#!/usr/bin/env perl # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Version 4.3. # # You might fail to appreciate this module performance from the first # try. If compared to "vanilla" linux-ia32-icc target, i.e. considered # to be *the* best Intel C compiler without -KPIC, performance appears # to be virtually identical... But try to re-configure with shared # library support... Aha! Intel compiler "suddenly" lags behind by 30% # [on P4, more on others]:-) And if compared to position-independent # code generated by GNU C, this code performs *more* than *twice* as # fast! Yes, all this buzz about PIC means that unlike other hand- # coded implementations, this one was explicitly designed to be safe # to use even in shared library context... This also means that this # code isn't necessarily absolutely fastest "ever," because in order # to achieve position independence an extra register has to be # off-loaded to stack, which affects the benchmark result. # # Special note about instruction choice. Do you recall RC4_INT code # performing poorly on P4? It might be the time to figure out why. # RC4_INT code implies effective address calculations in base+offset*4 # form. Trouble is that it seems that offset scaling turned to be # critical path... At least eliminating scaling resulted in 2.8x RC4 # performance improvement [as you might recall]. As AES code is hungry # for scaling too, I [try to] avoid the latter by favoring off-by-2 # shifts and masking the result with 0xFF<<2 instead of "boring" 0xFF. # # As was shown by Dean Gaudet , the above note turned # void. Performance improvement with off-by-2 shifts was observed on # intermediate implementation, which was spilling yet another register # to stack... Final offset*4 code below runs just a tad faster on P4, # but exhibits up to 10% improvement on other cores. # # Second version is "monolithic" replacement for aes_core.c, which in # addition to AES_[de|en]crypt implements AES_set_[de|en]cryption_key. # This made it possible to implement little-endian variant of the # algorithm without modifying the base C code. Motivating factor for # the undertaken effort was that it appeared that in tight IA-32 # register window little-endian flavor could achieve slightly higher # Instruction Level Parallelism, and it indeed resulted in up to 15% # better performance on most recent µ-archs... # # Third version adds AES_cbc_encrypt implementation, which resulted in # up to 40% performance imrovement of CBC benchmark results. 40% was # observed on P4 core, where "overall" imrovement coefficient, i.e. if # compared to PIC generated by GCC and in CBC mode, was observed to be # as large as 4x:-) CBC performance is virtually identical to ECB now # and on some platforms even better, e.g. 17.6 "small" cycles/byte on # Opteron, because certain function prologues and epilogues are # effectively taken out of the loop... # # Version 3.2 implements compressed tables and prefetch of these tables # in CBC[!] mode. Former means that 3/4 of table references are now # misaligned, which unfortunately has negative impact on elder IA-32 # implementations, Pentium suffered 30% penalty, PIII - 10%. # # Version 3.3 avoids L1 cache aliasing between stack frame and # S-boxes, and 3.4 - L1 cache aliasing even between key schedule. The # latter is achieved by copying the key schedule to controlled place in # stack. This unfortunately has rather strong impact on small block CBC # performance, ~2x deterioration on 16-byte block if compared to 3.3. # # Version 3.5 checks if there is L1 cache aliasing between user-supplied # key schedule and S-boxes and abstains from copying the former if # there is no. This allows end-user to consciously retain small block # performance by aligning key schedule in specific manner. # # Version 3.6 compresses Td4 to 256 bytes and prefetches it in ECB. # # Current ECB performance numbers for 128-bit key in CPU cycles per # processed byte [measure commonly used by AES benchmarkers] are: # # small footprint fully unrolled # P4 24 22 # AMD K8 20 19 # PIII 25 23 # Pentium 81 78 # # Version 3.7 reimplements outer rounds as "compact." Meaning that # first and last rounds reference compact 256 bytes S-box. This means # that first round consumes a lot more CPU cycles and that encrypt # and decrypt performance becomes asymmetric. Encrypt performance # drops by 10-12%, while decrypt - by 20-25%:-( 256 bytes S-box is # aggressively pre-fetched. # # Version 4.0 effectively rolls back to 3.6 and instead implements # additional set of functions, _[x86|sse]_AES_[en|de]crypt_compact, # which use exclusively 256 byte S-box. These functions are to be # called in modes not concealing plain text, such as ECB, or when # we're asked to process smaller amount of data [or unconditionally # on hyper-threading CPU]. Currently it's called unconditionally from # AES_[en|de]crypt, which affects all modes, but CBC. CBC routine # still needs to be modified to switch between slower and faster # mode when appropriate... But in either case benchmark landscape # changes dramatically and below numbers are CPU cycles per processed # byte for 128-bit key. # # ECB encrypt ECB decrypt CBC large chunk # P4 52[54] 83[95] 23 # AMD K8 46[41] 66[70] 18 # PIII 41[50] 60[77] 24 # Core 2 31[36] 45[64] 18.5 # Atom 76[100] 96[138] 60 # Pentium 115 150 77 # # Version 4.1 switches to compact S-box even in key schedule setup. # # Version 4.2 prefetches compact S-box in every SSE round or in other # words every cache-line is *guaranteed* to be accessed within ~50 # cycles window. Why just SSE? Because it's needed on hyper-threading # CPU! Which is also why it's prefetched with 64 byte stride. Best # part is that it has no negative effect on performance:-) # # Version 4.3 implements switch between compact and non-compact block # functions in AES_cbc_encrypt depending on how much data was asked # to be processed in one stroke. # ###################################################################### # Timing attacks are classified in two classes: synchronous when # attacker consciously initiates cryptographic operation and collects # timing data of various character afterwards, and asynchronous when # malicious code is executed on same CPU simultaneously with AES, # instruments itself and performs statistical analysis of this data. # # As far as synchronous attacks go the root to the AES timing # vulnerability is twofold. Firstly, of 256 S-box elements at most 160 # are referred to in single 128-bit block operation. Well, in C # implementation with 4 distinct tables it's actually as little as 40 # references per 256 elements table, but anyway... Secondly, even # though S-box elements are clustered into smaller amount of cache- # lines, smaller than 160 and even 40, it turned out that for certain # plain-text pattern[s] or simply put chosen plain-text and given key # few cache-lines remain unaccessed during block operation. Now, if # attacker can figure out this access pattern, he can deduct the key # [or at least part of it]. The natural way to mitigate this kind of # attacks is to minimize the amount of cache-lines in S-box and/or # prefetch them to ensure that every one is accessed for more uniform # timing. But note that *if* plain-text was concealed in such way that # input to block function is distributed *uniformly*, then attack # wouldn't apply. Now note that some encryption modes, most notably # CBC, do mask the plain-text in this exact way [secure cipher output # is distributed uniformly]. Yes, one still might find input that # would reveal the information about given key, but if amount of # candidate inputs to be tried is larger than amount of possible key # combinations then attack becomes infeasible. This is why revised # AES_cbc_encrypt "dares" to switch to larger S-box when larger chunk # of data is to be processed in one stroke. The current size limit of # 512 bytes is chosen to provide same [diminishigly low] probability # for cache-line to remain untouched in large chunk operation with # large S-box as for single block operation with compact S-box and # surely needs more careful consideration... # # As for asynchronous attacks. There are two flavours: attacker code # being interleaved with AES on hyper-threading CPU at *instruction* # level, and two processes time sharing single core. As for latter. # Two vectors. 