/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the Eric Young open source * license provided above. * * The binary polynomial arithmetic software is originally written by * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems * Laboratories. */ /* For BIGNUM format macros. */ #if !defined(__STDC_FORMAT_MACROS) #define __STDC_FORMAT_MACROS #endif #include #include #include #include #include #include #include #include #include "../crypto/test/scoped_types.h" #include "../crypto/test/test_util.h" // This program tests the BIGNUM implementation. It takes an optional -bc // argument to write a transcript compatible with the UNIX bc utility. // // TODO(davidben): Rather than generate random inputs and depend on bc to check // the results, most of these tests should use known answers. static const int num0 = 100; // number of tests static const int num1 = 50; // additional tests for some functions static const int num2 = 5; // number of tests for slow functions static bool test_add(FILE *fp); static bool test_sub(FILE *fp); static bool test_lshift1(FILE *fp); static bool test_lshift(FILE *fp, BN_CTX *ctx, ScopedBIGNUM a); static bool test_rshift1(FILE *fp); static bool test_rshift(FILE *fp, BN_CTX *ctx); static bool test_sqr(FILE *fp, BN_CTX *ctx); static bool test_mul(FILE *fp); static bool test_div(FILE *fp, BN_CTX *ctx); static int rand_neg(); static bool test_div_word(FILE *fp); static bool test_mont(FILE *fp, BN_CTX *ctx); static bool test_mod(FILE *fp, BN_CTX *ctx); static bool test_mod_mul(FILE *fp, BN_CTX *ctx); static bool test_mod_exp(FILE *fp, BN_CTX *ctx); static bool test_mod_exp_mont_consttime(FILE *fp, BN_CTX *ctx); static bool test_exp(FILE *fp, BN_CTX *ctx); static bool test_mod_sqrt(FILE *fp, BN_CTX *ctx); static bool test_exp_mod_zero(void); static bool test_small_prime(FILE *fp, BN_CTX *ctx); static bool test_mod_exp_mont5(FILE *fp, BN_CTX *ctx); static bool test_sqrt(FILE *fp, BN_CTX *ctx); static bool test_bn2bin_padded(BN_CTX *ctx); static bool test_dec2bn(BN_CTX *ctx); static bool test_hex2bn(BN_CTX *ctx); static bool test_asc2bn(BN_CTX *ctx); static bool test_mpi(); static bool test_rand(); static bool test_asn1(); static const uint8_t kSample[] = "\xC6\x4F\x43\x04\x2A\xEA\xCA\x6E\x58\x36\x80\x5B\xE8\xC9" "\x9B\x04\x5D\x48\x36\xC2\xFD\x16\xC9\x64\xF0"; // A wrapper around puts that takes its arguments in the same order as our *_fp // functions. static void puts_fp(FILE *out, const char *m) { if (out != nullptr) { fputs(m, out); } } static void flush_fp(FILE *out) { if (out != nullptr) { fflush(out); } } static void message(FILE *out, const char *m) { puts_fp(out, "print \"test "); puts_fp(out, m); puts_fp(out, "\\n\"\n"); } int main(int argc, char *argv[]) { CRYPTO_library_init(); ScopedFILE bc_file; argc--; argv++; while (argc >= 1) { if (strcmp(*argv, "-bc") == 0) { if (argc < 2) { fprintf(stderr, "Missing parameter to -bc\n"); return 1; } bc_file.reset(fopen(argv[1], "w+")); if (!bc_file) { fprintf(stderr, "Failed to open %s: %s\n", argv[1], strerror(errno)); } argc--; argv++; } else { fprintf(stderr, "Unknown option: %s\n", argv[0]); return 1; } argc--; argv++; } ScopedBN_CTX ctx(BN_CTX_new()); if (!ctx) { return 1; } puts_fp(bc_file.get(), "/* This script, when run through the UNIX bc utility, " "should produce a sequence of zeros. */\n"); puts_fp(bc_file.get(), "/* tr a-f A-F < bn_test.out | sed s/BAsE/base/ | bc " "| grep -v 0 */\n"); puts_fp(bc_file.get(), "obase=16\nibase=16\n"); message(bc_file.get(), "BN_add"); if (!test_add(bc_file.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_sub"); if (!test_sub(bc_file.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_lshift1"); if (!test_lshift1(bc_file.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_lshift (fixed)"); ScopedBIGNUM sample(BN_bin2bn(kSample, sizeof(kSample) - 1, NULL)); if (!sample) { return 1; } if (!test_lshift(bc_file.get(), ctx.get(), std::move(sample))) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_lshift"); if (!test_lshift(bc_file.get(), ctx.get(), nullptr)) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_rshift1"); if (!test_rshift1(bc_file.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_rshift"); if (!test_rshift(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_sqr"); if (!test_sqr(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_mul"); if (!test_mul(bc_file.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_div"); if (!test_div(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_div_word"); if (!test_div_word(bc_file.