/* DTLS implementation written by Nagendra Modadugu * (nagendra@cs.stanford.edu) for the OpenSSL project 2005. */ /* ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include #include "ssl_locl.h" /* mod 128 saturating subtract of two 64-bit values in big-endian order */ static int satsub64be(const uint8_t *v1, const uint8_t *v2) { int ret, sat, brw, i; if (sizeof(long) == 8) { do { const union { long one; char little; } is_endian = {1}; long l; if (is_endian.little) { break; } /* not reached on little-endians */ /* following test is redundant, because input is * always aligned, but I take no chances... */ if (((size_t)v1 | (size_t)v2) & 0x7) { break; } l = *((long *)v1); l -= *((long *)v2); if (l > 128) { return 128; } else if (l < -128) { return -128; } else { return (int)l; } } while (0); } ret = (int)v1[7] - (int)v2[7]; sat = 0; brw = ret >> 8; /* brw is either 0 or -1 */ if (ret & 0x80) { for (i = 6; i >= 0; i--) { brw += (int)v1[i] - (int)v2[i]; sat |= ~brw; brw >>= 8; } } else { for (i = 6; i >= 0; i--) { brw += (int)v1[i] - (int)v2[i]; sat |= brw; brw >>= 8; } } brw <<= 8; /* brw is either 0 or -256 */ if (sat & 0xff) { return brw | 0x80; } else { return brw + (ret & 0xFF); } } static int dtls1_record_replay_check(SSL *s, DTLS1_BITMAP *bitmap); static void dtls1_record_bitmap_update(SSL *s, DTLS1_BITMAP *bitmap); static DTLS1_BITMAP *dtls1_get_bitmap(SSL *s, SSL3_RECORD *rr, unsigned int *is_next_epoch); static int dtls1_buffer_record(SSL *s, record_pqueue *q, uint8_t *priority); static int dtls1_process_record(SSL *s); static int do_dtls1_write(SSL *s, int type, const uint8_t *buf, unsigned int len); /* copy buffered record into SSL structure */ static int dtls1_copy_record(SSL *s, pitem *item) { DTLS1_RECORD_DATA *rdata; rdata = (DTLS1_RECORD_DATA *)item->data; if (s->s3->rbuf.buf != NULL) { OPENSSL_free(s->s3->rbuf.buf); } s->packet = rdata->packet; s->packet_length = rdata->packet_length; memcpy(&(s->s3->rbuf), &(rdata->rbuf), sizeof(SSL3_BUFFER)); memcpy(&(s->s3->rrec), &(rdata->rrec), sizeof(SSL3_RECORD)); /* Set proper sequence number for mac calculation */ memcpy(&(s->s3->read_sequence[2]), &(rdata->packet[5]), 6); return 1; } static int dtls1_buffer_record(SSL *s, record_pqueue *queue, uint8_t *priority) { DTLS1_RECORD_DATA *rdata; pitem *item; /* Limit the size of the queue to prevent DOS attacks */ if (pqueue_size(queue->q) >= 100) { return 0; } rdata = OPENSSL_malloc(sizeof(DTLS1_RECORD_DATA)); item = pitem_new(priority, rdata); if (rdata == NULL || item == NULL) { if (rdata != NULL) { OPENSSL_free(rdata); } if (item != NULL) { pitem_free(item); } OPENSSL_PUT_ERROR(SSL, dtls1_buffer_record, ERR_R_INTERNAL_ERROR); return -1; } rdata->packet = s->packet; rdata->packet_length = s->packet_length; memcpy(&(rdata->rbuf), &(s->s3->rbuf), sizeof(SSL3_BUFFER)); memcpy(&(rdata->rrec), &(s->s3->rrec), sizeof(SSL3_RECORD)); item->data = rdata; s->packet = NULL; s->packet_length = 0; memset(&(s->s3->rbuf), 0, sizeof(SSL3_BUFFER)); memset(&(s->s3->rrec), 0, sizeof(SSL3_RECORD)); if (!ssl3_setup_buffers(s)) { goto internal_error; } /* insert should not fail, since duplicates are dropped */ if (pqueue_insert(queue->q, item) == NULL) { goto internal_error; } return 1; internal_error: OPENSSL_PUT_ERROR(SSL, dtls1_buffer_record, ERR_R_INTERNAL_ERROR); if (rdata->rbuf.buf != NULL) { OPENSSL_free(rdata->rbuf.buf); } OPENSSL_free(rdata); pitem_free(item); return -1; } static int dtls1_retrieve_buffered_record(SSL *s, record_pqueue *queue) { pitem *item; item = pqueue_pop(queue->q); if (item) { dtls1_copy_record(s, item); OPENSSL_free(item->data); pitem_free(item); return 