#!/usr/bin/env perl $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; ($arg1,$arg2,$arg3,$arg4)=$win64?("%rcx","%rdx","%r8", "%r9") : # Win64 order ("%rdi","%rsi","%rdx","%rcx"); # Unix order print<<___; .text .globl OPENSSL_ia32_cpuid .type OPENSSL_ia32_cpuid,\@function,1 .hidden OPENSSL_ia32_cpuid .align 16 OPENSSL_ia32_cpuid: # On Windows, $arg1 is rcx, but that will be clobbered. So make Windows # use the same register as Unix. mov $arg1,%rdi mov %rbx,%r8 # save %rbx xor %eax,%eax mov %eax,8(%rdi) # clear 3rd word cpuid mov %eax,%r11d # max value for standard query level xor %eax,%eax cmp \$0x756e6547,%ebx # "Genu" setne %al mov %eax,%r9d cmp \$0x49656e69,%edx # "ineI" setne %al or %eax,%r9d cmp \$0x6c65746e,%ecx # "ntel" setne %al or %eax,%r9d # 0 indicates Intel CPU jz .Lintel cmp \$0x68747541,%ebx # "Auth" setne %al mov %eax,%r10d cmp \$0x69746E65,%edx # "enti" setne %al or %eax,%r10d cmp \$0x444D4163,%ecx # "cAMD" setne %al or %eax,%r10d # 0 indicates AMD CPU jnz .Lintel # AMD specific # See http://developer.amd.com/wordpress/media/2012/10/254811.pdf (1) mov \$0x80000000,%eax cpuid # Returns "The largest CPUID extended function input value supported by # the processor implementation." in EAX. cmp \$0x80000001,%eax jb .Lintel mov %eax,%r10d mov \$0x80000001,%eax cpuid # Returns feature bits in ECX. See page 20 of [1]. # TODO(fork): I think this should be a MOV. or %ecx,%r9d and \$0x00000801,%r9d # isolate AMD XOP bit, 1<<11 cmp \$0x80000008,%r10d jb .Lintel mov \$0x80000008,%eax cpuid # Returns APIC ID and number of cores in ECX. See page 27 of [1]. movzb %cl,%r10 # number of cores - 1 inc %r10 # number of cores mov \$1,%eax cpuid # See page 13 of [1]. bt \$28,%edx # test hyper-threading bit jnc .Lgeneric shr \$16,%ebx # number of logical processors cmp %r10b,%bl ja .Lgeneric and \$0xefffffff,%edx # Clear hyper-threading bit. jmp .Lgeneric .Lintel: cmp \$4,%r11d mov \$-1,%r10d jb .Lnocacheinfo mov \$4,%eax mov \$0,%ecx # query L1D cpuid mov %eax,%r10d shr \$14,%r10d and \$0xfff,%r10d # number of cores -1 per L1D cmp \$7,%r11d jb .Lnocacheinfo mov \$7,%eax xor %ecx,%ecx cpuid mov %ebx,8(%rdi) .Lnocacheinfo: mov \$1,%eax cpuid # Gets feature information. See table 3-21 in the Intel manual. and \$0xbfefffff,%edx # force reserved bits to 0 cmp \$0,%r9d jne .Lnotintel or \$0x40000000,%edx # set reserved bit#30 on Intel CPUs and \$15,%ah cmp \$15,%ah # examine Family ID jne .Lnotintel or \$0x00100000,%edx # set reserved bit#20 to engage RC4_CHAR .Lnotintel: bt \$28,%edx # test hyper-threading bit jnc .Lgeneric and \$0xefffffff,%edx # ~(1<<28) - clear hyper-threading. cmp \$0,%r10d je .Lgeneric or \$0x10000000,%edx # 1<<28 shr \$16,%ebx cmp \$1,%bl # see if cache is shared ja .Lgeneric and \$0xefffffff,%edx # ~(1<<28) .Lgeneric: and \$0x00000800,%r9d # isolate AMD XOP flag and \$0xfffff7ff,%ecx or %ecx,%r9d # merge AMD XOP flag mov %edx,%r10d # %r9d:%r10d is copy of %ecx:%edx bt \$27,%r9d # check OSXSAVE bit jnc .Lclear_avx xor %ecx,%ecx # XCR0 .byte 0x0f,0x01,0xd0 # xgetbv and \$6,%eax # isolate XMM and YMM state support cmp \$6,%eax je .Ldone .Lclear_avx: mov \$0xefffe7ff,%eax # ~(1<<28|1<<12|1<<11) and %eax,%r9d # clear AVX, FMA and AMD XOP bits andl \$0xffffffdf,8(%rdi) # cleax AVX2, ~(1<<5) .Ldone: movl %r9d,4(%rdi) movl %r10d,0(%rdi) mov %r8,%rbx # restore %rbx ret .size OPENSSL_ia32_cpuid,.-OPENSSL_ia32_cpuid ___ close STDOUT; # flush