1. Given that attacker process has higher priority, # yield execution to process performing AES just before timer fires # off the scheduler, immediately regain control of CPU and analyze the # cache state. For this attack to be efficient attacker would have to # effectively slow down the operation by several *orders* of magnitute, # by ratio of time slice to duration of handful of AES rounds, which # unlikely to remain unnoticed. Not to mention that this also means # that he would spend correspondigly more time to collect enough # statistical data to mount the attack. It's probably appropriate to # say that if adeversary reckons that this attack is beneficial and # risks to be noticed, you probably have larger problems having him # mere opportunity. In other words suggested code design expects you # to preclude/mitigate this attack by overall system security design. # 2. Attacker manages to make his code interrupt driven. In order for # this kind of attack to be feasible, interrupt rate has to be high # enough, again comparable to duration of handful of AES rounds. But # is there interrupt source of such rate? Hardly, not even 1Gbps NIC # generates interrupts at such raging rate... # # And now back to the former, hyper-threading CPU or more specifically # Intel P4. Recall that asynchronous attack implies that malicious # code instruments itself. And naturally instrumentation granularity # has be noticeably lower than duration of codepath accessing S-box. # Given that all cache-lines are accessed during that time that is. # Current implementation accesses *all* cache-lines within ~50 cycles # window, which is actually *less* than RDTSC latency on Intel P4! $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output = pop; open OUT,">$output"; *STDOUT=*OUT; &asm_init($ARGV[0],"aes-586.pl",$x86only = $ARGV[$#ARGV] eq "386"); &static_label("AES_Te"); &static_label("AES_Td"); $s0="eax"; $s1="ebx"; $s2="ecx"; $s3="edx"; $key="edi"; $acc="esi"; $tbl="ebp"; # stack frame layout in _[x86|sse]_AES_* routines, frame is allocated # by caller $__ra=&DWP(0,"esp"); # return address $__s0=&DWP(4,"esp"); # s0 backing store $__s1=&DWP(8,"esp"); # s1 backing store $__s2=&DWP(12,"esp"); # s2 backing store $__s3=&DWP(16,"esp"); # s3 backing store $__key=&DWP(20,"esp"); # pointer to key schedule $__end=&DWP(24,"esp"); # pointer to end of key schedule $__tbl=&DWP(28,"esp"); # %ebp backing store # stack frame layout in AES_[en|crypt] routines, which differs from # above by 4 and overlaps by %ebp backing store $_tbl=&DWP(24,"esp"); $_esp=&DWP(28,"esp"); sub _data_word() { my $i; while(defined($i=shift)) { &data_word($i,$i); } } $speed_limit=512; # chunks smaller than $speed_limit are # processed with compact routine in CBC mode $small_footprint=1; # $small_footprint=1 code is ~5% slower [on # recent µ-archs], but ~5 times smaller! # I favor compact code to minimize cache # contention and in hope to "collect" 5% back # in real-life applications... $vertical_spin=0; # shift "verticaly" defaults to 0, because of # its proof-of-concept status... # Note that there is no decvert(), as well as last encryption round is # performed with "horizontal" shifts. This is because this "vertical" # implementation [one which groups shifts on a given $s[i] to form a # "column," unlike "horizontal" one, which groups shifts on different # $s[i] to form a "row"] is work in progress. It was observed to run # few percents faster on Intel cores, but not AMD. On AMD K8 core it's # whole 12% slower:-( So we face a trade-off... Shall it be resolved # some day? Till then the code is considered experimental and by # default remains dormant... sub encvert() { my ($te,@s) = @_; my ($v0,$v1) = ($acc,$key); &mov ($v0,$s[3]); # copy s3 &mov (&DWP(4,"esp"),$s[2]); # save s2 &mov ($v1,$s[0]); # copy s0 &mov (&DWP(8,"esp"),$s[1]); # save s1 &movz ($s[2],&HB($s[0])); &and ($s[0],0xFF); &mov ($s[0],&DWP(0,$te,$s[0],8)); # s0>>0 &shr ($v1,16); &mov ($s[3],&DWP(3,$te,$s[2],8)); # s0>>8 &movz ($s[1],&HB($v1)); &and ($v1,0xFF); &mov ($s[2],&DWP(2,$te,$v1,8)); # s0>>16 &mov ($v1,$v0); &mov ($s[1],&DWP(1,$te,$s[1],8)); # s0>>24 &and ($v0,0xFF); &xor ($s[3],&DWP(0,$te,$v0,8)); # s3>>0 &movz ($v0,&HB($v1)); &shr ($v1,16); &xor ($s[2],&DWP(3,$te,$v0,8)); # s3>>8 &movz ($v0,&HB($v1)); &and ($v1,0xFF); &xor ($s[1],&DWP(2,$te,$v1,8)); # s3>>16 &mov ($v1,&DWP(4,"esp")); # restore s2 &xor ($s[0],&DWP(1,$te,$v0,8)); # s3>>24 &mov ($v0,$v1); &and ($v1,0xFF); &xor ($s[2],&DWP(0,$te,$v1,8)); # s2>>0 &movz ($v1,&HB($v0)); &shr ($v0,16); &xor ($s[1],&DWP(3,$te,$v1,8)); # s2>>8 &movz ($v1,&HB($v0)); &and ($v0,0xFF); &xor ($s[0],&DWP(2,$te,$v0,8)); # s2>>16 &mov ($v0,&DWP(8,"esp")); # restore s1 &xor ($s[3],&DWP(1,$te,$v1,8)); # s2>>24 &mov ($v1,$v0); &and ($v0,0xFF); &xor ($s[1],&DWP(0,$te,$v0,8)); # s1>>0 &movz ($v0,&HB($v1)); &shr ($v1,16); &xor ($s[0],&DWP(3,$te,$v0,8)); # s1>>8 &movz ($v0,&HB($v1)); &and ($v1,0xFF); &xor ($s[3],&DWP(2,$te,$v1,8)); # s1>>16 &mov ($key,$__key); # reincarnate v1 as key &xor ($s[2],&DWP(1,$te,$v0,8)); # s1>>24 } # Another experimental routine, which features "horizontal spin," but # eliminates one reference to stack. Strangely enough runs slower... sub enchoriz() { my ($v0,$v1) = ($key,$acc); &movz ($v0,&LB($s0)); # 3, 2, 1, 0* &rotr ($s2,8); # 8,11,10, 9 &mov ($v1,&DWP(0,$te,$v0,8)); # 0 &movz ($v0,&HB($s1)); # 7, 6, 5*, 4 &rotr ($s3,16); # 13,12,15,14 &xor ($v1,&DWP(3,$te,$v0,8)); # 5 &movz ($v0,&HB($s2)); # 8,11,10*, 9 &rotr ($s0,16); # 1, 0, 3, 2 &xor ($v1,&DWP(2,$te,$v0,8)); # 10 &movz ($v0,&HB($s3)); # 13,12,15*,14 &xor ($v1,&DWP(1,$te,$v0,8)); # 15, t[0] collected &mov ($__s0,$v1); # t[0] saved &movz ($v0,&LB($s1)); # 7, 6, 5, 4* &shr ($s1,16); # -, -, 7, 6 &mov ($v1,&DWP(0,$te,$v0,8)); # 4 &movz ($v0,&LB($s3)); # 13,12,15,14* &xor ($v1,&DWP(2,$te,$v0,8)); # 14 &movz ($v0,&HB($s0)); # 1, 0, 3*, 2 &and ($s3,0xffff0000); # 13,12, -, - &xor ($v1,&DWP(1,$te,$v0,8)); # 3 &movz ($v0,&LB($s2)); # 8,11,10, 9* &or ($s3,$s1); # 13,12, 7, 6 &xor ($v1,&DWP(3,$te,$v0,8)); # 9, t[1] collected &mov ($s1,$v1); # s[1]=t[1] &movz ($v0,&LB($s0)); # 1, 0, 3, 2* &shr ($s2,16); # -, -, 8,11 &mov ($v1,&DWP(2,$te,$v0,8)); # 2 &movz ($v0,&HB($s3)); # 13,12, 7*, 6 &xor ($v1,&DWP(1,$te,$v0,8)); # 7 &movz ($v0,&HB($s2)); # -, -, 8*,11 &xor ($v1,&DWP(0,$te,$v0,8)); # 8 &mov ($v0,$s3); &shr ($v0,24); # 13 &xor ($v1,&DWP(3,$te,$v0,8)); # 13, t[2] collected &movz ($v0,&LB($s2)); # -, -, 8,11* &shr ($s0,24); # 1* &mov ($s2,&DWP(1,$te,$v0,8)); # 11 &xor ($s2,&DWP(3,$te,$s0,8)); # 1 &mov ($s0,$__s0); # s[0]=t[0] &movz ($v0,&LB($s3)); # 13,12, 7, 6* &shr ($s3,16); # , ,13,12 &xor ($s2,&DWP(2,$te,$v0,8)); # 6 &mov ($key,$__key); # reincarnate v0 as key &and ($s3,0xff); # , ,13,12* &mov ($s3,&DWP(0,$te,$s3,8)); # 12 &xor ($s3,$s2); # s[2]=t[3] collected &mov ($s2,$v1); # s[2]=t[2] } # More experimental code... SSE one... Even though this one eliminates # *all* references to stack, it's not faster... sub sse_encbody() { &movz ($acc,&LB("eax")); # 0 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 0 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2 &movz ("edx",&HB("eax")); # 1 &mov ("edx",&DWP(3,$tbl,"edx",8)); # 1 &shr ("eax",16); # 5, 4 &movz ($acc,&LB("ebx")); # 10 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 10 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8 &movz ($acc,&HB("ebx")); # 11 &xor ("edx",&DWP(1,$tbl,$acc,8)); # 11 &shr ("ebx",16); # 15,14 &movz ($acc,&HB("eax")); # 5 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 5 &movq ("mm3",QWP(16,$key)); &movz ($acc,&HB("ebx")); # 15 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 15 &movd ("mm0","ecx"); # t[0] collected &movz ($acc,&LB("eax")); # 4 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 4 &movd ("eax","mm2"); # 7, 6, 3, 2 &movz ($acc,&LB("ebx")); # 14 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 14 &movd ("ebx","mm6"); # 13,12, 9, 8 &movz ($acc,&HB("eax")); # 3 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 3 &movz ($acc,&HB("ebx")); # 9 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 9 &movd ("mm1","ecx"); # t[1] collected &movz ($acc,&LB("eax")); # 2 &mov ("ecx",&DWP(2,$tbl,$acc,8)); # 2 &shr ("eax",16); # 7, 6 &punpckldq ("mm0","mm1"); # t[0,1] collected &movz ($acc,&LB("ebx")); # 8 &xor ("ecx",&DWP(0,$tbl,$acc,8)); # 8 &shr ("ebx",16); # 13,12 &movz ($acc,&HB("eax")); # 7 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 7 &pxor ("mm0","mm3"); &movz ("eax",&LB("eax")); # 6 &xor ("edx",&DWP(2,$tbl,"eax",8)); # 6 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0 &movz ($acc,&HB("ebx")); # 13 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 13 &xor ("ecx",&DWP(24,$key)); # t[2] &movd ("mm4","ecx"); # t[2] collected &movz ("ebx",&LB("ebx")); # 12 &xor ("edx",&DWP(0,$tbl,"ebx",8)); # 12 &shr ("ecx",16); &movd ("eax","mm1"); # 5, 4, 1, 0 &mov ("ebx",&DWP(28,$key)); # t[3] &xor ("ebx","edx"); &movd ("mm5","ebx"); # t[3] collected &and ("ebx",0xffff0000); &or ("ebx","ecx"); &punpckldq ("mm4","mm5"); # t[2,3] collected } ###################################################################### # "Compact" block function ###################################################################### sub enccompact() { my $Fn = \&mov; while ($#_>5) { pop(@_); $Fn=sub{}; } my ($i,$te,@s)=@_; my $tmp = $key; my $out = $i==3?