skx.key = params return skx, nil } func (ka *nilKeyAgreementAuthentication) verifyParameters(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, params []byte, sig []byte) error { return nil } func maybeCorruptECDSAValue(n *big.Int, typeOfCorruption BadValue, limit *big.Int) *big.Int { switch typeOfCorruption { case BadValueNone: return n case BadValueNegative: return new(big.Int).Neg(n) case BadValueZero: return big.NewInt(0) case BadValueLimit: return limit case BadValueLarge: bad := new(big.Int).Set(limit) return bad.Lsh(bad, 20) default: panic("unknown BadValue type") } } // signedKeyAgreement signs the ServerKeyExchange parameters with the // server's private key. type signedKeyAgreement struct { version uint16 sigType uint8 } func (ka *signedKeyAgreement) signParameters(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, params []byte) (*serverKeyExchangeMsg, error) { var tls12HashId uint8 var err error if ka.version >= VersionTLS12 { if tls12HashId, err = pickTLS12HashForSignature(ka.sigType, clientHello.signatureAndHashes, config.signatureAndHashesForServer()); err != nil { return nil, err } } digest, hashFunc, err := hashForServerKeyExchange(ka.sigType, tls12HashId, ka.version, clientHello.random, hello.random, params) if err != nil { return nil, err } if config.Bugs.InvalidSKXSignature { digest[0] ^= 0x80 } var sig []byte switch ka.sigType { case signatureECDSA: privKey, ok := cert.PrivateKey.(*ecdsa.PrivateKey) if !ok { return nil, errors.New("ECDHE ECDSA requires an ECDSA server private key") } r, s, err := ecdsa.Sign(config.rand(), privKey, digest) if err != nil { return nil, errors.New("failed to sign ECDHE parameters: " + err.Error()) } order := privKey.Curve.Params().N r = maybeCorruptECDSAValue(r, config.Bugs.BadECDSAR, order) s = maybeCorruptECDSAValue(s, config.Bugs.BadECDSAS, order) sig, err = asn1.Marshal(ecdsaSignature{r, s}) case signatureRSA: privKey, ok := cert.PrivateKey.(*rsa.PrivateKey) if !ok { return nil, errors.New("ECDHE RSA requires a RSA server private key") } sig, err = rsa.SignPKCS1v15(config.rand(), privKey, hashFunc, digest) if err != nil { return nil, errors.New("failed to sign ECDHE parameters: " + err.Error()) } default: return nil, errors.New("unknown ECDHE signature algorithm") } skx := new(serverKeyExchangeMsg) if config.Bugs.UnauthenticatedECDH { skx.key = params } else { sigAndHashLen := 0 if ka.version >= VersionTLS12 { sigAndHashLen = 2 } skx.key = make([]byte, len(params)+sigAndHashLen+2+len(sig)) copy(skx.key, params) k := skx.key[len(params):] if ka.version >= VersionTLS12 { k[0] = tls12HashId k[1] = ka.sigType k = k[2:] } k[0] = byte(len(sig) >> 8) k[1] = byte(len(sig)) copy(k[2:], sig) } return skx, nil } func (ka *signedKeyAgreement) verifyParameters(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, params []byte, sig []byte) error { if len(sig) < 2 { return errServerKeyExchange } var tls12HashId uint8 if ka.version >= VersionTLS12 { // handle SignatureAndHashAlgorithm var sigAndHash []uint8 sigAndHash, sig = sig[:2], sig[2:] if sigAndHash[1] != ka.sigType { return errServerKeyExchange } tls12HashId = sigAndHash[0] if len(sig) < 2 { return errServerKeyExchange } if !isSupportedSignatureAndHash(signatureAndHash{ka.sigType, tls12HashId}, config.signatureAndHashesForClient()) { return errors.New("tls: unsupported hash function for ServerKeyExchange") } } sigLen := int(sig[0])<<8 | int(sig[1]) if sigLen+2 != len(sig) { return errServerKeyExchange } sig = sig[2:] digest, hashFunc, err := hashForServerKeyExchange(ka.sigType, tls12HashId, ka.version, clientHello.random, serverHello.random, params) if err != nil { return err } switch ka.sigType { case signatureECDSA: pubKey, ok := cert.PublicKey.