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_mod"); if (!test_mod(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_mod_mul"); if (!test_mod_mul(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_mont"); if (!test_mont(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_mod_exp"); if (!test_mod_exp(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_mod_exp_mont_consttime"); if (!test_mod_exp_mont_consttime(bc_file.get(), ctx.get()) || !test_mod_exp_mont5(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_exp"); if (!test_exp(bc_file.get(), ctx.get()) || !test_exp_mod_zero()) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_mod_sqrt"); if (!test_mod_sqrt(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "Small prime generation"); if (!test_small_prime(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_sqrt"); if (!test_sqrt(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); if (!test_bn2bin_padded(ctx.get()) || !test_dec2bn(ctx.get()) || !test_hex2bn(ctx.get()) || !test_asc2bn(ctx.get()) || !test_mpi() || !test_rand() || !test_asn1()) { return 1; } printf("PASS\n"); return 0; } static int HexToBIGNUM(ScopedBIGNUM *out, const char *in) { BIGNUM *raw = NULL; int ret = BN_hex2bn(&raw, in); out->reset(raw); return ret; } static bool test_add(FILE *fp) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); if (!a || !b || !c || !BN_rand(a.get(), 512, 0, 0)) { return false; } for (int i = 0; i < num0; i++) { if (!BN_rand(b.get(), 450 + i, 0, 0)) { return false; } a->neg = rand_neg(); b->neg = rand_neg(); if (!BN_add(c.get(), a.get(), b.get())) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " + "); BN_print_fp(fp, b.get()); puts_fp(fp, " - "); BN_print_fp(fp, c.get()); puts_fp(fp, "\n"); } a->neg = !a->neg; b->neg = !b->neg; if (!BN_add(c.get(), c.get(), b.get()) || !BN_add(c.get(), c.get(), a.get())) { return false; } if (!BN_is_zero(c.get())) { fprintf(stderr, "Add test failed!\n"); return false; } } return true; } static bool test_sub(FILE *fp) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); if (!a || !b || !c) { return false; } for (int i = 0; i < num0 + num1; i++) { if (i < num1) { if (!BN_rand(a.get(), 512, 0, 0) || !BN_copy(b.get(), a.get()) || !BN_set_bit(a.get(), i) || !BN_add_word(b.get(), i)) { return false; } } else { if (!BN_rand(b.get(), 400 + i - num1, 0, 0)) { return false; } a->neg = rand_neg(); b->neg = rand_neg(); } if (!BN_sub(c.get(), a.get(), b.get())) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " - "); BN_print_fp(fp, b.get()); puts_fp(fp, " - "); BN_print_fp(fp, c.get()); puts_fp(fp, "\n"); } if (!BN_add(c.get(), c.get(), b.get()) || !BN_sub(c.get(), c.get(), a.get())) { return false; } if (!BN_is_zero(c.get())) { fprintf(stderr, "Subtract test failed!\n"); return false; } } return true; } static bool test_div(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM e(BN_new()); if (!a || !b || !c || !d || !e) { return false; } if (!BN_one(a.get())) { return false; } BN_zero(b.get()); if (BN_div(d.get(), c.get(), a.get(), b.get(), ctx)) { fprintf(stderr, "Division by zero succeeded!\n"); return false; } ERR_clear_error(); for (int i = 0; i < num0 + num1; i++) { if (i < num1) { if (!BN_rand(a.get(), 400, 0, 0) || !BN_copy(b.get(), a.get()) || !BN_lshift(a.get(), a.get(), i) || !BN_add_word(a.get(), i)) { return false; } } else if (!BN_rand(b.get(), 50 + 3 * (i - num1), 0, 0)) { return false; } a->neg = rand_neg(); b->neg = rand_neg(); if (!BN_div(d.get(), c.get(), a.get(), b.get(), ctx)) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " / "); BN_print_fp(fp, b.get()); puts_fp(fp, " - "); BN_print_fp(fp, d.get()); puts_fp(fp, "\n"); BN_print_fp(fp, a.get()); puts_fp(fp, " % "); BN_print_fp(fp, b.get()); puts_fp(fp, " - "); BN_print_fp(fp, c.get()); puts_fp(fp, "\n"); } if (!BN_mul(e.get(), d.get(), b.get(), ctx) || !BN_add(d.get(), e.get(), c.get()) || !BN_sub(d.get(), d.get(), a.get())) { return false; } if (!BN_is_zero(d.get())) { fprintf(stderr, "Division test failed!\n"); return false; } } // Test that BN_div never gives negative zero in the quotient. if (!BN_set_word(a.get(), 1) || !BN_set_word(b.get(), 2)) { return false; } BN_set_negative(a.get(), 1); if (!BN_div(d.get(), c.get(), a.get(), b.get(), ctx)) { return false; } if (!BN_is_zero(d.get()) || BN_is_negative(d.get())) { fprintf(stderr, "Division test failed!\n"); return false; } // Test that BN_div never gives negative zero in the remainder. if (!BN_set_word(b.get(), 1)) { return false; } if (!BN_div(d.get(), c.get(), a.get(), b.get(), ctx)) { return false; } if (!BN_is_zero(c.get()) || BN_is_negative(c.get())) { fprintf(stderr, "Division test failed!\n"); return false; } return true; } static bool test_lshift1(FILE *fp) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); if (!a || !b || !c || !BN_rand(a.get(), 200, 0, 0)) { return false; } a->neg = rand_neg(); for (int i = 0; i < num0; i++) { if (!BN_lshift1(b.get(), a.get())) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " * 2"); puts_fp(fp, " - "); BN_print_fp(fp, b.get()); puts_fp(fp, "\n"); } if (!BN_add(c.get(), a.get(), a.get()) || !BN_sub(a.get(), b.get(), c.get())) { return false; } if (!BN_is_zero(a.get())) { fprintf(stderr, "Left shift one test failed!\n"); return false; } if (!BN_copy(a.get(), b.get())) { return false; } } return true; } static bool test_rshift(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM e(BN_new()); if (!a || !b || !c || !d || !e || !BN_one(c.get()) || !BN_rand(a.get(), 200, 0, 0)) { return false; } a->neg = rand_neg(); for (int i = 0; i < num0; i++) { if (!BN_rshift(b.get(), a.get(), i + 1) || !BN_add(c.get(), c.get(), c.get())) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " / "); BN_print_fp(fp, c.get()); puts_fp(fp, " - "); BN_print_fp(fp, b.get()); puts_fp(fp, "\n"); } if (!BN_div(d.get(), e.get(), a.get(), c.get(), ctx) || !BN_sub(d.get(), d.get(), b.get())) { return false; } if (!BN_is_zero(d.get())) { fprintf(stderr, "Right shift test failed!