$s[0]:$acc; # $Fn is used in first compact round and its purpose is to # void restoration of some values from stack, so that after # 4xenccompact with extra argument $key value is left there... if ($i==3) { &$Fn ($key,$__key); }##%edx else { &mov ($out,$s[0]); } &and ($out,0xFF); if ($i==1) { &shr ($s[0],16); }#%ebx[1] if ($i==2) { &shr ($s[0],24); }#%ecx[2] &movz ($out,&BP(-128,$te,$out,1)); if ($i==3) { $tmp=$s[1]; }##%eax &movz ($tmp,&HB($s[1])); &movz ($tmp,&BP(-128,$te,$tmp,1)); &shl ($tmp,8); &xor ($out,$tmp); if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx else { &mov ($tmp,$s[2]); &shr ($tmp,16); } if ($i==2) { &and ($s[1],0xFF); }#%edx[2] &and ($tmp,0xFF); &movz ($tmp,&BP(-128,$te,$tmp,1)); &shl ($tmp,16); &xor ($out,$tmp); if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] else { &mov ($tmp,$s[3]); &shr ($tmp,24); } &movz ($tmp,&BP(-128,$te,$tmp,1)); &shl ($tmp,24); &xor ($out,$tmp); if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } if ($i==3) { &mov ($s[3],$acc); } &comment(); } sub enctransform() { my @s = ($s0,$s1,$s2,$s3); my $i = shift; my $tmp = $tbl; my $r2 = $key ; &and ($tmp,$s[$i]); &lea ($r2,&DWP(0,$s[$i],$s[$i])); &mov ($acc,$tmp); &shr ($tmp,7); &and ($r2,0xfefefefe); &sub ($acc,$tmp); &mov ($tmp,$s[$i]); &and ($acc,0x1b1b1b1b); &rotr ($tmp,16); &xor ($acc,$r2); # r2 &mov ($r2,$s[$i]); &xor ($s[$i],$acc); # r0 ^ r2 &rotr ($r2,16+8); &xor ($acc,$tmp); &rotl ($s[$i],24); &xor ($acc,$r2); &mov ($tmp,0x80808080) if ($i!=1); &xor ($s[$i],$acc); # ROTATE(r2^r0,24) ^ r2 } &function_begin_B("_x86_AES_encrypt_compact"); # note that caller is expected to allocate stack frame for me! &mov ($__key,$key); # save key &xor ($s0,&DWP(0,$key)); # xor with key &xor ($s1,&DWP(4,$key)); &xor ($s2,&DWP(8,$key)); &xor ($s3,&DWP(12,$key)); &mov ($acc,&DWP(240,$key)); # load key->rounds &lea ($acc,&DWP(-2,$acc,$acc)); &lea ($acc,&DWP(0,$key,$acc,8)); &mov ($__end,$acc); # end of key schedule # prefetch Te4 &mov ($key,&DWP(0-128,$tbl)); &mov ($acc,&DWP(32-128,$tbl)); &mov ($key,&DWP(64-128,$tbl)); &mov ($acc,&DWP(96-128,$tbl)); &mov ($key,&DWP(128-128,$tbl)); &mov ($acc,&DWP(160-128,$tbl)); &mov ($key,&DWP(192-128,$tbl)); &mov ($acc,&DWP(224-128,$tbl)); &set_label("loop",16); &enccompact(0,$tbl,$s0,$s1,$s2,$s3,1); &enccompact(1,$tbl,$s1,$s2,$s3,$s0,1); &enccompact(2,$tbl,$s2,$s3,$s0,$s1,1); &enccompact(3,$tbl,$s3,$s0,$s1,$s2,1); &mov ($tbl,0x80808080); &enctransform(2); &enctransform(3); &enctransform(0); &enctransform(1); &mov ($key,$__key); &mov ($tbl,$__tbl); &add ($key,16); # advance rd_key &xor ($s0,&DWP(0,$key)); &xor ($s1,&DWP(4,$key)); &xor ($s2,&DWP(8,$key)); &xor ($s3,&DWP(12,$key)); &cmp ($key,$__end); &mov ($__key,$key); &jb (&label("loop")); &enccompact(0,$tbl,$s0,$s1,$s2,$s3); &enccompact(1,$tbl,$s1,$s2,$s3,$s0); &enccompact(2,$tbl,$s2,$s3,$s0,$s1); &enccompact(3,$tbl,$s3,$s0,$s1,$s2); &xor ($s0,&DWP(16,$key)); &xor ($s1,&DWP(20,$key)); &xor ($s2,&DWP(24,$key)); &xor ($s3,&DWP(28,$key)); &ret (); &function_end_B("_x86_AES_encrypt_compact"); ###################################################################### # "Compact" SSE block function. ###################################################################### # # Performance is not actually extraordinary in comparison to pure # x86 code. In particular encrypt performance is virtually the same. # Decrypt performance on the other hand is 15-20% better on newer # µ-archs [but we're thankful for *any* improvement here], and ~50% # better on PIII:-) And additionally on the pros side this code # eliminates redundant references to stack and thus relieves/ # minimizes the pressure on the memory bus. # # MMX register layout lsb # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ # | mm4 | mm0 | # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ # | s3 | s2 | s1 | s0 | # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ # |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0| # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ # # Indexes translate as s[N/4]>>(8*(N%4)), e.g. 5 means s1>>8. # In this terms encryption and decryption "compact" permutation # matrices can be depicted as following: # # encryption lsb # decryption lsb # +----++----+----+----+----+ # +----++----+----+----+----+ # | t0 || 15 | 10 | 5 | 0 | # | t0 || 7 | 10 | 13 | 0 | # +----++----+----+----+----+ # +----++----+----+----+----+ # | t1 || 3 | 14 | 9 | 4 | # | t1 || 11 | 14 | 1 | 4 | # +----++----+----+----+----+ # +----++----+----+----+----+ # | t2 || 7 | 2 | 13 | 8 | # | t2 || 15 | 2 | 5 | 8 | # +----++----+----+----+----+ # +----++----+----+----+----+ # | t3 || 11 | 6 | 1 | 12 | # | t3 || 3 | 6 | 9 | 12 | # +----++----+----+----+----+ # +----++----+----+----+----+ # ###################################################################### # Why not xmm registers? Short answer. It was actually tested and # was not any faster, but *contrary*, most notably on Intel CPUs. # Longer answer. Main advantage of using mm registers is that movd # latency is lower, especially on Intel P4. While arithmetic # instructions are twice as many, they can be scheduled every cycle # and not every second one when they are operating on xmm register, # so that "arithmetic throughput" remains virtually the same. And # finally the code can be executed even on elder SSE-only CPUs:-) sub sse_enccompact() { &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0 &pshufw ("mm5","mm4",0x0d); # 15,14,11,10 &movd ("eax","mm1"); # 5, 4, 1, 0 &movd ("ebx","mm5"); # 15,14,11,10 &mov ($__key,$key); &movz ($acc,&LB("eax")); # 0 &movz ("edx",&HB("eax")); # 1 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0 &movz ($key,&LB("ebx")); # 10 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1 &shr ("eax",16); # 5, 4 &shl ("edx",8); # 1 &movz ($acc,&BP(-128,$tbl,$key,1)); # 10 &movz ($key,&HB("ebx")); # 11 &shl ($acc,16); # 10 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8 &or ("ecx",$acc); # 10 &movz ($acc,&BP(-128,$tbl,$key,1)); # 11 &movz ($key,&HB("eax")); # 5 &shl ($acc,24); # 11 &shr ("ebx",16); # 15,14 &or ("edx",$acc); # 11 &movz ($acc,&BP(-128,$tbl,$key,1)); # 5 &movz ($key,&HB("ebx")); # 15 &shl ($acc,8); # 5 &or ("ecx",$acc); # 5 &movz ($acc,&BP(-128,$tbl,$key,1)); # 15 &movz ($key,&LB("eax")); # 4 &shl ($acc,24); # 15 &or ("ecx",$acc); # 15 &movz ($acc,&BP(-128,$tbl,$key,1)); # 4 &movz ($key,&LB("ebx")); # 14 &movd ("eax","mm2"); # 7, 6, 3, 2 &movd ("mm0","ecx"); # t[0] collected &movz ("ecx",&BP(-128,$tbl,$key,1)); # 14 &movz ($key,&HB("eax")); # 3 &shl ("ecx",16); # 14 &movd ("ebx","mm6"); # 13,12, 9, 8 &or ("ecx",$acc); # 14 &movz ($acc,&BP(-128,$tbl,$key,1)); # 3 &movz ($key,&HB("ebx")); # 9 &shl ($acc,24); # 3 &or ("ecx",$acc); # 3 &movz ($acc,&BP(-128,$tbl,$key,1)); # 9 &movz ($key,&LB("ebx")); # 8 &shl ($acc,8); # 9 &shr ("ebx",16); # 13,12 &or ("ecx",$acc); # 9 &movz ($acc,&BP(-128,$tbl,$key,1)); # 8 &movz ($key,&LB("eax")); # 2 &shr ("eax",16); # 7, 6 &movd ("mm1","ecx"); # t[1] collected &movz ("ecx",&BP(-128,$tbl,$key,1)); # 2 &movz ($key,&HB("eax")); # 7 &shl ("ecx",16); # 2 &and ("eax",0xff); # 6 &or ("ecx",$acc); # 2 &punpckldq ("mm0","mm1"); # t[0,1] collected &movz ($acc,&BP(-128,$tbl,$key,1)); # 7 &movz ($key,&HB("ebx")); # 13 &shl ($acc,24); # 7 &and ("ebx",0xff); # 12 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 6 &or ("ecx",$acc); # 7 &shl ("eax",16); # 6 &movz ($acc,&BP(-128,$tbl,$key,1)); # 13 &or ("edx","eax"); # 6 &shl ($acc,8); # 13 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 12 &or ("ecx",$acc); # 13 &or ("edx","ebx"); # 12 &mov ($key,$__key); &movd ("mm4","ecx"); # t[2] collected &movd ("mm5","edx"); # t[3] collected &punpckldq ("mm4","mm5"); # t[2,3] collected } if (!