(*ecdsa.PublicKey) if !ok { return errors.New("ECDHE ECDSA requires a ECDSA server public key") } ecdsaSig := new(ecdsaSignature) if _, err := asn1.Unmarshal(sig, ecdsaSig); err != nil { return err } if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 { return errors.New("ECDSA signature contained zero or negative values") } if !ecdsa.Verify(pubKey, digest, ecdsaSig.R, ecdsaSig.S) { return errors.New("ECDSA verification failure") } case signatureRSA: pubKey, ok := cert.PublicKey.(*rsa.PublicKey) if !ok { return errors.New("ECDHE RSA requires a RSA server public key") } if err := rsa.VerifyPKCS1v15(pubKey, hashFunc, digest, sig); err != nil { return err } default: return errors.New("unknown ECDHE signature algorithm") } return nil } // ecdheRSAKeyAgreement implements a TLS key agreement where the server // generates a ephemeral EC public/private key pair and signs it. The // pre-master secret is then calculated using ECDH. The signature may // either be ECDSA or RSA. type ecdheKeyAgreement struct { auth keyAgreementAuthentication curve ecdhCurve peerKey []byte } func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) { var curveid CurveID preferredCurves := config.curvePreferences() NextCandidate: for _, candidate := range preferredCurves { for _, c := range clientHello.supportedCurves { if candidate == c { curveid = c break NextCandidate } } } if curveid == 0 { return nil, errors.New("tls: no supported elliptic curves offered") } var ok bool if ka.curve, ok = curveForCurveID(curveid); !ok { return nil, errors.New("tls: preferredCurves includes unsupported curve") } publicKey, err := ka.curve.generateKeypair(config.rand()) if err != nil { return nil, err } // http://tools.ietf.org/html/rfc4492#section-5.4 serverECDHParams := make([]byte, 1+2+1+len(publicKey)) serverECDHParams[0] = 3 // named curve serverECDHParams[1] = byte(curveid >> 8) serverECDHParams[2] = byte(curveid) if config.Bugs.InvalidSKXCurve { serverECDHParams[2] ^= 0xff } serverECDHParams[3] = byte(len(publicKey)) copy(serverECDHParams[4:], publicKey) return ka.auth.signParameters(config, cert, clientHello, hello, serverECDHParams) } func (ka *ecdheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { if len(ckx.ciphertext) == 0 || int(ckx.ciphertext[0]) != len(ckx.ciphertext)-1 { return nil, errClientKeyExchange } return ka.curve.computeSecret(ckx.ciphertext[1:]) } func (ka *ecdheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error { if len(skx.key) < 4 { return errServerKeyExchange } if skx.key[0] != 3 { // named curve return errors.New("tls: server selected unsupported curve") } curveid := CurveID(skx.key[1])<<8 | CurveID(skx.key[2]) var ok bool if ka.curve, ok = curveForCurveID(curveid); !ok { return errors.New("tls: server selected unsupported curve") } publicLen := int(skx.key[3]) if publicLen+4 > len(skx.key) { return errServerKeyExchange } // Save the peer key for later. ka.peerKey = skx.key[4 : 4+publicLen] // Check the signature. serverECDHParams := skx.key[:4+publicLen] sig := skx.key[4+publicLen:] return ka.auth.verifyParameters(config, clientHello, serverHello, cert, serverECDHParams, sig) } func (ka *ecdheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { if ka.curve == nil { return