\n"); return false; } } return true; } static bool test_rshift1(FILE *fp) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); if (!a || !b || !c || !BN_rand(a.get(), 200, 0, 0)) { return false; } a->neg = rand_neg(); for (int i = 0; i < num0; i++) { if (!BN_rshift1(b.get(), a.get())) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " / 2"); puts_fp(fp, " - "); BN_print_fp(fp, b.get()); puts_fp(fp, "\n"); } if (!BN_sub(c.get(), a.get(), b.get()) || !BN_sub(c.get(), c.get(), b.get())) { return false; } if (!BN_is_zero(c.get()) && !BN_abs_is_word(c.get(), 1)) { fprintf(stderr, "Right shift one test failed!\n"); return false; } if (!BN_copy(a.get(), b.get())) { return false; } } return true; } static bool test_lshift(FILE *fp, BN_CTX *ctx, ScopedBIGNUM a) { if (!a) { a.reset(BN_new()); if (!a || !BN_rand(a.get(), 200, 0, 0)) { return false; } a->neg = rand_neg(); } ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); ScopedBIGNUM d(BN_new()); if (!b || !c || !d || !BN_one(c.get())) { return false; } for (int i = 0; i < num0; i++) { if (!BN_lshift(b.get(), a.get(), i + 1) || !BN_add(c.get(), c.get(), c.get())) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " * "); BN_print_fp(fp, c.get()); puts_fp(fp, " - "); BN_print_fp(fp, b.get()); puts_fp(fp, "\n"); } if (!BN_mul(d.get(), a.get(), c.get(), ctx) || !BN_sub(d.get(), d.get(), b.get())) { return false; } if (!BN_is_zero(d.get())) { fprintf(stderr, "Left shift test failed!\n"); fprintf(stderr, "a="); BN_print_fp(stderr, a.get()); fprintf(stderr, "\nb="); BN_print_fp(stderr, b.get()); fprintf(stderr, "\nc="); BN_print_fp(stderr, c.get()); fprintf(stderr, "\nd="); BN_print_fp(stderr, d.get()); fprintf(stderr, "\n"); return false; } } return true; } static bool test_mul(FILE *fp) { ScopedBN_CTX ctx(BN_CTX_new()); ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM e(BN_new()); if (!ctx || !a || !b || !c || !d || !e) { return false; } for (int i = 0; i < num0 + num1; i++) { if (i <= num1) { if (!BN_rand(a.get(), 100, 0, 0) || !BN_rand(b.get(), 100, 0, 0)) { return false; } } else if (!BN_rand(b.get(), i - num1, 0, 0)) { return false; } a->neg = rand_neg(); b->neg = rand_neg(); if (!BN_mul(c.get(), a.get(), b.get(), ctx.get())) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " * "); BN_print_fp(fp, b.get()); puts_fp(fp, " - "); BN_print_fp(fp, c.get()); puts_fp(fp, "\n"); } if (!BN_div(d.get(), e.get(), c.get(), a.get(), ctx.get()) || !BN_sub(d.get(), d.get(), b.get())) { return false; } if (!BN_is_zero(d.get()) || !BN_is_zero(e.get())) { fprintf(stderr, "Multiplication test failed!\n"); return false; } } // Test that BN_mul never gives negative zero. if (!BN_set_word(a.get(), 1)) { return false; } BN_set_negative(a.get(), 1); BN_zero(b.get()); if (!BN_mul(c.get(), a.get(), b.get(), ctx.get())) { return false; } if (!BN_is_zero(c.get()) || BN_is_negative(c.get())) { fprintf(stderr, "Multiplication test failed!\n"); return false; } return true; } static bool test_sqr(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM c(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM e(BN_new()); if (!a || !c || !d || !e) { return false; } for (int i = 0; i < num0; i++) { if (!BN_rand(a.get(), 40 + i * 10, 0, 0)) { return false; } a->neg = rand_neg(); if (!BN_sqr(c.get(), a.get(), ctx)) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " * "); BN_print_fp(fp, a.get()); puts_fp(fp, " - "); BN_print_fp(fp, c.get()); puts_fp(fp, "\n"); } if (!BN_div(d.get(), e.get(), c.get(), a.get(), ctx) || !BN_sub(d.get(), d.get(), a.get())) { return false; } if (!BN_is_zero(d.get()) || !BN_is_zero(e.get())) { fprintf(stderr, "Square test failed!\n"); return false; } } // Regression test for a BN_sqr overflow bug. BIGNUM *a_raw = a.get(); if (!BN_hex2bn( &a_raw, "80000000000000008000000000000001FFFFFFFFFFFFFFFE0000000000000000") || !BN_sqr(c.get(), a.get(), ctx)) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " * "); BN_print_fp(fp, a.get()); puts_fp(fp, " - "); BN_print_fp(fp, c.get()); puts_fp(fp, "\n"); } if (!BN_mul(d.get(), a.get(), a.get(), ctx)) { return false; } if (BN_cmp(c.get(), d.get())) { fprintf(stderr, "Square test failed: BN_sqr and BN_mul produce " "different results!\n"); return false; } // Regression test for a BN_sqr overflow bug. a_raw = a.get(); if (!BN_hex2bn( &a_raw, "80000000000000000000000080000001FFFFFFFE000000000000000000000000") || !BN_sqr(c.get(), a.get(), ctx)) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " * "); BN_print_fp(fp, a.get()); puts_fp(fp, " - "); BN_print_fp(fp, c.get()); puts_fp(fp, "\n"); } if (!BN_mul(d.get(), a.get(), a.get(), ctx)) { return false; } if (BN_cmp(c.get(), d.get())) { fprintf(stderr, "Square test failed: BN_sqr and BN_mul produce " "different results!