1; } return 0; } /* retrieve a buffered record that belongs to the new epoch, i.e., not * processed yet */ #define dtls1_get_unprocessed_record(s) \ dtls1_retrieve_buffered_record((s), &((s)->d1->unprocessed_rcds)) /* retrieve a buffered record that belongs to the current epoch, i.e., * processed */ #define dtls1_get_processed_record(s) \ dtls1_retrieve_buffered_record((s), &((s)->d1->processed_rcds)) static int dtls1_process_buffered_records(SSL *s) { pitem *item; item = pqueue_peek(s->d1->unprocessed_rcds.q); if (item) { /* Check if epoch is current. */ if (s->d1->unprocessed_rcds.epoch != s->d1->r_epoch) { return 1; /* Nothing to do. */ } /* Process all the records. */ while (pqueue_peek(s->d1->unprocessed_rcds.q)) { dtls1_get_unprocessed_record(s); if (!dtls1_process_record(s)) { return 0; } if (dtls1_buffer_record(s, &(s->d1->processed_rcds), s->s3->rrec.seq_num) < 0) { return -1; } } } /* sync epoch numbers once all the unprocessed records have been processed */ s->d1->processed_rcds.epoch = s->d1->r_epoch; s->d1->unprocessed_rcds.epoch = s->d1->r_epoch + 1; return 1; } static int dtls1_process_record(SSL *s) { int al; SSL3_RECORD *rr; rr = &(s->s3->rrec); /* At this point, s->packet_length == SSL3_RT_HEADER_LNGTH + rr->length, and * we have that many bytes in s->packet. */ rr->input = &(s->packet[DTLS1_RT_HEADER_LENGTH]); /* ok, we can now read from 's->packet' data into 'rr' rr->input points at * rr->length bytes, which need to be copied into rr->data by either the * decryption or by the decompression When the data is 'copied' into the * rr->data buffer, rr->input will be pointed at the new buffer */ /* We now have - encrypted [ MAC [ compressed [ plain ] ] ] rr->length bytes * of encrypted compressed stuff. */ /* check is not needed I believe */ if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH) { al = SSL_AD_RECORD_OVERFLOW; OPENSSL_PUT_ERROR(SSL, dtls1_process_record, SSL_R_ENCRYPTED_LENGTH_TOO_LONG); goto f_err; } /* decrypt in place in 'rr->input' */ rr->data = rr->input; if (!s->enc_method->enc(s, 0)) { /* Bad packets are silently dropped in DTLS. Clear the error queue of any * errors decryption may have added. */ ERR_clear_error(); rr->length = 0; s->packet_length = 0; goto err; } if (rr->length > SSL3_RT_MAX_PLAIN_LENGTH) { al = SSL_AD_RECORD_OVERFLOW; OPENSSL_PUT_ERROR(SSL, dtls1_process_record, SSL_R_DATA_LENGTH_TOO_LONG); goto f_err; } rr->off = 0; /* So at this point the following is true * ssl->s3->rrec.type is the type of record * ssl->s3->rrec.length == number of bytes in record * ssl->s3->rrec.off == offset to first valid byte * ssl->s3->rrec.data == where to take bytes from, increment * after use :-). */ /* we have pulled in a full packet so zero things */ s->packet_length = 0; return 1; f_err: ssl3_send_alert(s, SSL3_AL_FATAL, al); err: return 0; } /* Call this to get a new input record. * It will return <= 0 if more data is needed, normally due to an error * or non-blocking IO. * When it finishes, one packet has been decoded and can be found in * ssl->s3->rrec.type - is the type of record * ssl->s3->rrec.data, - data * ssl->s3->rrec.length, - number of bytes * * used only by dtls1_read_bytes */ int dtls1_get_record(SSL *s) { int ssl_major, ssl_minor; int i, n; SSL3_RECORD *rr; unsigned char *p = NULL; unsigned short version; DTLS1_BITMAP *bitmap; unsigned int is_next_epoch; rr = &(s->s3->rrec); /* The epoch may have changed. If so, process all the pending records. This * is a non-blocking operation. */ if (dtls1_process_buffered_records(s) < 0) { return -1; } /* If we're renegotiating, then