nil, nil, errors.New("missing ServerKeyExchange message") } publicKey, err := ka.curve.generateKeypair(config.rand()) if err != nil { return nil, nil, err } preMasterSecret, err := ka.curve.computeSecret(ka.peerKey) if err != nil { return nil, nil, err } ckx := new(clientKeyExchangeMsg) ckx.ciphertext = make([]byte, 1+len(publicKey)) ckx.ciphertext[0] = byte(len(publicKey)) copy(ckx.ciphertext[1:], publicKey) return preMasterSecret, ckx, nil } // dheRSAKeyAgreement implements a TLS key agreement where the server generates // an ephemeral Diffie-Hellman public/private key pair and signs it. The // pre-master secret is then calculated using Diffie-Hellman. type dheKeyAgreement struct { auth keyAgreementAuthentication p, g *big.Int yTheirs *big.Int xOurs *big.Int } func (ka *dheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) { var q *big.Int if p := config.Bugs.DHGroupPrime; p != nil { ka.p = p ka.g = big.NewInt(2) q = p } else { // 2048-bit MODP Group with 256-bit Prime Order Subgroup (RFC // 5114, Section 2.3) ka.p, _ = new(big.Int).SetString("87A8E61DB4B6663CFFBBD19C651959998CEEF608660DD0F25D2CEED4435E3B00E00DF8F1D61957D4FAF7DF4561B2AA3016C3D91134096FAA3BF4296D830E9A7C209E0C6497517ABD5A8A9D306BCF67ED91F9E6725B4758C022E0B1EF4275BF7B6C5BFC11D45F9088B941F54EB1E59BB8BC39A0BF12307F5C4FDB70C581B23F76B63ACAE1CAA6B7902D52526735488A0EF13C6D9A51BFA4AB3AD8347796524D8EF6A167B5A41825D967E144E5140564251CCACB83E6B486F6B3CA3F7971506026C0B857F689962856DED4010ABD0BE621C3A3960A54E710C375F26375D7014103A4B54330C198AF126116D2276E11715F693877FAD7EF09CADB094AE91E1A1597", 16) ka.g, _ = new(big.Int).SetString("3FB32C9B73134D0B2E77506660EDBD484CA7B18F21EF205407F4793A1A0BA12510DBC15077BE463FFF4FED4AAC0BB555BE3A6C1B0C6B47B1BC3773BF7E8C6F62901228F8C28CBB18A55AE31341000A650196F931C77A57F2DDF463E5E9EC144B777DE62AAAB8A8628AC376D282D6ED3864E67982428EBC831D14348F6F2F9193B5045AF2767164E1DFC967C1FB3F2E55A4BD1BFFE83B9C80D052B985D182EA0ADB2A3B7313D3FE14C8484B1E052588B9B7D2BBD2DF016199ECD06E1557CD0915B3353BBB64E0EC377FD028370DF92B52C7891428CDC67EB6184B523D1DB246C32F63078490F00EF8D647D148D47954515E2327CFEF98C582664B4C0F6CC41659", 16) q, _ = new(big.Int).SetString("8CF83642A709A097B447997640129DA299B1A47D1EB3750BA308B0FE64F5FBD3", 16) } var err error ka.xOurs, err = rand.Int(config.rand(), q) if err != nil { return nil, err } yOurs := new(big.Int).Exp(ka.g, ka.xOurs, ka.p) // http://tools.ietf.org/html/rfc5246#section-7.4.3 pBytes := ka.p.Bytes() gBytes := ka.g.Bytes() yBytes := yOurs.Bytes() serverDHParams := make([]byte, 0, 2+len(pBytes)+2+len(gBytes)+2+len(yBytes)) serverDHParams = append(serverDHParams, byte(len(pBytes)>>8), byte(len(pBytes))) serverDHParams = append(serverDHParams, pBytes...) serverDHParams = append(serverDHParams, byte(len(gBytes)>>8), byte(len(gBytes))) serverDHParams = append(serverDHParams, gBytes...) serverDHParams = append(serverDHParams, byte(len(yBytes)>>8), byte(len(yBytes))) serverDHParams = append(serverDHParams, yBytes...) return ka.auth.signParameters(config, cert, clientHello, hello, serverDHParams) } func (ka *dheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { if len(ckx.ciphertext) < 2 { return nil, errClientKeyExchange } yLen := (int(ckx.ciphertext[0]) << 8) | int(ckx.ciphertext[1]) if yLen != len(ckx.ciphertext)-2 { return nil, errClientKeyExchange } yTheirs := new(big.Int).SetBytes(ckx.ciphertext[2:]) if yTheirs.Sign() <= 0 || yTheirs.Cmp(ka.p) >= 0 { return nil, errClientKeyExchange } return