\n"); return false; } return true; } static int rand_neg() { static unsigned int neg = 0; static const int sign[8] = {0, 0, 0, 1, 1, 0, 1, 1}; return sign[(neg++) % 8]; } static void print_word(FILE *fp, BN_ULONG w) { fprintf(fp, BN_HEX_FMT1, w); } static bool test_div_word(FILE *fp) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); if (!a || !b) { return false; } for (int i = 0; i < num0; i++) { do { if (!BN_rand(a.get(), 512, -1, 0) || !BN_rand(b.get(), BN_BITS2, -1, 0)) { return false; } } while (BN_is_zero(b.get())); if (!BN_copy(b.get(), a.get())) { return false; } BN_ULONG s = b->d[0]; BN_ULONG rmod = BN_mod_word(b.get(), s); BN_ULONG r = BN_div_word(b.get(), s); if (r == (BN_ULONG)-1 || rmod == (BN_ULONG)-1) { return false; } if (rmod != r) { fprintf(stderr, "Mod (word) test failed!\n"); return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " / "); print_word(fp, s); puts_fp(fp, " - "); BN_print_fp(fp, b.get()); puts_fp(fp, "\n"); BN_print_fp(fp, a.get()); puts_fp(fp, " % "); print_word(fp, s); puts_fp(fp, " - "); print_word(fp, r); puts_fp(fp, "\n"); } if (!BN_mul_word(b.get(), s) || !BN_add_word(b.get(), r) || !BN_sub(b.get(), a.get(), b.get())) { return false; } if (!BN_is_zero(b.get())) { fprintf(stderr, "Division (word) test failed!\n"); return false; } } return true; } static bool test_mont(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM A(BN_new()); ScopedBIGNUM B(BN_new()); ScopedBIGNUM n(BN_new()); ScopedBN_MONT_CTX mont(BN_MONT_CTX_new()); if (!a || !b || !c || !d || !A || !B || !n || !mont) { return false; } BN_zero(n.get()); if (BN_MONT_CTX_set(mont.get(), n.get(), ctx)) { fprintf(stderr, "BN_MONT_CTX_set succeeded for zero modulus!\n"); return false; } ERR_clear_error(); if (!BN_set_word(n.get(), 16)) { return false; } if (BN_MONT_CTX_set(mont.get(), n.get(), ctx)) { fprintf(stderr, "BN_MONT_CTX_set succeeded for even modulus!\n"); return false; } ERR_clear_error(); if (!BN_rand(a.get(), 100, 0, 0) || !BN_rand(b.get(), 100, 0, 0)) { return false; } for (int i = 0; i < num2; i++) { int bits = (200 * (i + 1)) / num2; if (bits == 0) { continue; } if (!BN_rand(n.get(), bits, 0, 1) || !BN_MONT_CTX_set(mont.get(), n.get(), ctx) || !BN_nnmod(a.get(), a.get(), n.get(), ctx) || !BN_nnmod(b.get(), b.get(), n.get(), ctx) || !BN_to_montgomery(A.get(), a.get(), mont.get(), ctx) || !BN_to_montgomery(B.get(), b.get(), mont.get(), ctx) || !BN_mod_mul_montgomery(c.get(), A.get(), B.get(), mont.get(), ctx) || !BN_from_montgomery(A.get(), c.get(), mont.get(), ctx)) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " * "); BN_print_fp(fp, b.get()); puts_fp(fp, " % "); BN_print_fp(fp, &mont->N); puts_fp(fp, " - "); BN_print_fp(fp, A.get()); puts_fp(fp, "\n"); } if (!BN_mod_mul(d.get(), a.get(), b.get(), n.get(), ctx) || !BN_sub(d.get(), d.get(), A.get())) { return false; } if (!BN_is_zero(d.get())) { fprintf(stderr, "Montgomery multiplication test failed!\n"); return false; } } return true; } static bool test_mod(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM e(BN_new()); if (!a || !b || !c || !d || !e || !BN_rand(a.get(), 1024, 0, 0)) { return false; } for (int i = 0; i < num0; i++) { if (!BN_rand(b.get(), 450 + i * 10, 0, 0)) { return false; } a->neg = rand_neg(); b->neg = rand_neg(); if (!BN_mod(c.get(), a.get(), b.get(), ctx)) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " % "); BN_print_fp(fp, b.get()); puts_fp(fp, " - "); BN_print_fp(fp, c.get()); puts_fp(fp, "\n"); } if (!BN_div(d.get(), e.get(), a.get(), b.get(), ctx) || !BN_sub(e.get(), e.get(), c.get())) { return false; } if (!BN_is_zero(e.get())) { fprintf(stderr, "Modulo test failed!\n"); return false; } } return true; } static bool test_mod_mul(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM e(BN_new()); if (!a || !b || !c || !d || !e) { return false; } if (!BN_one(a.get()) || !BN_one(b.get())) { return false; } BN_zero(c.get()); if (BN_mod_mul(e.get(), a.get(), b.get(), c.get(), ctx)) { fprintf(stderr, "BN_mod_mul with zero modulus succeeded!\n"); return false; } ERR_clear_error(); for (int j = 0; j < 3; j++) { if (!BN_rand(c.get(), 1024, 0, 0)) { return false; } for (int i = 0; i < num0; i++) { if (!BN_rand(a.get(), 475 + i * 10, 0, 0) || !BN_rand(b.get(), 425 + i * 11, 0, 0)) { return false; } a->neg = rand_neg(); b->neg = rand_neg(); if (!BN_mod_mul(e.get(), a.get(), b.get(), c.get(), ctx)) { ERR_print_errors_fp(stderr); return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " * "); BN_print_fp(fp, b.get()); puts_fp(fp, " % "); BN_print_fp(fp, c.get()); if (a->neg != b->neg && !BN_is_zero(e.get())) { // If (a*b) % c is negative, c must be added // in order to obtain the normalized remainder // (new with OpenSSL 0.9.7, previous versions of // BN_mod_mul could generate negative results) puts_fp(fp, " + "); BN_print_fp(fp, c.get()); } puts_fp(fp, " - "); BN_print_fp(fp, e.get()); puts_fp(fp, "\n"); } if (!BN_mul(d.get(), a.get(), b.get(), ctx) || !BN_sub(d.get(), d.get(), e.get()) || !BN_div(a.get(), b.get(), d.get(), c.get(), ctx)) { return false; } if (!BN_is_zero(b.get())) { fprintf(stderr, "Modulo multiply test failed!\n"); ERR_print_errors_fp(stderr); return false; } } } return true; } static bool test_mod_exp(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM e(BN_new()); if (!a || !b || !c || !d || !e) { return false; } if (!BN_one(a.get()) || !BN_one(b.get())) { return false; } BN_zero(c.get()); if (BN_mod_exp(d.get(), a.get(), b.get(), c.get(), ctx)) { fprintf(stderr, "BN_mod_exp with zero modulus succeeded!