there may be buffered records. */ if (dtls1_get_processed_record(s)) { return 1; } /* get something from the wire */ again: /* check if we have the header */ if ((s->rstate != SSL_ST_READ_BODY) || (s->packet_length < DTLS1_RT_HEADER_LENGTH)) { n = ssl3_read_n(s, DTLS1_RT_HEADER_LENGTH, s->s3->rbuf.len, 0); /* read timeout is handled by dtls1_read_bytes */ if (n <= 0) { return n; /* error or non-blocking */ } /* this packet contained a partial record, dump it */ if (s->packet_length != DTLS1_RT_HEADER_LENGTH) { s->packet_length = 0; goto again; } s->rstate = SSL_ST_READ_BODY; p = s->packet; if (s->msg_callback) { s->msg_callback(0, 0, SSL3_RT_HEADER, p, DTLS1_RT_HEADER_LENGTH, s, s->msg_callback_arg); } /* Pull apart the header into the DTLS1_RECORD */ rr->type = *(p++); ssl_major = *(p++); ssl_minor = *(p++); version = (ssl_major << 8) | ssl_minor; /* sequence number is 64 bits, with top 2 bytes = epoch */ n2s(p, rr->epoch); memcpy(&(s->s3->read_sequence[2]), p, 6); p += 6; n2s(p, rr->length); /* Lets check version */ if (s->s3->have_version) { if (version != s->version) { /* The record's version doesn't match, so silently drop it. * * TODO(davidben): This doesn't work. The DTLS record layer is not * packet-based, so the remainder of the packet isn't dropped and we * get a framing error. It's also unclear what it means to silently * drop a record in a packet containing two records. */ rr->length = 0; s->packet_length = 0; goto again; } } if ((version & 0xff00) != (s->version & 0xff00)) { /* wrong version, silently discard record */ rr->length = 0; s->packet_length = 0; goto again; } if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH) { /* record too long, silently discard it */ rr->length = 0; s->packet_length = 0; goto again; } /* now s->rstate == SSL_ST_READ_BODY */ } /* s->rstate == SSL_ST_READ_BODY, get and decode the data */ if (rr->length > s->packet_length - DTLS1_RT_HEADER_LENGTH) { /* now s->packet_length == DTLS1_RT_HEADER_LENGTH */ i = rr->length; n = ssl3_read_n(s, i, i, 1); if (n <= 0) { return n; /* error or non-blocking io */ } /* this packet contained a partial record, dump it */ if (n != i) { rr->length = 0; s->packet_length = 0; goto again; } /* now n == rr->length, * and s->packet_length == DTLS1_RT_HEADER_LENGTH + rr->length */ } s->rstate = SSL_ST_READ_HEADER; /* set state for later operations */ /* match epochs. NULL means the packet is dropped on the floor */ bitmap = dtls1_get_bitmap(s, rr, &is_next_epoch); if (bitmap == NULL) { rr->length = 0; s->packet_length = 0; /* dump this record */ goto again; /* get another record */ } /* Check whether this is a repeat, or aged record. */ if (!dtls1_record_replay_check(s, bitmap)) { rr->length = 0; s->packet_length = 0; /* dump this record */ goto again; /* get another record */ } /* just read a 0 length packet */ if (rr->length == 0) { goto again; } /* If this record is from the next epoch (either HM or ALERT), * and a handshake is currently in progress, buffer it since it * cannot be processed at this time. */ if (is_next_epoch) { if (SSL_in_init(s) || s->in_handshake) { if (dtls1_buffer_record(s, &(s->d1->unprocessed_rcds), rr->seq_num) < 0) { return -1; } dtls1_record_bitmap_update(s, bitmap); /* Mark receipt of record. */ } rr->length = 0; s->packet_length = 0; goto again; } if (!dtls1_process_record(s)) { rr->length = 0; s->packet_length = 0; /* dump this record */ goto again; /* get another record */ } dtls1_record_bitmap_update(s, bitmap); /* Mark receipt of record. */ return 1; } /* Return up to 'len' payload bytes received in 'type' records. * 'type' is one of the following: * * - SSL3_RT_HANDSHAKE (when ssl3_get_message calls us) * - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us) * - 0 (during a shutdown, no data has to be returned) * * If we don't have stored data to work from, read a SSL/TLS record first * (possibly multiple records if we still don't have anything to return). * * This function must handle any surprises the peer may have for us, such as * Alert records (e.g. close_notify), ChangeCipherSpec records (not really * a surprise, but handled as if it were), or renegotiation requests. * Also if record payloads contain fragments too small to process, we store * them until there is enough for the respective protocol (the record protocol * may use arbitrary fragmentation and even interleaving): * Change cipher spec protocol * just 1 byte needed, no need for keeping anything stored * Alert protocol * 2 bytes needed (AlertLevel, AlertDescription) * Handshake protocol * 4 bytes needed (HandshakeType, uint24 length) -- we just have * to detect unexpected Client Hello and Hello Request messages * here, anything else is handled by higher layers * Application data protocol * none of our business */ int dtls1_read_bytes(SSL *s, int type, unsigned char *buf, int len, int peek) { int al, i, ret; unsigned int n; SSL3_RECORD *rr; void (*cb)(const SSL *ssl, int type2, int val) = NULL; if (s->s3->rbuf.buf == NULL && !ssl3_setup_buffers(s)) { return -1; } /* XXX: check what the second '&& type' is about */ if ((type && (type != SSL3_RT_APPLICATION_DATA) && (type != SSL3_RT_HANDSHAKE) && type) || (peek && (type != SSL3_RT_APPLICATION_DATA))) { OPENSSL_PUT_ERROR(SSL, dtls1_read_bytes, ERR_R_INTERNAL_ERROR); return -1; } if (!s->in_handshake && SSL_in_init(s)) { /* type == SSL3_RT_APPLICATION_DATA */ i = s->handshake_func(s); if (i < 0) { return i; } if (i == 0) { OPENSSL_PUT_ERROR(SSL, dtls1_read_bytes, SSL_R_SSL_HANDSHAKE_FAILURE); return -1; } } start: s->rwstate = SSL_NOTHING; /* s->s3->rrec.type - is the type of record * s->s3->rrec.data - data * s->s3->rrec.off - offset into 'data' for next read * s->s3->rrec.length - number of bytes. */ rr = &s->s3->rrec; /* We are not handshaking and have no data yet, * so process data buffered during the last handshake * in advance, if any. */ if (s->state == SSL_ST_OK && rr->length == 0) { pitem *item; item = pqueue_pop(s->d1->buffered_app_data.q); if (item) { dtls1_copy_record(s, item); OPENSSL_free(item->data); pitem_free(item); } } /* Check for timeout */ if (dtls1_handle_timeout(s) > 0) { goto start; } /* get new packet if necessary */ if (rr->length == 0 || s->rstate == SSL_ST_READ_BODY) { ret = dtls1_get_record(s); if (ret <= 0) { ret = dtls1_read_failed(s, ret); /* anything other than a timeout is an error */ if (ret <= 0) { return ret; } else { goto start; } } } /* we now have a packet which can be read and processed */ /* |change_cipher_spec is set when we receive a ChangeCipherSpec and reset by * ssl3_get_finished. */ if (s->s3->change_cipher_spec && rr->type != SSL3_RT_HANDSHAKE) { /* We now have application data between CCS and Finished. Most likely the * packets were reordered on their way, so buffer the application data for * later processing rather than dropping the connection. */ if (dtls1_buffer_record(s, &(s->d1->buffered_app_data), rr->seq_num) < 0) { OPENSSL_PUT_ERROR(SSL, dtls1_read_bytes, ERR_R_INTERNAL_ERROR); return -1; } rr->length = 0; goto start; } /* If the other end has shut down, throw anything we read away (even in * 'peek' mode) */ if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { rr->length = 0; s->rwstate = SSL_NOTHING; return 0; } if (type == rr->type) { /* SSL3_RT_APPLICATION_DATA or SSL3_RT_HANDSHAKE */ /* make sure that we are not getting application data when we * are doing a handshake for the first time */ if (SSL_in_init(s) && (type == SSL3_RT_APPLICATION_DATA) && (s->aead_read_ctx == NULL)) { /* TODO(davidben): Is this check redundant with the handshake_func * check? */ al = SSL_AD_UNEXPECTED_MESSAGE; OPENSSL_PUT_ERROR(SSL, dtls1_read_bytes, SSL_R_APP_DATA_IN_HANDSHAKE); goto f_err; } if (len <= 0) { return len; } if ((unsigned int)len > rr->length) { n = rr->length; } else { n = (unsigned int)len; } memcpy(buf, &(rr->data[rr->off]), n); if (!peek) { rr->length -= n; rr->off += n; if (rr->length == 0) { s->rstate = SSL_ST_READ_HEADER; rr->off = 0; } } return n; } /* If we get here, then type != rr->type. */ /* If an alert record, process one alert out of the record. Note that we allow * a single record to contain multiple alerts. */ if (rr->type == SSL3_RT_ALERT) { /* Alerts may not be fragmented. */ if (rr->length < 2) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_read_bytes, SSL_R_BAD_ALERT); goto f_err; } if (s->msg_callback) { s->msg_callback(0, s->version, SSL3_RT_ALERT, &rr->data[rr->off], 2, s, s->msg_callback_arg); } uint8_t alert_level = rr->data[rr->off++]; uint8_t alert_descr = rr->data[rr->off++]; rr->length -= 2; if (s->info_callback != NULL) { cb = s->info_callback; } else if (s->ctx->info_callback != NULL) { cb = s->ctx->info_callback; } if (cb != NULL) { uint16_t alert = (alert_level << 8) | alert_descr; cb(s, SSL_CB_READ_ALERT, alert); } if (alert_level == 1) { /* warning */ s->s3->warn_alert = alert_descr; if (alert_descr == SSL_AD_CLOSE_NOTIFY) { s->shutdown |= SSL_RECEIVED_SHUTDOWN; return 0; } } else if (alert_level == 2) { /* fatal */ char tmp[16]; s->rwstate = SSL_NOTHING; s->s3->fatal_alert = alert_descr; OPENSSL_PUT_ERROR(SSL, dtls1_read_bytes, SSL_AD_REASON_OFFSET + alert_descr); BIO_snprintf(tmp, sizeof tmp, "%d", alert_descr); ERR_add_error_data(2, "SSL alert number ", tmp); s->shutdown |= SSL_RECEIVED_SHUTDOWN; SSL_CTX_remove_session(s->ctx, s->session); return 0; } else { al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, dtls1_read_bytes, SSL_R_UNKNOWN_ALERT_TYPE); goto f_err; } goto start; } if (s->shutdown & SSL_SENT_SHUTDOWN) { /* but we have not received a shutdown */ s->rwstate = SSL_NOTHING; rr->length = 0; return 0; } if (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC) { struct ccs_header_st ccs_hdr; unsigned int ccs_hdr_len = DTLS1_CCS_HEADER_LENGTH; dtls1_get_ccs_header(rr->data, &ccs_hdr); /* 'Change Cipher Spec' is just a single byte, so we know * exactly what the record payload has to look like */ /* XDTLS: check that epoch is consistent */ if ((rr->length != ccs_hdr_len) || (rr->off != 0) || (rr->data[0] != SSL3_MT_CCS)) { al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, dtls1_read_bytes, SSL_R_BAD_CHANGE_CIPHER_SPEC); goto f_err; } rr->length = 0; if (s->msg_callback) { s->msg_callback(0, s->version, SSL3_RT_CHANGE_CIPHER_SPEC, rr->data, 1, s, s->msg_callback_arg); } /* We can't process a CCS now, because previous handshake * messages are still missing, so just drop it. */ if (!s->d1->change_cipher_spec_ok) { goto start; } s->d1->change_cipher_spec_ok = 0; s->s3->change_cipher_spec = 1; if (!ssl3_do_change_cipher_spec(s)) { goto err; } /* do this whenever CCS is processed */ dtls1_reset_seq_numbers(s, SSL3_CC_READ); goto start; } /* Unexpected handshake message. It may be a retransmitted Finished (the only * post-CCS message). Otherwise, it's a pre-CCS handshake message from an * unsupported renegotiation