new(big.Int).Exp(yTheirs, ka.xOurs, ka.p).Bytes(), nil } func (ka *dheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error { // Read dh_p k := skx.key if len(k) < 2 { return errServerKeyExchange } pLen := (int(k[0]) << 8) | int(k[1]) k = k[2:] if len(k) < pLen { return errServerKeyExchange } ka.p = new(big.Int).SetBytes(k[:pLen]) k = k[pLen:] // Read dh_g if len(k) < 2 { return errServerKeyExchange } gLen := (int(k[0]) << 8) | int(k[1]) k = k[2:] if len(k) < gLen { return errServerKeyExchange } ka.g = new(big.Int).SetBytes(k[:gLen]) k = k[gLen:] // Read dh_Ys if len(k) < 2 { return errServerKeyExchange } yLen := (int(k[0]) << 8) | int(k[1]) k = k[2:] if len(k) < yLen { return errServerKeyExchange } ka.yTheirs = new(big.Int).SetBytes(k[:yLen]) k = k[yLen:] if ka.yTheirs.Sign() <= 0 || ka.yTheirs.Cmp(ka.p) >= 0 { return errServerKeyExchange } if l := config.Bugs.RequireDHPublicValueLen; l != 0 && l != yLen { return fmt.Errorf("RequireDHPublicValueLen set to %d, but server's public value was %d bytes on the wire and %d bytes if minimal", l, yLen, (ka.yTheirs.BitLen()+7)/8) } sig := k serverDHParams := skx.key[:len(skx.key)-len(sig)] return ka.auth.verifyParameters(config, clientHello, serverHello, cert, serverDHParams, sig) } func (ka *dheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { if ka.p == nil || ka.g == nil || ka.yTheirs == nil { return nil, nil, errors.New("missing ServerKeyExchange message") } xOurs, err := rand.Int(config.rand(), ka.p) if err != nil { return nil, nil, err } preMasterSecret := new(big.Int).Exp(ka.yTheirs, xOurs, ka.p).Bytes() yOurs := new(big.Int).Exp(ka.g, xOurs, ka.p) yBytes := yOurs.Bytes() ckx := new(clientKeyExchangeMsg) ckx.ciphertext = make([]byte, 2+len(yBytes)) ckx.ciphertext[0] = byte(len(yBytes) >> 8) ckx.ciphertext[1] = byte(len(yBytes)) copy(ckx.ciphertext[2:], yBytes) return preMasterSecret, ckx, nil } // nilKeyAgreement is a fake key agreement used to implement the plain PSK key // exchange. type nilKeyAgreement struct{} func (ka *nilKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) { return nil, nil } func (ka *nilKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { if len(ckx.ciphertext) != 0 { return nil, errClientKeyExchange } // Although in plain PSK, otherSecret is all zeros, the base key // agreement does not access to the length of the pre-shared // key. pskKeyAgreement instead interprets nil to mean to use all zeros // of the appropriate length. return nil, nil } func (ka *nilKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error { if len(skx.key) != 0 { return errServerKeyExchange } return nil } func (ka *nilKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { // Although in plain PSK, otherSecret is all zeros, the base key // agreement does not access to the length of the pre-shared // key. pskKeyAgreement instead interprets nil to mean to use all zeros // of the appropriate length. return nil, &clientKeyExchangeMsg{}, nil } // makePSKPremaster formats a PSK pre-master secret based on otherSecret from // the base key exchange and psk. func makePSKPremaster(otherSecret, psk []byte) []byte { out := make([]byte, 0, 2+len(otherSecret)+2+len(psk)) out = append(out, byte(len(otherSecret)>>8), byte(len(otherSecret))) out = append(out, otherSecret...) out = append(out, byte(len(psk)>>8), byte(len(psk))) out = append(out, psk...) return out } // pskKeyAgreement implements the PSK key agreement. type pskKeyAgreement struct { base keyAgreement identityHint