$x86only) { &function_begin_B("_sse_AES_encrypt_compact"); &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8 # note that caller is expected to allocate stack frame for me! &mov ($acc,&DWP(240,$key)); # load key->rounds &lea ($acc,&DWP(-2,$acc,$acc)); &lea ($acc,&DWP(0,$key,$acc,8)); &mov ($__end,$acc); # end of key schedule &mov ($s0,0x1b1b1b1b); # magic constant &mov (&DWP(8,"esp"),$s0); &mov (&DWP(12,"esp"),$s0); # prefetch Te4 &mov ($s0,&DWP(0-128,$tbl)); &mov ($s1,&DWP(32-128,$tbl)); &mov ($s2,&DWP(64-128,$tbl)); &mov ($s3,&DWP(96-128,$tbl)); &mov ($s0,&DWP(128-128,$tbl)); &mov ($s1,&DWP(160-128,$tbl)); &mov ($s2,&DWP(192-128,$tbl)); &mov ($s3,&DWP(224-128,$tbl)); &set_label("loop",16); &sse_enccompact(); &add ($key,16); &cmp ($key,$__end); &ja (&label("out")); &movq ("mm2",&QWP(8,"esp")); &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); &movq ("mm1","mm0"); &movq ("mm5","mm4"); # r0 &pcmpgtb("mm3","mm0"); &pcmpgtb("mm7","mm4"); &pand ("mm3","mm2"); &pand ("mm7","mm2"); &pshufw ("mm2","mm0",0xb1); &pshufw ("mm6","mm4",0xb1);# ROTATE(r0,16) &paddb ("mm0","mm0"); &paddb ("mm4","mm4"); &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # = r2 &pshufw ("mm3","mm2",0xb1); &pshufw ("mm7","mm6",0xb1);# r0 &pxor ("mm1","mm0"); &pxor ("mm5","mm4"); # r0^r2 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(r0,16) &movq ("mm2","mm3"); &movq ("mm6","mm7"); &pslld ("mm3",8); &pslld ("mm7",8); &psrld ("mm2",24); &psrld ("mm6",24); &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= r0<<8 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= r0>>24 &movq ("mm3","mm1"); &movq ("mm7","mm5"); &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key)); &psrld ("mm1",8); &psrld ("mm5",8); &mov ($s0,&DWP(0-128,$tbl)); &pslld ("mm3",24); &pslld ("mm7",24); &mov ($s1,&DWP(64-128,$tbl)); &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= (r2^r0)<<8 &mov ($s2,&DWP(128-128,$tbl)); &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= (r2^r0)>>24 &mov ($s3,&DWP(192-128,$tbl)); &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); &jmp (&label("loop")); &set_label("out",16); &pxor ("mm0",&QWP(0,$key)); &pxor ("mm4",&QWP(8,$key)); &ret (); &function_end_B("_sse_AES_encrypt_compact"); } ###################################################################### # Vanilla block function. ###################################################################### sub encstep() { my ($i,$te,@s) = @_; my $tmp = $key; my $out = $i==3?$s[0]:$acc; # lines marked with #%e?x[i] denote "reordered" instructions... if ($i==3) { &mov ($key,$__key); }##%edx else { &mov ($out,$s[0]); &and ($out,0xFF); } if ($i==1) { &shr ($s[0],16); }#%ebx[1] if ($i==2) { &shr ($s[0],24); }#%ecx[2] &mov ($out,&DWP(0,$te,$out,8)); if ($i==3) { $tmp=$s[1]; }##%eax &movz ($tmp,&HB($s[1])); &xor ($out,&DWP(3,$te,$tmp,8)); if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx else { &mov ($tmp,$s[2]); &shr ($tmp,16); } if ($i==2) { &and ($s[1],0xFF); }#%edx[2] &and ($tmp,0xFF); &xor ($out,&DWP(2,$te,$tmp,8)); if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] else { &mov ($tmp,$s[3]); &shr ($tmp,24) } &xor ($out,&DWP(1,$te,$tmp,8)); if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } if ($i==3) { &mov ($s[3],$acc); } &comment(); } sub enclast() { my ($i,$te,@s)=@_; my $tmp = $key; my $out = $i==3?$s[0]:$acc; if ($i==3) { &mov ($key,$__key); }##%edx else { &mov ($out,$s[0]); } &and ($out,0xFF); if ($i==1) { &shr ($s[0],16); }#%ebx[1] if ($i==2) { &shr ($s[0],24); }#%ecx[2] &mov ($out,&DWP(2,$te,$out,8)); &and ($out,0x000000ff); if ($i==3) { $tmp=$s[1]; }##%eax &movz ($tmp,&HB($s[1])); &mov ($tmp,&DWP(0,$te,$tmp,8)); &and ($tmp,0x0000ff00); &xor ($out,$tmp); if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx else { &mov ($tmp,$s[2]); &shr ($tmp,16); } if ($i==2) { &and ($s[1],0xFF); }#%edx[2] &and ($tmp,0xFF); &mov ($tmp,&DWP(0,$te,$tmp,8)); &and ($tmp,0x00ff0000); &xor ($out,$tmp); if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] else { &mov ($tmp,$s[3]); &shr ($tmp,24); } &mov ($tmp,&DWP(2,$te,$tmp,8)); &and ($tmp,0xff000000); &xor ($out,$tmp); if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } if ($i==3) { &mov ($s[3],$acc); } } &function_begin_B("_x86_AES_encrypt"); if ($vertical_spin) { # I need high parts of volatile registers to be accessible... &exch ($s1="edi",$key="ebx"); &mov ($s2="esi",$acc="ecx"); } # note that caller is expected to allocate stack frame for me! &mov ($__key,$key); # save key &xor ($s0,&DWP(0,$key)); # xor with key &xor ($s1,&DWP(4,$key)); &xor ($s2,&DWP(8,$key)); &xor ($s3,&DWP(12,$key)); &mov ($acc,&DWP(240,$key)); # load key->rounds if ($small_footprint) { &lea ($acc,&DWP(-2,$acc,$acc)); &lea ($acc,&DWP(0,$key,$acc,8)); &mov ($__end,$acc); # end of key schedule &set_label("loop",16); if ($vertical_spin) { &encvert($tbl,$s0,$s1,$s2,$s3); } else { &encstep(0,$tbl,$s0,$s1,$s2,$s3); &encstep(1,$tbl,$s1,$s2,$s3,$s0); &encstep(2,$tbl,$s2,$s3,$s0,$s1); &encstep(3,$tbl,$s3,$s0,$s1,$s2); } &add ($key,16); # advance rd_key &xor ($s0,&DWP(0,$key)); &xor ($s1,&DWP(4,$key)); &xor ($s2,&DWP(8,$key)); &xor ($s3,&DWP(12,$key)); &cmp ($key,$__end); &mov ($__key,$key); &jb (&label("loop")); } else { &cmp ($acc,10); &jle (&label("10rounds")); &cmp ($acc,12); &jle (&label("12rounds")); &set_label("14rounds",4); for ($i=1;$i<3;$i++) { if ($vertical_spin) { &encvert($tbl,$s0,$s1,$s2,$s3); } else { &encstep(0,$tbl,$s0,$s1,$s2,$s3); &encstep(1,$tbl,$s1,$s2,$s3,$s0); &encstep(2,$tbl,$s2,$s3,$s0,$s1); &encstep(3,$tbl,$s3,$s0,$s1,$s2); } &xor ($s0,&DWP(16*$i+0,$key)); &xor ($s1,&DWP(16*$i+4,$key)); &xor ($s2,&DWP(16*$i+8,$key)); &xor ($s3,&DWP(16*$i+12,$key)); } &add ($key,32); &mov ($__key,$key); # advance rd_key &set_label("12rounds",4); for ($i=1;$i<3;$i++) { if ($vertical_spin) { &encvert($tbl,$s0,$s1,$s2,$s3); } else { &encstep(0,$tbl,$s0,$s1,$s2,$s3); &encstep(1,$tbl,$s1,$s2,$s3,$s0); &encstep(2,$tbl,$s2,$s3,$s0,$s1); &encstep(3,$tbl,$s3,$s0,$s1,$s2); } &xor ($s0,&DWP(16*$i+0,$key)); &xor ($s1,&DWP(16*$i+4,$key)); &xor ($s2,&DWP(16*$i+8,$key)); &xor ($s3,&DWP(16*$i+12,$key)); } &add ($key,32); &mov ($__key,$key); # advance rd_key &set_label("10rounds",4); for ($i=1;$i<10;$i++) { if ($vertical_spin) { &encvert($tbl,$s0,$s1,$s2,$s3); } else { &encstep(0,$tbl,$s0,$s1,$s2,$s3); &encstep(1,$tbl,$s1,$s2,$s3,$s0); &encstep(2,$tbl,$s2,$s3,$s0,$s1); &encstep(3,$tbl,$s3,$s0,$s1,$s2); } &xor ($s0,&DWP(16*$i+0,$key)); &xor ($s1,&DWP(16*$i+4,$key)); &xor ($s2,&DWP(16*$i+8,$key)); &xor ($s3,&DWP(16*$i+12,$key)); } } if ($vertical_spin) { # "reincarnate" some registers for "horizontal" spin... &mov ($s1="ebx",$key="edi"); &mov ($s2="ecx",$acc="esi"); } &enclast(0,$tbl,$s0,$s1,$s2,$s3); &enclast(1,$tbl,$s1,$s2,$s3,$s0); &enclast(2,$tbl,$s2,$s3,$s0,$s1); &enclast(3,$tbl,$s3,$s0,$s1,$s2); &add ($key,$small_footprint?16:160); &xor ($s0,&DWP(0,$key)); &xor ($s1,&DWP(4,$key)); &xor ($s2,&DWP(8,$key)); &xor ($s3,&DWP(12,$key)); &ret (); &set_label("AES_Te",64); # Yes! I keep it in the code segment! &_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6); &_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591); &_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56); &_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec); &_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa); &_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb); &_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45); &_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b); &_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c); &_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83); &_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9); &_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a); &_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d); &_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f); &_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df); &_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea); &_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34); &_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b); &_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d); &_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413); &_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1); &_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6); &_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972); &_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85); &_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed); &_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511); &_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe); &_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b); &_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05); &_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1); &_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142); &_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf); &_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3); &_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e); &_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a); &_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6); &_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3); &_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b); &_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428); &_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad); &_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14); &_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8); &_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4); &_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2); &_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda); &_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949); &_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf); &_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810); &_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c); &_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697); &_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e); &_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f); &_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc); &_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c); &_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969); &_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27); &_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122); &_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433); &_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9); &_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5); &_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a); &_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0); &_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e); &_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c); #Te4 # four copies of Te4 to choose from to avoid L1 aliasing &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); #rcon: &data_word(0x00000001, 0x00000002, 0x00000004, 0x00000008); &data_word(0x00000010, 0x00000020, 0x00000040, 0x00000080); &data_word(0x0000001b, 0x00000036, 0x00000000, 0x00000000); &data_word(0x00000000, 0x00000000, 0x00000000, 0x00000000); &function_end_B("_x86_AES_encrypt"); # void asm_AES_encrypt (const void *inp,void *out,const AES_KEY *key); &function_begin("asm_AES_encrypt"); &mov ($acc,&wparam(0)); # load inp &mov ($key,&wparam(2)); # load key &mov ($s0,"esp"); &sub ("esp",36); &and ("esp",-64); # align to cache-line # place stack frame just "above" the key schedule &lea ($s1,&DWP(-64-63,$key)); &sub ($s1,"esp"); &neg ($s1); &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line &sub ("esp",$s1); &add ("esp",4); # 4 is reserved for caller's return address &mov ($_esp,$s0); # save stack pointer &call (&label("pic_point")); # make it PIC! &set_label("pic_point"); &blindpop($tbl); &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if (!$x86only); &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl)); # pick Te4 copy which can't "overlap" with stack frame or key schedule &lea ($s1,&DWP(768-4,"esp")); &sub ($s1,$tbl); &and ($s1,0x300); &lea ($tbl,&DWP(2048+128,$tbl,$s1)); if (!$x86only) { &bt (&DWP(0,$s0),25); # check for SSE bit &jnc (&label("x86")); &movq ("mm0",&QWP(0,$acc)); &movq ("mm4",&QWP(8,$acc)); &call ("_sse_AES_encrypt_compact"); &mov ("esp",$_esp); # restore stack pointer &mov ($acc,&wparam(1)); # load out &movq (&QWP(0,$acc),"mm0"); # write output data &movq (&QWP(8,$acc),"mm4"); &emms (); &function_end_A(); } &set_label("x86",16); &mov ($_tbl,$tbl); &mov ($s0,&DWP(0,$acc)); # load input data &mov ($s1,&DWP(4,$acc)); &mov ($s2,&DWP(8,$acc)); &mov ($s3,&DWP(12,$acc)); &call ("_x86_AES_encrypt_compact"); &mov ("esp",$_esp); # restore stack pointer &mov ($acc,&wparam(1)); # load out &mov (&DWP(0,$acc),$s0); # write output data &mov (&DWP(4,$acc),$s1); &mov (&DWP(8,$acc),$s2); &mov (&DWP(12,$acc),$s3); &function_end("asm_AES_encrypt"); #--------------------------------------------------------------------# ###################################################################### # "Compact" block function ###################################################################### sub deccompact() { my $Fn = \&mov; while ($#_>5) { pop(@_); $Fn=sub{}; } my ($i,$td,@s)=@_; my $tmp = $key; my $out = $i==3?$s[0]:$acc; # $Fn is used in first compact round and its purpose is to # void restoration of some values from stack, so that after # 4xdeccompact with extra argument $key, $s0 and $s1 values # are left there... if($i==3) { &$Fn ($key,$__key); } else { &mov ($out,$s[0]); } &and ($out,0xFF); &movz ($out,&BP(-128,$td,$out,1)); if ($i==3) { $tmp=$s[1]; } &movz ($tmp,&HB($s[1])); &movz ($tmp,&BP(-128,$td,$tmp,1)); &shl ($tmp,8); &xor ($out,$tmp); if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } else { mov ($tmp,$s[2]); } &shr ($tmp,16); &and ($tmp,0xFF); &movz ($tmp,&BP(-128,$td,$tmp,1)); &shl ($tmp,16); &xor ($out,$tmp); if ($i==3) { $tmp=$s[3]; &$Fn ($s[2],$__s1); } else { &mov ($tmp,$s[3]); } &shr ($tmp,24); &movz ($tmp,&BP(-128,$td,$tmp,1)); &shl ($tmp,24); &xor ($out,$tmp); if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } if ($i==3) { &$Fn ($s[3],$__s0); } } # must be called with 2,3,0,1 as argument sequence!!! sub dectransform() { my @s = ($s0,$s1,$s2,$s3); my $i = shift; my $tmp = $key; my $tp2 = @s[($i+2)%4]; $tp2 = @s[2] if ($i==1); my $tp4 = @s[($i+3)%4]; $tp4 = @s[3] if ($i==1); my $tp8 = $tbl; &mov ($tmp,0x80808080); &and ($tmp,$s[$i]); &mov ($acc,$tmp); &shr ($tmp,7); &lea ($tp2,&DWP(0,$s[$i],$s[$i])); &sub ($acc,$tmp); &and ($tp2,0xfefefefe); &and ($acc,0x1b1b1b1b); &xor ($tp2,$acc); &mov ($tmp,0x80808080); &and ($tmp,$tp2); &mov ($acc,$tmp); &shr ($tmp,7); &lea ($tp4,&DWP(0,$tp2,$tp2)); &sub ($acc,$tmp); &and ($tp4,0xfefefefe); &and ($acc,0x1b1b1b1b); &xor ($tp2,$s[$i]); # tp2^tp1 &xor ($tp4,$acc); &mov ($tmp,0x80808080); &and ($tmp,$tp4); &mov ($acc,$tmp); &shr ($tmp,7); &lea ($tp8,&DWP(0,$tp4,$tp4)); &sub ($acc,$tmp); &and ($tp8,0xfefefefe); &and ($acc,0x1b1b1b1b); &xor ($tp4,$s[$i]); # tp4^tp1 &rotl ($s[$i],8); # = ROTATE(tp1,8) &xor ($tp8,$acc); &xor ($s[$i],$tp2); &xor ($tp2,$tp8); &xor ($s[$i],$tp4); &xor ($tp4,$tp8); &rotl ($tp2,24); &xor ($s[$i],$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1) &rotl ($tp4,16); &xor ($s[$i],$tp2); # ^= ROTATE(tp8^tp2^tp1,24) &rotl ($tp8,8); &xor ($s[$i],$tp4); # ^= ROTATE(tp8^tp4^tp1,16) &mov ($s[0],$__s0) if($i==2); #prefetch $s0 &mov ($s[1],$__s1) if($i==3); #prefetch $s1 &mov ($s[2],$__s2) if($i==1); &xor ($s[$i],$tp8); # ^= ROTATE(tp8,8) &mov ($s[3],$__s3) if($i==1); &mov (&DWP(4+4*$i,"esp"),$s[$i]) if($i>=2); } &function_begin_B("_x86_AES_decrypt_compact"); # note that caller is expected to allocate stack frame for me! &mov ($__key,$key); # save key &xor ($s0,&DWP(0,$key)); # xor with key &xor ($s1,&DWP(4,$key)); &xor ($s2,&DWP(8,$key)); &xor ($s3,&DWP(12,$key)); &mov ($acc,&DWP(240,$key)); # load key->rounds &lea ($acc,&DWP(-2,$acc,$acc)); &lea ($acc,&DWP(0,$key,$acc,8)); &mov ($__end,$acc); # end of key schedule # prefetch Td4 &mov ($key,&DWP(0-128,$tbl)); &mov ($acc,&DWP(32-128,$tbl)); &mov ($key,&DWP(64-128,$tbl)); &mov ($acc,&DWP(96-128,$tbl)); &mov ($key,&DWP(128-128,$tbl)); &mov ($acc,&DWP(160-128,$tbl)); &mov ($key,&DWP(192-128,$tbl)); &mov ($acc,&DWP(224-128,$tbl)); &set_label("loop",16); &deccompact(0,$tbl,$s0,$s3,$s2,$s1,1); &deccompact(1,$tbl,$s1,$s0,$s3,$s2,1); &deccompact(2,$tbl,$s2,$s1,$s0,$s3,1); &deccompact(3,$tbl,$s3,$s2,$s1,$s0,1); &dectransform(2); &dectransform(3); &dectransform(0); &dectransform(1); &mov ($key,$__key); &mov ($tbl,$__tbl); &add ($key,16); # advance rd_key &xor ($s0,&DWP(0,$key)); &xor ($s1,&DWP(4,$key)); &xor ($s2,&DWP(8,$key)); &xor ($s3,&DWP(12,$key)); &cmp ($key,$__end); &mov ($__key,$key); &jb (&label("loop")); &deccompact(0,$tbl,$s0,$s3,$s2,$s1); &deccompact(1,$tbl,$s1,$s0,$s3,$s2); &deccompact(2,$tbl,$s2,$s1,$s0,$s3); &deccompact(3,$tbl,$s3,$s2,$s1,$s0); &xor ($s0,&DWP(16,$key)); &xor ($s1,&DWP(20,$key)); &xor ($s2,&DWP(24,$key)); &xor ($s3,&DWP(28,$key)); &ret (); &function_end_B("_x86_AES_decrypt_compact"); ###################################################################### # "Compact" SSE block function. ###################################################################### sub sse_deccompact() { &pshufw ("mm1","mm0",0x0c); # 7, 6, 1, 0 &pshufw ("mm5","mm4",0x09); # 13,12,11,10 &movd ("eax","mm1"); # 7, 6, 1, 0 &movd ("ebx","mm5"); # 13,12,11,10 &mov ($__key,$key); &movz ($acc,&LB("eax")); # 0 &movz ("edx",&HB("eax")); # 1 &pshufw ("mm2","mm0",0x06); # 3, 2, 5, 4 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0 &movz ($key,&LB("ebx")); # 10 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1 &shr ("eax",16); # 7, 6 &shl ("edx",8); # 1 &movz ($acc,&BP(-128,$tbl,$key,1)); # 10 &movz ($key,&HB("ebx")); # 11 &shl ($acc,16); # 10 &pshufw ("mm6","mm4",0x03); # 9, 8,15,14 &or ("ecx",$acc); # 10 &movz ($acc,&BP(-128,$tbl,$key,1)); # 11 &movz ($key,&HB("eax")); # 7 &shl ($acc,24); # 11 &shr ("ebx",16); # 13,12 &or ("edx",$acc); # 11 &movz ($acc,&BP(-128,$tbl,$key,1)); # 7 &movz ($key,&HB("ebx")); # 13 &shl ($acc,24); # 7 &or ("ecx",$acc); # 7 &movz ($acc,&BP(-128,$tbl,$key,1)); # 13 &movz ($key,&LB("eax")); # 6 &shl ($acc,8); # 13 &movd ("eax","mm2"); # 3, 2, 5, 4 &or ("ecx",$acc); # 