attempt. */ if (rr->type == SSL3_RT_HANDSHAKE && !s->in_handshake) { if (rr->length < DTLS1_HM_HEADER_LENGTH) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_read_bytes, SSL_R_BAD_HANDSHAKE_RECORD); goto f_err; } struct hm_header_st msg_hdr; dtls1_get_message_header(&rr->data[rr->off], &msg_hdr); /* Ignore the Finished, but retransmit our last flight of messages. If the * peer sends the second Finished, they may not have received ours. */ if (msg_hdr.type == SSL3_MT_FINISHED) { if (dtls1_check_timeout_num(s) < 0) { return -1; } dtls1_retransmit_buffered_messages(s); rr->length = 0; goto start; } } /* We already handled these. */ assert(rr->type != SSL3_RT_CHANGE_CIPHER_SPEC && rr->type != SSL3_RT_ALERT); al = SSL_AD_UNEXPECTED_MESSAGE; OPENSSL_PUT_ERROR(SSL, dtls1_read_bytes, SSL_R_UNEXPECTED_RECORD); f_err: ssl3_send_alert(s, SSL3_AL_FATAL, al); err: return -1; } int dtls1_write_app_data_bytes(SSL *s, int type, const void *buf_, int len) { int i; if (SSL_in_init(s) && !s->in_handshake) { i = s->handshake_func(s); if (i < 0) { return i; } if (i == 0) { OPENSSL_PUT_ERROR(SSL, dtls1_write_app_data_bytes, SSL_R_SSL_HANDSHAKE_FAILURE); return -1; } } if (len > SSL3_RT_MAX_PLAIN_LENGTH) { OPENSSL_PUT_ERROR(SSL, dtls1_write_app_data_bytes, SSL_R_DTLS_MESSAGE_TOO_BIG); return -1; } i = dtls1_write_bytes(s, type, buf_, len); return i; } /* Call this to write data in records of type 'type' It will return <= 0 if not * all data has been sent or non-blocking IO. */ int dtls1_write_bytes(SSL *s, int type, const void *buf, int len) { int i; assert(len <= SSL3_RT_MAX_PLAIN_LENGTH); s->rwstate = SSL_NOTHING; i = do_dtls1_write(s, type, buf, len); return i; } static int do_dtls1_write(SSL *s, int type, const uint8_t *buf, unsigned int len) { uint8_t *p, *pseq; int i; int prefix_len = 0; int eivlen = 0; SSL3_RECORD *wr; SSL3_BUFFER *wb; /* first check if there is a SSL3_BUFFER still being written * out. This will happen with non blocking IO */ if (s->s3->wbuf.left != 0) { assert(0); /* XDTLS: want to see if we ever get here */ return ssl3_write_pending(s, type, buf, len); } /* If we have an alert to send, lets send it */ if (s->s3->alert_dispatch) { i = s->method->ssl_dispatch_alert(s); if (i <= 0) { return i; } /* if it went, fall through and send more stuff */ } if (len == 0) { return 0; } wr = &(s->s3->wrec); wb = &(s->s3->wbuf); p = wb->buf + prefix_len; /* write the header */ *(p++) = type & 0xff; wr->type = type; /* Special case: for hello verify request, client version 1.0 and * we haven't decided which version to use yet send back using * version 1.0 header: otherwise some clients will ignore it. */ if (!s->s3->have_version) { *(p++) = DTLS1_VERSION >> 8; *(p++) = DTLS1_VERSION & 0xff; } else { *(p++) = s->version >> 8; *(p++) = s->version & 0xff; } /* field where we are to write out packet epoch, seq num and len */ pseq = p; p += 10; /* Leave room for the variable nonce for AEADs which specify it explicitly. */ if (s->aead_write_ctx != NULL && s->aead_write_ctx->variable_nonce_included_in_record) { eivlen = s->aead_write_ctx->variable_nonce_len; } /* lets setup the record stuff. */ wr->data = p + eivlen; /* make room for IV in case of CBC */ wr->length = (int)len; wr->input = (unsigned char *)buf; /* we now 'read' from wr->input, wr->length bytes into wr->data */ memcpy(wr->data, wr->input, wr->length); wr->input = wr->data; /* this is true regardless of mac size */ wr->input = p; wr->data = p; wr->length += eivlen; if (!s->enc_method->enc(s, 1)) { goto err; } /* there's only one epoch between handshake and app data */ s2n(s->d1->w_epoch, pseq); memcpy(pseq, &(s->s3->write_sequence[2]), 6); pseq += 6; s2n(wr->length, pseq); if (s->msg_callback) { s->msg_callback(1, 0, SSL3_RT_HEADER, pseq - DTLS1_RT_HEADER_LENGTH, DTLS1_RT_HEADER_LENGTH, s, s->msg_callback_arg); } /* we should now have wr->data pointing to the encrypted data, which is * wr->length long */ wr->type = type; /* not needed but helps for debugging */ wr->length += DTLS1_RT_HEADER_LENGTH; ssl3_record_sequence_update(&(s->s3->write_sequence[0])); /* now let's set up wb */ wb->left = prefix_len + wr->length; wb->offset = 0; /* memorize arguments so that ssl3_write_pending can detect bad write retries * later */ s->s3->wpend_tot = len; s->s3->wpend_buf = buf; s->s3->wpend_type = type; s->s3->wpend_ret = len; /* we now just need to write the buffer */ return ssl3_write_pending(s, type, buf, len); err: return -1; } static int dtls1_record_replay_check(SSL *s, DTLS1_BITMAP *bitmap) { int cmp; unsigned int shift; const uint8_t *seq = s->s3->read_sequence; cmp = satsub64be(seq, bitmap->max_seq_num); if (cmp > 0) { memcpy(s->s3->rrec.seq_num, seq, 8); return 1; /* this record in new */ } shift = -cmp; if (shift >= sizeof(bitmap->map) * 8) { return 0; /* stale, outside the window */ } else if (bitmap->map & (((uint64_t)1) << shift)) { return 0; /* record previously received */ } memcpy(s->s3->rrec.seq_num, seq, 8); return 1; } static void dtls1_record_bitmap_update(SSL *s, DTLS1_BITMAP *bitmap) { int cmp; unsigned int shift; const uint8_t *seq = s->s3->read_sequence; cmp = satsub64be(seq, bitmap->max_seq_num); if (cmp > 0) { shift = cmp; if (shift < sizeof(bitmap->map) * 8) { bitmap->map <<= shift, bitmap->map |= 1UL; } else { bitmap->map = 1UL; } memcpy(bitmap->max_seq_num, seq, 8); } else { shift = -cmp; if (shift < sizeof(bitmap->map) * 8) { bitmap->map |= ((uint64_t)1) << shift; } } } int dtls1_dispatch_alert(SSL *s) { int i, j; void (*cb)(const SSL *ssl, int type, int val) = NULL; uint8_t buf[DTLS1_AL_HEADER_LENGTH]; uint8_t *ptr = &buf[0]; s->s3->alert_dispatch = 0; memset(buf, 0x00, sizeof(buf)); *ptr++ = s->s3->send_alert[0]; *ptr++ = s->s3->send_alert[1]; i = do_dtls1_write(s, SSL3_RT_ALERT, &buf[0], sizeof(buf)); if (i <= 0) { s->s3->alert_dispatch = 1; } else { if (s->s3->send_alert[0] == SSL3_AL_FATAL) { (void)BIO_flush(s->wbio); } if (s->msg_callback) { s->msg_callback(1, s->version, SSL3_RT_ALERT, s->s3->send_alert, 2, s, s->msg_callback_arg); } if (s->info_callback != NULL) { cb = s->info_callback; } else if (s->ctx->info_callback != NULL) { cb = s->ctx->info_callback; } if (cb != NULL) { j = (s->s3->send_alert[0] << 8) | s->s3->send_alert[1]; cb(s, SSL_CB_WRITE_ALERT, j); } } return i; } static DTLS1_BITMAP *dtls1_get_bitmap(SSL *s, SSL3_RECORD *rr, unsigned int *is_next_epoch) { *is_next_epoch = 0; /* In current epoch, accept HM, CCS, DATA, & ALERT */ if (rr->epoch == s->d1->r_epoch) { return &s->d1->bitmap; } else if (rr->epoch == (unsigned long)(s->d1->r_epoch + 1) && (rr->type == SSL3_RT_HANDSHAKE || rr->type == SSL3_RT_ALERT)) { /* Only HM and ALERT messages can be from the next epoch */ *is_next_epoch = 1; return &s->d1->next_bitmap; } return NULL; } void dtls1_reset_seq_numbers(SSL *s, int rw) { uint8_t *seq; unsigned int seq_bytes = sizeof(s->s3->read_sequence); if (rw & SSL3_CC_READ) { seq = s->s3->read_sequence; s->d1->r_epoch++; memcpy(&(s->d1->bitmap), &(s->d1->next_bitmap), sizeof(DTLS1_BITMAP)); memset(&(s->d1->next_bitmap), 0x00, sizeof(DTLS1_BITMAP)); } else { seq = s->s3->write_sequence; memcpy(s->d1->last_write_sequence, seq, sizeof(s->s3->write_sequence)); s->d1->w_epoch++; } memset(seq, 0x00, seq_bytes); }