\n"); return 0; } ERR_clear_error(); if (!BN_rand(c.get(), 30, 0, 1)) { // must be odd for montgomery return false; } for (int i = 0; i < num2; i++) { if (!BN_rand(a.get(), 20 + i * 5, 0, 0) || !BN_rand(b.get(), 2 + i, 0, 0) || !BN_mod_exp(d.get(), a.get(), b.get(), c.get(), ctx)) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " ^ "); BN_print_fp(fp, b.get()); puts_fp(fp, " % "); BN_print_fp(fp, c.get()); puts_fp(fp, " - "); BN_print_fp(fp, d.get()); puts_fp(fp, "\n"); } if (!BN_exp(e.get(), a.get(), b.get(), ctx) || !BN_sub(e.get(), e.get(), d.get()) || !BN_div(a.get(), b.get(), e.get(), c.get(), ctx)) { return false; } if (!BN_is_zero(b.get())) { fprintf(stderr, "Modulo exponentiation test failed!\n"); return false; } } // Regression test for carry propagation bug in sqr8x_reduction. if (!HexToBIGNUM(&a, "050505050505") || !HexToBIGNUM(&b, "02") || !HexToBIGNUM( &c, "4141414141414141414141274141414141414141414141414141414141414141" "4141414141414141414141414141414141414141414141414141414141414141" "4141414141414141414141800000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000001") || !BN_mod_exp(d.get(), a.get(), b.get(), c.get(), ctx) || !BN_mul(e.get(), a.get(), a.get(), ctx)) { return false; } if (BN_cmp(d.get(), e.get()) != 0) { fprintf(stderr, "BN_mod_exp and BN_mul produce different results!\n"); return false; } return true; } static bool test_mod_exp_mont_consttime(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM e(BN_new()); if (!a || !b || !c || !d || !e) { return false; } if (!BN_one(a.get()) || !BN_one(b.get())) { return false; } BN_zero(c.get()); if (BN_mod_exp_mont_consttime(d.get(), a.get(), b.get(), c.get(), ctx, nullptr)) { fprintf(stderr, "BN_mod_exp_mont_consttime with zero modulus succeeded!\n"); return 0; } ERR_clear_error(); if (!BN_set_word(c.get(), 16)) { return false; } if (BN_mod_exp_mont_consttime(d.get(), a.get(), b.get(), c.get(), ctx, nullptr)) { fprintf(stderr, "BN_mod_exp_mont_consttime with even modulus succeeded!\n"); return 0; } ERR_clear_error(); if (!BN_rand(c.get(), 30, 0, 1)) { // must be odd for montgomery return false; } for (int i = 0; i < num2; i++) { if (!BN_rand(a.get(), 20 + i * 5, 0, 0) || !BN_rand(b.get(), 2 + i, 0, 0) || !BN_mod_exp_mont_consttime(d.get(), a.get(), b.get(), c.get(), ctx, NULL)) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " ^ "); BN_print_fp(fp, b.get()); puts_fp(fp, " % "); BN_print_fp(fp, c.get()); puts_fp(fp, " - "); BN_print_fp(fp, d.get()); puts_fp(fp, "\n"); } if (!BN_exp(e.get(), a.get(), b.get(), ctx) || !BN_sub(e.get(), e.get(), d.get()) || !BN_div(a.get(), b.get(), e.get(), c.get(), ctx)) { return false; } if (!BN_is_zero(b.get())) { fprintf(stderr, "Modulo exponentiation test failed!\n"); return false; } } return true; } // Test constant-time modular exponentiation with 1024-bit inputs, // which on x86_64 cause a different code branch to be taken. static bool test_mod_exp_mont5(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM p(BN_new()); ScopedBIGNUM m(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM e(BN_new()); if (!a || !p || !m || !d || !e || !BN_rand(m.get(), 1024, 0, 1) || // must be odd for montgomery !BN_rand(a.get(), 1024, 0, 0)) { return false; } // Zero exponent. BN_zero(p.get()); if (!BN_mod_exp_mont_consttime(d.get(), a.get(), p.get(), m.get(), ctx, NULL)) { return false; } if (!BN_is_one(d.get())) { fprintf(stderr, "Modular exponentiation test failed!\n"); return false; } if (!BN_rand(p.get(), 1024, 0, 0)) { return false; } // Zero input. BN_zero(a.get()); if (!BN_mod_exp_mont_consttime(d.get(), a.get(), p.get(), m.get(), ctx, NULL)) { return false; } if (!BN_is_zero(d.get())) { fprintf(stderr, "Modular exponentiation test failed!\n"); return false; } // Craft an input whose Montgomery representation is 1, i.e., shorter than the // modulus m, in order to test the const time precomputation // scattering/gathering. ScopedBN_MONT_CTX mont(BN_MONT_CTX_new()); if (!mont || !BN_one(a.get()) || !BN_MONT_CTX_set(mont.get(), m.get(), ctx) || !BN_from_montgomery(e.get(), a.get(), mont.get(), ctx) || !BN_mod_exp_mont_consttime(d.get(), e.get(), p.get(), m.get(), ctx, NULL) || !BN_mod_exp(a.get(), e.get(), p.get(), m.get(), ctx)) { return false; } if (BN_cmp(a.get(), d.get()) != 0) { fprintf(stderr, "Modular exponentiation test failed!\n"); return false; } // Finally, some regular test vectors. if (!BN_rand(e.get(), 1024, 0, 0) || !BN_mod_exp_mont_consttime(d.get(), e.get(), p.get(), m.get(), ctx, NULL) || !BN_mod_exp(a.get(), e.get(), p.get(), m.get(), ctx)) { return false; } if (BN_cmp(a.get(), d.get()) != 0) { fprintf(stderr, "Modular exponentiation test failed!