13 &movz ($acc,&BP(-128,$tbl,$key,1)); # 6 &movz ($key,&LB("ebx")); # 12 &shl ($acc,16); # 6 &movd ("ebx","mm6"); # 9, 8,15,14 &movd ("mm0","ecx"); # t[0] collected &movz ("ecx",&BP(-128,$tbl,$key,1)); # 12 &movz ($key,&LB("eax")); # 4 &or ("ecx",$acc); # 12 &movz ($acc,&BP(-128,$tbl,$key,1)); # 4 &movz ($key,&LB("ebx")); # 14 &or ("edx",$acc); # 4 &movz ($acc,&BP(-128,$tbl,$key,1)); # 14 &movz ($key,&HB("eax")); # 5 &shl ($acc,16); # 14 &shr ("eax",16); # 3, 2 &or ("edx",$acc); # 14 &movz ($acc,&BP(-128,$tbl,$key,1)); # 5 &movz ($key,&HB("ebx")); # 15 &shr ("ebx",16); # 9, 8 &shl ($acc,8); # 5 &movd ("mm1","edx"); # t[1] collected &movz ("edx",&BP(-128,$tbl,$key,1)); # 15 &movz ($key,&HB("ebx")); # 9 &shl ("edx",24); # 15 &and ("ebx",0xff); # 8 &or ("edx",$acc); # 15 &punpckldq ("mm0","mm1"); # t[0,1] collected &movz ($acc,&BP(-128,$tbl,$key,1)); # 9 &movz ($key,&LB("eax")); # 2 &shl ($acc,8); # 9 &movz ("eax",&HB("eax")); # 3 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 8 &or ("ecx",$acc); # 9 &movz ($acc,&BP(-128,$tbl,$key,1)); # 2 &or ("edx","ebx"); # 8 &shl ($acc,16); # 2 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 3 &or ("edx",$acc); # 2 &shl ("eax",24); # 3 &or ("ecx","eax"); # 3 &mov ($key,$__key); &movd ("mm4","edx"); # t[2] collected &movd ("mm5","ecx"); # t[3] collected &punpckldq ("mm4","mm5"); # t[2,3] collected } if (!$x86only) { &function_begin_B("_sse_AES_decrypt_compact"); &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8 # note that caller is expected to allocate stack frame for me! &mov ($acc,&DWP(240,$key)); # load key->rounds &lea ($acc,&DWP(-2,$acc,$acc)); &lea ($acc,&DWP(0,$key,$acc,8)); &mov ($__end,$acc); # end of key schedule &mov ($s0,0x1b1b1b1b); # magic constant &mov (&DWP(8,"esp"),$s0); &mov (&DWP(12,"esp"),$s0); # prefetch Td4 &mov ($s0,&DWP(0-128,$tbl)); &mov ($s1,&DWP(32-128,$tbl)); &mov ($s2,&DWP(64-128,$tbl)); &mov ($s3,&DWP(96-128,$tbl)); &mov ($s0,&DWP(128-128,$tbl)); &mov ($s1,&DWP(160-128,$tbl)); &mov ($s2,&DWP(192-128,$tbl)); &mov ($s3,&DWP(224-128,$tbl)); &set_label("loop",16); &sse_deccompact(); &add ($key,16); &cmp ($key,$__end); &ja (&label("out")); # ROTATE(x^y,N) == ROTATE(x,N)^ROTATE(y,N) &movq ("mm3","mm0"); &movq ("mm7","mm4"); &movq ("mm2","mm0",1); &movq ("mm6","mm4",1); &movq ("mm1","mm0"); &movq ("mm5","mm4"); &pshufw ("mm0","mm0",0xb1); &pshufw ("mm4","mm4",0xb1);# = ROTATE(tp0,16) &pslld ("mm2",8); &pslld ("mm6",8); &psrld ("mm3",8); &psrld ("mm7",8); &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<8 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>8 &pslld ("mm2",16); &pslld ("mm6",16); &psrld ("mm3",16); &psrld ("mm7",16); &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<24 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>24 &movq ("mm3",&QWP(8,"esp")); &pxor ("mm2","mm2"); &pxor ("mm6","mm6"); &pcmpgtb("mm2","mm1"); &pcmpgtb("mm6","mm5"); &pand ("mm2","mm3"); &pand ("mm6","mm3"); &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); &pxor ("mm1","mm2"); &pxor ("mm5","mm6"); # tp2 &movq ("mm3","mm1"); &movq ("mm7","mm5"); &movq ("mm2","mm1"); &movq ("mm6","mm5"); &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp2 &pslld ("mm3",24); &pslld ("mm7",24); &psrld ("mm2",8); &psrld ("mm6",8); &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp2<<24 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp2>>8 &movq ("mm2",&QWP(8,"esp")); &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5"); &pand ("mm3","mm2"); &pand ("mm7","mm2"); &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp4 &pshufw ("mm3","mm1",0xb1); &pshufw ("mm7","mm5",0xb1); &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp4 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= ROTATE(tp4,16) &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5"); &pand ("mm3","mm2"); &pand ("mm7","mm2"); &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp8 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8 &movq ("mm3","mm1"); &movq ("mm7","mm5"); &pshufw ("mm2","mm1",0xb1); &pshufw ("mm6","mm5",0xb1); &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(tp8,16) &pslld ("mm1",8); &pslld ("mm5",8); &psrld ("mm3",8); &psrld ("mm7",8); &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key)); &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<8 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>8 &mov ($s0,&DWP(0-128,$tbl)); &pslld ("mm1",16); &pslld ("mm5",16); &mov ($s1,&DWP(64-128,$tbl)); &psrld ("mm3",16); &psrld ("mm7",16); &mov ($s2,&DWP(128-128,$tbl)); &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<24 &mov ($s3,&DWP(192-128,$tbl)); &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>24 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); &jmp (&label("loop")); &set_label("out",16); &pxor ("mm0",&QWP(0,$key)); &pxor ("mm4",&QWP(8,$key)); &ret (); &function_end_B("_sse_AES_decrypt_compact"); } ###################################################################### # Vanilla block function. ###################################################################### sub decstep() { my ($i,$td,@s) = @_; my $tmp = $key; my $out = $i==3?$s[0]:$acc; # no instructions are reordered, as performance appears # optimal... or rather that all attempts to reorder didn't # result in better performance [which by the way is not a # bit lower than ecryption]. if($i==3) { &mov ($key,$__key); } else { &mov ($out,$s[0]); } &and ($out,0xFF); &mov ($out,&DWP(0,$td,$out,8)); if ($i==3) { $tmp=$s[1]; } &movz ($tmp,&HB($s[1])); &xor ($out,&DWP(3,$td,$tmp,8)); if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } else { &mov ($tmp,$s[2]); } &shr ($tmp,16); &and ($tmp,0xFF); &xor ($out,&DWP(2,$td,$tmp,8)); if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); } else { &mov ($tmp,$s[3]); } &shr ($tmp,24); &xor ($out,&DWP(1,$td,$tmp,8)); if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } if ($i==3) { &mov ($s[3],$__s0); } &comment(); } sub declast() { my ($i,$td,@s)=@_; my $tmp = $key; my $out = $i==3?$s[0]:$acc; if($i==0) { &lea ($td,&DWP(2048+128,$td)); &mov ($tmp,&DWP(0-128,$td)); &mov ($acc,&DWP(32-128,$td)); &mov ($tmp,&DWP(64-128,$td)); &mov ($acc,&DWP(96-128,$td)); &mov ($tmp,&DWP(128-128,$td)); &mov ($acc,&DWP(160-128,$td)); &mov ($tmp,&DWP(192-128,$td)); &mov ($acc,&DWP(224-128,$td)); &lea ($td,&DWP(-128,$td)); } if($i==3) { &mov ($key,$__key); } else { &mov ($out,$s[0]); } &and ($out,0xFF); &movz ($out,&BP(0,$td,$out,1)); if ($i==3) { $tmp=$s[1]; } &movz ($tmp,&HB($s[1])); &movz ($tmp,&BP(0,$td,$tmp,1)); &shl ($tmp,8); &xor ($out,$tmp); if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } else { mov ($tmp,$s[2]); } &shr ($tmp,16); &and ($tmp,0xFF); &movz ($tmp,&BP(0,$td,$tmp,1)); &shl ($tmp,16); &xor ($out,$tmp); if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); } else { &mov ($tmp,$s[3]); } &shr ($tmp,24); &movz ($tmp,&BP(0,$td,$tmp,1)); &shl ($tmp,24); &xor ($out,$tmp); if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } if ($i==3) { &mov ($s[3],$__s0); &lea ($td,&DWP(-2048,$td)); } } &function_begin_B("_x86_AES_decrypt"); # note that caller is expected to allocate stack frame for me! &mov ($__key,$key); # save key &xor ($s0,&DWP(0,$key)); # xor with key &xor ($s1,&DWP(4,$key)); &xor ($s2,&DWP(8,$key)); &xor ($s3,&DWP(12,$key)); &mov ($acc,&DWP(240,$key)); # load key->rounds if ($small_footprint) { &lea ($acc,&DWP(-2,$acc,$acc)); &lea ($acc,&DWP(0,$key,$acc,8)); &mov ($__end,$acc); # end of key schedule &set_label("loop",16); &decstep(0,$tbl,$s0,$s3,$s2,$s1); &decstep(1,$tbl,$s1,$s0,$s3,$s2); &decstep(2,$tbl,$s2,$s1,$s0,$s3); &decstep(3,$tbl,$s3,$s2,$s1,$s0); &add ($key,16); # advance rd_key &xor ($s0,&DWP(0,$key)); &xor ($s1,&DWP(4,$key)); &xor ($s2,&DWP(8,$key)); &xor ($s3,&DWP(12,$key)); &cmp ($key,$__end); &mov ($__key,$key); &jb (&label("loop")); } else { &cmp ($acc,10); &jle (&label("10rounds")); &cmp ($acc,12); &jle (&label("12rounds")); &set_label("14rounds",4); for ($i=1;$i<3;$i++) { &decstep(0,$tbl,$s0,$s3,$s2,$s1); &decstep(1,$tbl,$s1,$s0,$s3,$s2); &decstep(2,$tbl,$s2,$s1,$s0,$s3); &decstep(3,$tbl,$s3,$s2,$s1,$s0); &xor ($s0,&DWP(16*$i+0,$key)); &xor ($s1,&DWP(16*$i+4,$key)); &xor ($s2,&DWP(16*$i+8,$key)); &xor ($s3,&DWP(16*$i+12,$key)); } &add ($key,32); &mov ($__key,$key); # advance rd_key &set_label("12rounds",4); for ($i=1;$i<3;$i++) { &decstep(0,$tbl,$s0,$s3,$s2,$s1); &decstep(1,$tbl,$s1,$s0,$s3,$s2); &decstep(2,$tbl,$s2,$s1,$s0,$s3); &decstep(3,$tbl,$s3,$s2,$s1,$s0); &xor ($s0,&DWP(16*$i+0,$key)); &xor ($s1,&DWP(16*$i+4,$key)); &xor ($s2,&DWP(16*$i+8,$key)); &xor ($s3,&DWP(16*$i+12,$key)); } &add ($key,32); &mov ($__key,$key); # advance rd_key &set_label("10rounds",4); for ($i=1;$i<10;$i++) { &decstep(0,$tbl,$s0,$s3,$s2,$s1); &decstep(1,$tbl,$s1,$s0,$s3,$s2); &decstep(2,$tbl,$s2,$s1,$s0,$s3); &decstep(3,$tbl,$s3,$s2,$s1,$s0); &xor ($s0,&DWP(16*$i+0,$key)); &xor ($s1,&DWP(16*$i+4,$key)); &xor ($s2,&DWP(16*$i+8,$key)); &xor ($s3,&DWP(16*$i+12,$key)); } } &declast(0,$tbl,$s0,$s3,$s2,$s1); &declast(1,$tbl,$s1,$s0,$s3,$s2); &declast(2,$tbl,$s2,$s1,$s0,$s3); &declast(3,$tbl,$s3,$s2,$s1,$s0); &add ($key,$small_footprint?16:160); &xor ($s0,&DWP(0,$key)); &xor ($s1,&DWP(4,$key)); &xor ($s2,&DWP(8,$key)); &xor ($s3,&DWP(12,$key)); &ret (); &set_label("AES_Td",64); # Yes! I keep it in the code segment! &_data_word(0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a); &_data_word(0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b); &_data_word(0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5); &_data_word(0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5); &_data_word(0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d); &_data_word(0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b); &_data_word(0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295); &_data_word(0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e); &_data_word(0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927); &_data_word(0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d); &_data_word(0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362); &_data_word(0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9); &_data_word(0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52); &_data_word(0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566); &_data_word(0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3); &_data_word(0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed); &_data_word(0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e); &_data_word(0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4); &_data_word(0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4); &_data_word(0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd); &_data_word(0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d); &_data_word(0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060); &_data_word(0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967); &_data_word(0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879); &_data_word(0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000); &_data_word(0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c); &_data_word(0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36); &_data_word(0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624); &_data_word(0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b); &_data_word(0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c); &_data_word(0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12); &_data_word(0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14); &_data_word(0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3); &_data_word(0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b); &_data_word(0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8); &_data_word(0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684); &_data_word(0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7); &_data_word(0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177); &_data_word(0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947); &_data_word(0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322); &_data_word(0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498); &_data_word(0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f); &_data_word(0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54); &_data_word(0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382); &_data_word(0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf); &_data_word(0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb); &_data_word(0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83); &_data_word(0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef); &_data_word(0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029); &_data_word(0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235); &_data_word(0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733); &_data_word(0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117); &_data_word(0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4); &_data_word(0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546); &_data_word(0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb); &_data_word(0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d); &_data_word(0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb); &_data_word(0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a); &_data_word(0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773); &_data_word(0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478); &_data_word(0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2); &_data_word(0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff); &_data_word(0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664); &_data_word(0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0); #Td4: # four copies of Td4 to choose from to avoid L1 aliasing &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); &function_end_B("_x86_AES_decrypt"); # void asm_AES_decrypt (const void *inp,void *out,const AES_KEY *key); &function_begin("asm_AES_decrypt"); &mov ($acc,&wparam(0)); # load inp &mov ($key,&wparam(2)); # load key &mov ($s0,"esp"); &sub ("esp",36); &and ("esp",-64); # align to cache-line # place stack frame just "above" the key schedule &lea ($s1,&DWP(-64-63,$key)); &sub ($s1,"esp"); &neg ($s1); &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line &sub ("esp",$s1); &add ("esp",4); # 4 is reserved for caller's return address &mov ($_esp,$s0); # save stack pointer &call (&label("pic_point")); # make it PIC! &set_label("pic_point"); &blindpop($tbl); &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only); &lea ($tbl,&DWP(&label("AES_Td")."-".&label("pic_point"),$tbl)); # pick Td4 copy which can't "overlap" with stack frame or key schedule &lea ($s1,&DWP(768-4,"esp")); &sub ($s1,$tbl); &and ($s1,0x300); &lea ($tbl,&DWP(2048+128,$tbl,$s1)); if (!$x86only) { &bt (&DWP(0,$s0),25); # check for SSE bit &jnc (&label("x86")); &movq ("mm0",&QWP(0,$acc)); &movq ("mm4",&QWP(8,$acc)); &call ("_sse_AES_decrypt_compact"); &mov ("esp",$_esp); # restore stack pointer &mov ($acc,&wparam(1)); # load out &movq (&QWP(0,$acc),"mm0"); # write output data &movq (&QWP(8,$acc),"mm4"); &emms (); &function_end_A(); } &set_label("x86",16); &mov ($_tbl,$tbl); &mov ($s0,&DWP(0,$acc)); # load input data &mov ($s1,&DWP(4,$acc)); &mov ($s2,&DWP(8,$acc)); &mov ($s3,&DWP(12,$acc)); &call ("_x86_AES_decrypt_compact"); &mov ("esp",$_esp); # restore stack pointer &mov ($acc,&wparam(1)); # load out &mov (&DWP(0,$acc),$s0); # write output data &mov (&DWP(4,$acc),$s1); &mov (&DWP(8,$acc),$s2); &mov (&DWP(12,$acc),$s3); &function_end("asm_AES_decrypt"); # void asm_AES_cbc_encrypt (const void char *inp, unsigned char *out, # size_t length, const AES_KEY *key, # unsigned char *ivp,const int enc); { # stack frame layout # -4(%esp) # return address 0(%esp) # 0(%esp) # s0 backing store 4(%esp) # 4(%esp) # s1 backing store 8(%esp) # 8(%esp) # s2 backing store 12(%esp) # 12(%esp) # s3 backing store 16(%esp) # 16(%esp) # key backup 20(%esp) # 20(%esp) # end of key schedule 24(%esp) # 24(%esp) # %ebp backup 28(%esp) # 28(%esp) # %esp backup my $_inp=&DWP(32,"esp"); # copy of wparam(0) my $_out=&DWP(36,"esp"); # copy of wparam(1) my $_len=&DWP(40,"esp"); # copy of wparam(2) my $_key=&DWP(44,"esp"); # copy of wparam(3) my $_ivp=&DWP(48,"esp"); # copy of wparam(4) my $_tmp=&DWP(52,"esp"); # volatile variable # my $ivec=&DWP(60,"esp"); # ivec[16] my $aes_key=&DWP(76,"esp"); # copy of aes_key my $mark=&DWP(76+240,"esp"); # copy of aes_key->rounds &function_begin("asm_AES_cbc_encrypt"); &mov ($s2 eq "ecx"? $s2 : "",&wparam(2)); # load len &cmp ($s2,0); &je (&label("drop_out")); &call (&label("pic_point")); # make it PIC! &set_label("pic_point"); &blindpop($tbl); &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only); &cmp (&wparam(5),0); &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl)); &jne (&label("picked_te")); &lea ($tbl,&DWP(&label("AES_Td")."-".&label("AES_Te"),$tbl)); &set_label("picked_te"); # one can argue if this is required &pushf (); &cld (); &cmp ($s2,$speed_limit); &jb (&label("slow_way")); &test ($s2,15); &jnz (&label("slow_way")); if (!