string } func (ka *pskKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) { // Assemble the identity hint. bytes := make([]byte, 2+len(config.PreSharedKeyIdentity)) bytes[0] = byte(len(config.PreSharedKeyIdentity) >> 8) bytes[1] = byte(len(config.PreSharedKeyIdentity)) copy(bytes[2:], []byte(config.PreSharedKeyIdentity)) // If there is one, append the base key agreement's // ServerKeyExchange. baseSkx, err := ka.base.generateServerKeyExchange(config, cert, clientHello, hello) if err != nil { return nil, err } if baseSkx != nil { bytes = append(bytes, baseSkx.key...) } else if config.PreSharedKeyIdentity == "" { // ServerKeyExchange is optional if the identity hint is empty // and there would otherwise be no ServerKeyExchange. return nil, nil } skx := new(serverKeyExchangeMsg) skx.key = bytes return skx, nil } func (ka *pskKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { // First, process the PSK identity. if len(ckx.ciphertext) < 2 { return nil, errClientKeyExchange } identityLen := (int(ckx.ciphertext[0]) << 8) | int(ckx.ciphertext[1]) if 2+identityLen > len(ckx.ciphertext) { return nil, errClientKeyExchange } identity := string(ckx.ciphertext[2 : 2+identityLen]) if identity != config.PreSharedKeyIdentity { return nil, errors.New("tls: unexpected identity") } if config.PreSharedKey == nil { return nil, errors.New("tls: pre-shared key not configured") } // Process the remainder of the ClientKeyExchange to compute the base // pre-master secret. newCkx := new(clientKeyExchangeMsg) newCkx.ciphertext = ckx.ciphertext[2+identityLen:] otherSecret, err := ka.base.processClientKeyExchange(config, cert, newCkx, version) if err != nil { return nil, err } if otherSecret == nil { // Special-case for the plain PSK key exchanges. otherSecret = make([]byte, len(config.PreSharedKey)) } return makePSKPremaster(otherSecret, config.PreSharedKey), nil } func (ka *pskKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error { if len(skx.key) < 2 { return errServerKeyExchange } identityLen := (int(skx.key[0]) << 8) | int(skx.key[1]) if 2+identityLen > len(skx.key) { return errServerKeyExchange } ka.identityHint = string(skx.key[2 : 2+identityLen]) // Process the remainder of the ServerKeyExchange. newSkx := new(serverKeyExchangeMsg) newSkx.key = skx.key[2+identityLen:] return ka.base.processServerKeyExchange(config, clientHello, serverHello, cert, newSkx) } func (ka *pskKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { // The server only sends an identity hint but, for purposes of // test code, the server always sends the hint and it is // required to match. if ka.identityHint != config.PreSharedKeyIdentity { return nil, nil, errors.New("tls: unexpected identity") } // Serialize the identity. bytes := make([]byte, 2+len(config.PreSharedKeyIdentity)) bytes[0] = byte(len(config.PreSharedKeyIdentity) >> 8) bytes[1] = byte(len(config.PreSharedKeyIdentity)) copy(bytes[2:], []byte(config.PreSharedKeyIdentity)) // Append the base key exchange's ClientKeyExchange. otherSecret, baseCkx, err := ka.base.generateClientKeyExchange(config, clientHello, cert) if err != nil { return nil, nil, err } ckx := new(clientKeyExchangeMsg) ckx.ciphertext = append(bytes, baseCkx.ciphertext...) if config.PreSharedKey == nil { return nil, nil, errors.New("tls: pre-shared key not configured") } if otherSecret == nil { otherSecret = make([]byte, len(config.PreSharedKey)) } return makePSKPremaster(otherSecret, config.PreSharedKey), ckx, nil }