\n"); return false; } return true; } static bool test_exp(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM e(BN_new()); if (!a || !b || !d || !e) { return false; } for (int i = 0; i < num2; i++) { if (!BN_rand(a.get(), 20 + i * 5, 0, 0) || !BN_rand(b.get(), 2 + i, 0, 0) || !BN_exp(d.get(), a.get(), b.get(), ctx)) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " ^ "); BN_print_fp(fp, b.get()); puts_fp(fp, " - "); BN_print_fp(fp, d.get()); puts_fp(fp, "\n"); } if (!BN_one(e.get())) { return false; } while (!BN_is_zero(b.get())) { if (!BN_mul(e.get(), e.get(), a.get(), ctx) || !BN_sub(b.get(), b.get(), BN_value_one())) { return false; } } if (!BN_sub(e.get(), e.get(), d.get())) { return false; } if (!BN_is_zero(e.get())) { fprintf(stderr, "Exponentiation test failed!\n"); return false; } } return true; } // test_exp_mod_zero tests that 1**0 mod 1 == 0. static bool test_exp_mod_zero(void) { ScopedBIGNUM zero(BN_new()), a(BN_new()), r(BN_new()); if (!zero || !a || !r || !BN_rand(a.get(), 1024, 0, 0)) { return false; } BN_zero(zero.get()); if (!BN_mod_exp(r.get(), a.get(), zero.get(), BN_value_one(), nullptr) || !BN_is_zero(r.get()) || !BN_mod_exp_mont(r.get(), a.get(), zero.get(), BN_value_one(), nullptr, nullptr) || !BN_is_zero(r.get()) || !BN_mod_exp_mont_consttime(r.get(), a.get(), zero.get(), BN_value_one(), nullptr, nullptr) || !BN_is_zero(r.get()) || !BN_mod_exp_mont_word(r.get(), 42, zero.get(), BN_value_one(), nullptr, nullptr) || !BN_is_zero(r.get())) { return false; } return true; } static bool test_mod_sqrt(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM p(BN_new()); ScopedBIGNUM r(BN_new()); if (!a || !p || !r) { return false; } for (int i = 0; i < 16; i++) { if (i < 8) { const unsigned kPrimes[8] = {2, 3, 5, 7, 11, 13, 17, 19}; if (!BN_set_word(p.get(), kPrimes[i])) { return false; } } else { if (!BN_set_word(a.get(), 32) || !BN_set_word(r.get(), 2 * i + 1) || !BN_generate_prime_ex(p.get(), 256, 0, a.get(), r.get(), nullptr)) { return false; } } p->neg = rand_neg(); for (int j = 0; j < num2; j++) { // construct 'a' such that it is a square modulo p, but in general not a // proper square and not reduced modulo p if (!BN_rand(r.get(), 256, 0, 3) || !BN_nnmod(r.get(), r.get(), p.get(), ctx) || !BN_mod_sqr(r.get(), r.get(), p.get(), ctx) || !BN_rand(a.get(), 256, 0, 3) || !BN_nnmod(a.get(), a.get(), p.get(), ctx) || !BN_mod_sqr(a.get(), a.get(), p.get(), ctx) || !BN_mul(a.get(), a.get(), r.get(), ctx)) { return false; } if (rand_neg() && !BN_sub(a.get(), a.get(), p.get())) { return false; } if (!BN_mod_sqrt(r.get(), a.get(), p.get(), ctx) || !BN_mod_sqr(r.get(), r.get(), p.get(), ctx) || !BN_nnmod(a.get(), a.get(), p.get(), ctx)) { return false; } if (BN_cmp(a.get(), r.get()) != 0) { fprintf(stderr, "BN_mod_sqrt failed: a = "); BN_print_fp(stderr, a.get()); fprintf(stderr, ", r = "); BN_print_fp(stderr, r.get()); fprintf(stderr, ", p = "); BN_print_fp(stderr, p.get()); fprintf(stderr, "\n"); return false; } } } return true; } static bool test_small_prime(FILE *fp, BN_CTX *ctx) { static const unsigned kBits = 10; ScopedBIGNUM r(BN_new()); if (!r || !BN_generate_prime_ex(r.get(), static_cast(kBits), 0, NULL, NULL, NULL)) { return false; } if (BN_num_bits(r.get()) != kBits) { fprintf(fp, "Expected %u bit prime, got %u bit number\n", kBits, BN_num_bits(r.get())); return false; } return true; } static bool test_sqrt(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM n(BN_new()); ScopedBIGNUM nn(BN_new()); ScopedBIGNUM sqrt(BN_new()); if (!n || !nn || !sqrt) { return false; } // Test some random squares. for (int i = 0; i < 100; i++) { if (!BN_rand(n.get(), 1024 /* bit length */, -1 /* no modification of top bits */, 0 /* don't modify bottom bit */) || !BN_mul(nn.get(), n.get(), n.get(), ctx) || !BN_sqrt(sqrt.get(), nn.get(), ctx)) { ERR_print_errors_fp(stderr); return false; } if (BN_cmp(n.get(), sqrt.get()) != 0) { fprintf(stderr, "Bad result from BN_sqrt.\n"); return false; } } // Test some non-squares. for (int i = 0; i < 100; i++) { if (!BN_rand(n.get(), 1024 /* bit length */, -1 /* no modification of top bits */, 0 /* don't modify bottom bit */) || !BN_mul(nn.get(), n.get(), n.get(), ctx) || !BN_add(nn.get(), nn.get(), BN_value_one())) { ERR_print_errors_fp(stderr); return false; } if (BN_sqrt(sqrt.get(), nn.get(), ctx)) { char *nn_str = BN_bn2dec(nn.get()); fprintf(stderr, "BIO_sqrt didn't fail on a non-square: %s\n", nn_str); OPENSSL_free(nn_str); } } return true; } static bool test_bn2bin_padded(BN_CTX *ctx) { uint8_t zeros[256], out[256], reference[128]; memset(zeros, 0, sizeof(zeros)); // Test edge case at 0. ScopedBIGNUM n(BN_new()); if (!n || !BN_bn2bin_padded(NULL, 0, n.get())) { fprintf(stderr, "BN_bn2bin_padded failed to encode 0 in an empty buffer.\n"); return false; } memset(out, -1, sizeof(out)); if (!BN_bn2bin_padded(out, sizeof(out), n.get())) { fprintf(stderr, "BN_bn2bin_padded failed to encode 0 in a non-empty buffer.\n"); return false; } if (memcmp(zeros, out, sizeof(out))) { fprintf(stderr, "BN_bn2bin_padded did not zero buffer.\n"); return false; } // Test a random numbers at various byte lengths. for (size_t bytes = 128 - 7; bytes <= 128; bytes++) { if (!BN_rand(n.get(), bytes * 8, 0 /* make sure top bit is 1 */, 0 /* don't modify bottom bit */)) { ERR_print_errors_fp(stderr); return false; } if (BN_num_bytes(n.get()) != bytes || BN_bn2bin(n.get(), reference) != bytes) { fprintf(stderr, "Bad result from BN_rand; bytes.\n"); return false; } // Empty buffer should fail. if (BN_bn2bin_padded(NULL, 0, n.get())) { fprintf(stderr, "BN_bn2bin_padded incorrectly succeeded on empty buffer.\n"); return false; } // One byte short should fail. if (BN_bn2bin_padded(out, bytes - 1, n.get())) { fprintf(stderr, "BN_bn2bin_padded incorrectly succeeded on short.\n"); return false; } // Exactly right size should encode. if (!BN_bn2bin_padded(out, bytes, n.get()) || memcmp(out, reference, bytes) != 0) { fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n"); return false; } // Pad up one byte extra. if (!BN_bn2bin_padded(out, bytes + 1, n.get()) || memcmp(out + 1, reference, bytes) || memcmp(out, zeros, 1)) { fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n"); return false; } // Pad up to 256. if (!BN_bn2bin_padded(out, sizeof(out), n.get()) || memcmp(out + sizeof(out) - bytes, reference, bytes) || memcmp(out, zeros, sizeof(out) - bytes)) { fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n"); return false; } } return true; } static int DecimalToBIGNUM(ScopedBIGNUM *out, const char *in) { BIGNUM *raw = NULL; int ret = BN_dec2bn(&raw, in); out->reset(raw); return ret; } static bool test_dec2bn(BN_CTX *ctx) { ScopedBIGNUM bn; int ret = DecimalToBIGNUM(&bn, "0"); if (ret != 1 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_dec2bn gave a bad result.\n"); return false; } ret = DecimalToBIGNUM(&bn, "256"); if (ret != 3 || !BN_is_word(bn.get(), 256) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_dec2bn gave a bad result.\n"); return false; } ret = DecimalToBIGNUM(&bn, "-42"); if (ret != 3 || !BN_abs_is_word(bn.get(), 42) || !BN_is_negative(bn.get())) { fprintf(stderr, "BN_dec2bn gave a bad result.\n"); return false; } ret = DecimalToBIGNUM(&bn, "-0"); if (ret != 2 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_dec2bn gave a bad result.\n"); return false; } ret = DecimalToBIGNUM(&bn, "42trailing garbage is ignored"); if (ret != 2 || !BN_abs_is_word(bn.get(), 42) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_dec2bn gave a bad result.\n"); return false; } return true; } static bool test_hex2bn(BN_CTX *ctx) { ScopedBIGNUM bn; int ret = HexToBIGNUM(&bn, "0"); if (ret != 1 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_hex2bn gave a bad result.\n"); return false; } ret = HexToBIGNUM(&bn, "256"); if (ret != 3 || !BN_is_word(bn.get(), 0x256) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_hex2bn gave a bad result.\n"); return false; } ret = HexToBIGNUM(&bn, "-42"); if (ret != 3 || !BN_abs_is_word(bn.get(), 0x42) || !BN_is_negative(bn.get())) { fprintf(stderr, "BN_hex2bn gave a bad result.\n"); return false; } ret = HexToBIGNUM(&bn, "-0"); if (ret != 2 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_hex2bn gave a bad result.\n"); return false; } ret = HexToBIGNUM(&bn, "abctrailing garbage is ignored"); if (ret != 3 || !BN_is_word(bn.get(), 0xabc) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_hex2bn gave a bad result.\n"); return false; } return true; } static ScopedBIGNUM ASCIIToBIGNUM(const char *in) { BIGNUM *raw = NULL; if (!BN_asc2bn(&raw, in)) { return nullptr; } return ScopedBIGNUM(raw); } static bool test_asc2bn(BN_CTX *ctx) { ScopedBIGNUM bn = ASCIIToBIGNUM("0"); if (!bn || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("256"); if (!bn || !BN_is_word(bn.get(), 256) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("-42"); if (!bn || !BN_abs_is_word(bn.get(), 42) || !BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("0x1234"); if (!bn || !BN_is_word(bn.get(), 0x1234) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("0X1234"); if (!bn || !BN_is_word(bn.get(), 0x1234) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("-0xabcd"); if (!bn || !BN_abs_is_word(bn.get(), 0xabcd) || !BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("-0"); if (!bn || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("123trailing garbage is ignored"); if (!bn || !BN_is_word(bn.get(), 123) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } return true; } struct MPITest { const char *base10; const char *mpi; size_t mpi_len; }; static const MPITest kMPITests[] = { { "0", "\x00\x00\x00\x00", 4 }, { "1", "\x00\x00\x00\x01\x01", 5 }, { "-1", "\x00\x00\x00\x01\x81", 5 }, { "128", "\x00\x00\x00\x02\x00\x80", 6 }, { "256", "\x00\x00\x00\x02\x01\x00", 6 }, { "-256", "\x00\x00\x00\x02\x81\x00", 6 }, }; static bool test_mpi() { uint8_t scratch[8]; for (size_t i = 0; i < sizeof(kMPITests) / sizeof(kMPITests[0]); i++) { const MPITest &test = kMPITests[i]; ScopedBIGNUM bn(ASCIIToBIGNUM(test.base10)); const size_t mpi_len = BN_bn2mpi(bn.get(), NULL); if (mpi_len > sizeof(scratch)) { fprintf(stderr, "MPI test #%u: MPI size is too large to test.\n", (unsigned)i); return false; } const size_t mpi_len2 = BN_bn2mpi(bn.get(), scratch); if (mpi_len != mpi_len2) { fprintf(stderr, "MPI test #%u: length changes.\n", (unsigned)i); return false; } if (mpi_len != test.mpi_len || memcmp(test.mpi, scratch, mpi_len) != 0) { fprintf(stderr, "MPI test #%u failed:\n", (unsigned)i); hexdump(stderr, "Expected: ", test.mpi, test.mpi_len); hexdump(stderr, "Got: ", scratch, mpi_len); return false; } ScopedBIGNUM bn2(BN_mpi2bn(scratch, mpi_len, NULL)); if (bn2.get() == nullptr) { fprintf(stderr, "MPI test #%u: failed to parse\n", (unsigned)i); return false; } if (BN_cmp(bn.get(), bn2.get()) != 0) { fprintf(stderr, "MPI test #%u: wrong result\n", (unsigned)i); return false; } } return true; } static bool test_rand() { ScopedBIGNUM bn(BN_new()); if (!bn) { return false; } // Test BN_rand accounts for degenerate cases with |top| and |bottom| // parameters. if (!BN_rand(bn.get(), 0, 0 /* top */, 0 /* bottom */) || !BN_is_zero(bn.get())) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } if (!BN_rand(bn.get(), 0, 1 /* top */, 1 /* bottom */) || !BN_is_zero(bn.get())) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } if (!BN_rand(bn.get(), 1, 0 /* top */, 0 /* bottom */) || !BN_is_word(bn.get(), 1)) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } if (!BN_rand(bn.get(), 1, 1 /* top */, 0 /* bottom */) || !BN_is_word(bn.get(), 1)) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } if (!BN_rand(bn.get(), 1, -1 /* top */, 1 /* bottom */) || !BN_is_word(bn.get(), 1)) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } if (!BN_rand(bn.get(), 2, 1 /* top */, 0 /* bottom */) || !BN_is_word(bn.get(), 3)) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } return true; } struct ASN1Test { const char *value_ascii; const char *der; size_t der_len; }; static const ASN1Test kASN1Tests[] = { {"0", "\x02\x01\x00", 3}, {"1", "\x02\x01\x01", 3}, {"127", "\x02\x01\x7f", 3}, {"128", "\x02\x02\x00\x80", 4}, {"0xdeadbeef", "\x02\x05\x00\xde\xad\xbe\xef", 7}, {"0x0102030405060708", "\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08", 10}, {"0xffffffffffffffff", "\x02\x09\x00\xff\xff\xff\xff\xff\xff\xff\xff", 11}, }; struct ASN1InvalidTest { const char *der; size_t der_len; }; static const ASN1InvalidTest kASN1InvalidTests[] = { // Bad tag. {"\x03\x01\x00", 3}, // Empty contents. {"\x02\x00", 2}, }; // kASN1BuggyTests contains incorrect encodings and the corresponding, expected // results of |BN_parse_asn1_unsigned_buggy| given that input. static const ASN1Test kASN1BuggyTests[] = { // Negative numbers. {"128", "\x02\x01\x80", 3}, {"255", "\x02\x01\xff", 3}, // Unnecessary leading zeros. {"1", "\x02\x02\x00\x01", 4}, }; static bool test_asn1() { for (const ASN1Test &test : kASN1Tests) { ScopedBIGNUM bn = ASCIIToBIGNUM(test.value_ascii); if (!bn) { return false; } // Test that the input is correctly parsed. ScopedBIGNUM bn2(BN_new()); if (!bn2) { return false; } CBS cbs; CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (!BN_parse_asn1_unsigned(&cbs, bn2.get()) || CBS_len(&cbs) != 0) { fprintf(stderr, "Parsing ASN.1 INTEGER failed.\n"); return false; } if (BN_cmp(bn.get(), bn2.get()) != 0) { fprintf(stderr, "Bad parse.\n"); return false; } // Test the value serializes correctly. CBB cbb; uint8_t *der; size_t der_len; CBB_zero(&cbb); if (!CBB_init(&cbb, 0) || !BN_marshal_asn1(&cbb, bn.get()) || !CBB_finish(&cbb, &der, &der_len)) { CBB_cleanup(&cbb); return false; } ScopedOpenSSLBytes delete_der(der); if (der_len != test.der_len || memcmp(der, reinterpret_cast(test.der), der_len) != 0) { fprintf(stderr, "Bad serialization.\n"); return false; } // |BN_parse_asn1_unsigned_buggy| parses all valid input. CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (!BN_parse_asn1_unsigned_buggy(&cbs, bn2.get()) || CBS_len(&cbs) != 0) { fprintf(stderr, "Parsing ASN.1 INTEGER failed.\n"); return false; } if (BN_cmp(bn.get(), bn2.get()) != 0) { fprintf(stderr, "Bad parse.\n"); return false; } } for (const ASN1InvalidTest &test : kASN1InvalidTests) { ScopedBIGNUM bn(BN_new()); if (!bn) { return false; } CBS cbs; CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (BN_parse_asn1_unsigned(&cbs, bn.get())) { fprintf(stderr, "Parsed invalid input.\n"); return false; } ERR_clear_error(); // All tests in kASN1InvalidTests are also rejected by // |BN_parse_asn1_unsigned_buggy|. CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (BN_parse_asn1_unsigned_buggy(&cbs, bn.get())) { fprintf(stderr, "Parsed invalid input.\n"); return false; } ERR_clear_error(); } for (const ASN1Test &test : kASN1BuggyTests) { // These broken encodings are rejected by |BN_parse_asn1_unsigned|. ScopedBIGNUM bn(BN_new()); if (!bn) { return false; } CBS cbs; CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (BN_parse_asn1_unsigned(&cbs, bn.get())) { fprintf(stderr, "Parsed invalid input.\n"); return false; } ERR_clear_error(); // However |BN_parse_asn1_unsigned_buggy| accepts them. ScopedBIGNUM bn2 = ASCIIToBIGNUM(test.value_ascii); if (!bn2) { return false; } CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (!BN_parse_asn1_unsigned_buggy(&cbs, bn.get()) || CBS_len(&cbs) != 0) { fprintf(stderr, "Parsing (invalid) ASN.1 INTEGER failed.\n"); return false; } if (BN_cmp(bn.get(), bn2.get()) != 0) { fprintf(stderr, "\"Bad\" parse.\n"); return false; } } // Serializing negative numbers is not supported. ScopedBIGNUM bn = ASCIIToBIGNUM("-1"); if (!bn) { return false; } CBB cbb; CBB_zero(&cbb); if (!CBB_init(&cbb, 0) || BN_marshal_asn1(&cbb, bn.get())) { fprintf(stderr, "Serialized negative number.\n"); CBB_cleanup(&cbb); return false; } CBB_cleanup(&cbb); return true; }