$x86only) { &bt (&DWP(0,$s0),28); # check for hyper-threading bit &jc (&label("slow_way")); } # pre-allocate aligned stack frame... &lea ($acc,&DWP(-80-244,"esp")); &and ($acc,-64); # ... and make sure it doesn't alias with $tbl modulo 4096 &mov ($s0,$tbl); &lea ($s1,&DWP(2048+256,$tbl)); &mov ($s3,$acc); &and ($s0,0xfff); # s = %ebp&0xfff &and ($s1,0xfff); # e = (%ebp+2048+256)&0xfff &and ($s3,0xfff); # p = %esp&0xfff &cmp ($s3,$s1); # if (p>=e) %esp =- (p-e); &jb (&label("tbl_break_out")); &sub ($s3,$s1); &sub ($acc,$s3); &jmp (&label("tbl_ok")); &set_label("tbl_break_out",4); # else %esp -= (p-s)&0xfff + framesz; &sub ($s3,$s0); &and ($s3,0xfff); &add ($s3,384); &sub ($acc,$s3); &set_label("tbl_ok",4); &lea ($s3,&wparam(0)); # obtain pointer to parameter block &exch ("esp",$acc); # allocate stack frame &add ("esp",4); # reserve for return address! &mov ($_tbl,$tbl); # save %ebp &mov ($_esp,$acc); # save %esp &mov ($s0,&DWP(0,$s3)); # load inp &mov ($s1,&DWP(4,$s3)); # load out #&mov ($s2,&DWP(8,$s3)); # load len &mov ($key,&DWP(12,$s3)); # load key &mov ($acc,&DWP(16,$s3)); # load ivp &mov ($s3,&DWP(20,$s3)); # load enc flag &mov ($_inp,$s0); # save copy of inp &mov ($_out,$s1); # save copy of out &mov ($_len,$s2); # save copy of len &mov ($_key,$key); # save copy of key &mov ($_ivp,$acc); # save copy of ivp &mov ($mark,0); # copy of aes_key->rounds = 0; # do we copy key schedule to stack? &mov ($s1 eq "ebx" ? $s1 : "",$key); &mov ($s2 eq "ecx" ? $s2 : "",244/4); &sub ($s1,$tbl); &mov ("esi",$key); &and ($s1,0xfff); &lea ("edi",$aes_key); &cmp ($s1,2048+256); &jb (&label("do_copy")); &cmp ($s1,4096-244); &jb (&label("skip_copy")); &set_label("do_copy",4); &mov ($_key,"edi"); &data_word(0xA5F3F689); # rep movsd &set_label("skip_copy"); &mov ($key,16); &set_label("prefetch_tbl",4); &mov ($s0,&DWP(0,$tbl)); &mov ($s1,&DWP(32,$tbl)); &mov ($s2,&DWP(64,$tbl)); &mov ($acc,&DWP(96,$tbl)); &lea ($tbl,&DWP(128,$tbl)); &sub ($key,1); &jnz (&label("prefetch_tbl")); &sub ($tbl,2048); &mov ($acc,$_inp); &mov ($key,$_ivp); &cmp ($s3,0); &je (&label("fast_decrypt")); #----------------------------- ENCRYPT -----------------------------# &mov ($s0,&DWP(0,$key)); # load iv &mov ($s1,&DWP(4,$key)); &set_label("fast_enc_loop",16); &mov ($s2,&DWP(8,$key)); &mov ($s3,&DWP(12,$key)); &xor ($s0,&DWP(0,$acc)); # xor input data &xor ($s1,&DWP(4,$acc)); &xor ($s2,&DWP(8,$acc)); &xor ($s3,&DWP(12,$acc)); &mov ($key,$_key); # load key &call ("_x86_AES_encrypt"); &mov ($acc,$_inp); # load inp &mov ($key,$_out); # load out &mov (&DWP(0,$key),$s0); # save output data &mov (&DWP(4,$key),$s1); &mov (&DWP(8,$key),$s2); &mov (&DWP(12,$key),$s3); &lea ($acc,&DWP(16,$acc)); # advance inp &mov ($s2,$_len); # load len &mov ($_inp,$acc); # save inp &lea ($s3,&DWP(16,$key)); # advance out &mov ($_out,$s3); # save out &sub ($s2,16); # decrease len &mov ($_len,$s2); # save len &jnz (&label("fast_enc_loop")); &mov ($acc,$_ivp); # load ivp &mov ($s2,&DWP(8,$key)); # restore last 2 dwords &mov ($s3,&DWP(12,$key)); &mov (&DWP(0,$acc),$s0); # save ivec &mov (&DWP(4,$acc),$s1); &mov (&DWP(8,$acc),$s2); &mov (&DWP(12,$acc),$s3); &cmp ($mark,0); # was the key schedule copied? &mov ("edi",$_key); &je (&label("skip_ezero")); # zero copy of key schedule &mov ("ecx",240/4); &xor ("eax","eax"); &align (4); &data_word(0xABF3F689); # rep stosd &set_label("skip_ezero"); &mov ("esp",$_esp); &popf (); &set_label("drop_out"); &function_end_A(); &pushf (); # kludge, never executed #----------------------------- DECRYPT -----------------------------# &set_label("fast_decrypt",16); &cmp ($acc,$_out); &je (&label("fast_dec_in_place")); # in-place processing... &mov ($_tmp,$key); &align (4); &set_label("fast_dec_loop",16); &mov ($s0,&DWP(0,$acc)); # read input &mov ($s1,&DWP(4,$acc)); &mov ($s2,&DWP(8,$acc)); &mov ($s3,&DWP(12,$acc)); &mov ($key,$_key); # load key &call ("_x86_AES_decrypt"); &mov ($key,$_tmp); # load ivp &mov ($acc,$_len); # load len &xor ($s0,&DWP(0,$key)); # xor iv &xor ($s1,&DWP(4,$key)); &xor ($s2,&DWP(8,$key)); &xor ($s3,&DWP(12,$key)); &mov ($key,$_out); # load out &mov ($acc,$_inp); # load inp &mov (&DWP(0,$key),$s0); # write output &mov (&DWP(4,$key),$s1); &mov (&DWP(8,$key),$s2); &mov (&DWP(12,$key),$s3); &mov ($s2,$_len); # load len &mov ($_tmp,$acc); # save ivp &lea ($acc,&DWP(16,$acc)); # advance inp &mov ($_inp,$acc); # save inp &lea ($key,&DWP(16,$key)); # advance out &mov ($_out,$key); # save out &sub ($s2,16); # decrease len &mov ($_len,$s2); # save len &jnz (&label("fast_dec_loop")); &mov ($key,$_tmp); # load temp ivp &mov ($acc,$_ivp); # load user ivp &mov ($s0,&DWP(0,$key)); # load iv &mov ($s1,&DWP(4,$key)); &mov ($s2,&DWP(8,$key)); &mov ($s3,&DWP(12,$key)); &mov (&DWP(0,$acc),$s0); # copy back to user &mov (&DWP(4,$acc),$s1); &mov (&DWP(8,$acc),$s2); &mov (&DWP(12,$acc),$s3); &jmp (&label("fast_dec_out")); &set_label("fast_dec_in_place",16); &set_label("fast_dec_in_place_loop"); &mov ($s0,&DWP(0,$acc)); # read input &mov ($s1,&DWP(4,$acc)); &mov ($s2,&DWP(8,$acc)); &mov ($s3,&DWP(12,$acc)); &lea ($key,$ivec); &mov (&DWP(0,$key),$s0); # copy to temp &mov (&DWP(4,$key),$s1); &mov (&DWP(8,$key),$s2); &mov (&DWP(12,$key),$s3); &mov ($key,$_key); # load key &call ("_x86_AES_decrypt"); &mov ($key,$_ivp); # load ivp &mov ($acc,$_out); # load out &xor ($s0,&DWP(0,$key)); # xor iv &xor ($s1,&DWP(4,$key)); &xor ($s2,&DWP(8,$key)); &xor ($s3,&DWP(12,$key)); &mov (&DWP(0,$acc),$s0); # write output &mov (&DWP(4,$acc),$s1); &mov (&DWP(8,$acc),$s2); &mov (&DWP(12,$acc),$s3); &lea ($acc,&DWP(16,$acc)); # advance out &mov ($_out,$acc); # save out &lea ($acc,$ivec); &mov ($s0,&DWP(0,$acc)); # read temp &mov ($s1,&DWP(4,$acc)); &mov ($s2,&DWP(8,$acc)); &mov ($s3,&DWP(12,$acc)); &mov (&DWP(0,$key),$s0); # copy iv &mov (&DWP(4,$key),$s1); &mov (&DWP(8,$key),$s2); &mov (&DWP(12,$key),$s3); &mov ($acc,$_inp); # load inp &mov ($s2,$_len); # load len &lea ($acc,&DWP(16,$acc)); # advance inp &mov ($_inp,$acc); # save inp &sub ($s2,16); # decrease len &mov ($_len,$s2); # save len &jnz (&label("fast_dec_in_place_loop")); &set_label("fast_dec_out",4); &cmp ($mark,0); # was the key schedule copied? &mov ("edi",$_key); &je (&label("skip_dzero")); # zero copy of key schedule &mov ("ecx",240/4); &xor ("eax","eax"); &align (4); &data_word(0xABF3F689); # rep stosd &set_label("skip_dzero"); &mov ("esp",$_esp); &popf (); &function_end_A(); &pushf (); # kludge, never executed #--------------------------- SLOW ROUTINE ---------------------------# &set_label("slow_way",16); &mov ($s0,&DWP(0,$s0)) if (!$x86only);# load OPENSSL_ia32cap &mov ($key,&wparam(3)); # load key # pre-allocate aligned stack frame... &lea ($acc,&DWP(-80,"esp")); &and ($acc,-64); # ... and make sure it doesn't alias with $key modulo 1024 &lea ($s1,&DWP(-80-63,$key)); &sub ($s1,$acc); &neg ($s1); &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line &sub ($acc,$s1); # pick S-box copy which can't overlap with stack frame or $key &lea ($s1,&DWP(768,$acc)); &sub ($s1,$tbl); &and ($s1,0x300); &lea ($tbl,&DWP(2048+128,$tbl,$s1)); &lea ($s3,&wparam(0)); # pointer to parameter block &exch ("esp",$acc); &add ("esp",4); # reserve for return address! &mov ($_tbl,$tbl); # save %ebp &mov ($_esp,$acc); # save %esp &mov ($_tmp,$s0); # save OPENSSL_ia32cap &mov ($s0,&DWP(0,$s3)); # load inp &mov ($s1,&DWP(4,$s3)); # load out #&mov ($s2,&DWP(8,$s3)); # load len #&mov ($key,&DWP(12,$s3)); # load key &mov ($acc,&DWP(16,$s3)); # load ivp &mov ($s3,&DWP(20,$s3)); # load enc flag &mov ($_inp,$s0); # save copy of inp &mov ($_out,$s1); # save copy of out &mov ($_len,$s2); # save copy of len &mov ($_key,$key); # save copy of key &mov ($_ivp,$acc); # save copy of ivp &mov ($key,$acc); &mov ($acc,$s0); &cmp ($s3,0); &je (&label("slow_decrypt")); #--------------------------- SLOW ENCRYPT ---------------------------# &cmp ($s2,16); &mov ($s3,$s1); &jb (&label("slow_enc_tail")); if (!$x86only) { &bt ($_tmp,25); # check for SSE bit &jnc (&label("slow_enc_x86")); &movq ("mm0",&QWP(0,$key)); # load iv &movq ("mm4",&QWP(8,$key)); &set_label("slow_enc_loop_sse",16); &pxor ("mm0",&QWP(0,$acc)); # xor input data &pxor ("mm4",&QWP(8,$acc)); &mov ($key,$_key); &call ("_sse_AES_encrypt_compact"); &mov ($acc,$_inp); # load inp &mov ($key,$_out); # load out &mov ($s2,$_len); # load len &movq (&QWP(0,$key),"mm0"); # save output data &movq (&QWP(8,$key),"mm4"); &lea ($acc,&DWP(16,$acc)); # advance inp &mov ($_inp,$acc); # save inp &lea ($s3,&DWP(16,$key)); # advance out &mov ($_out,$s3); # save out &sub ($s2,16); # decrease len &cmp ($s2,16); &mov ($_len,$s2); # save len &jae (&label("slow_enc_loop_sse")); &test ($s2,15); &jnz (&label("slow_enc_tail")); &mov ($acc,$_ivp); # load ivp &movq (&QWP(0,$acc),"mm0"); # save ivec &movq (&QWP(8,$acc),"mm4"); &emms (); &mov ("esp",$_esp); &popf (); &function_end_A(); &pushf (); # kludge, never executed } &set_label("slow_enc_x86",16); &mov ($s0,&DWP(0,$key)); # load iv &mov ($s1,&DWP(4,$key)); &set_label("slow_enc_loop_x86",4); &mov ($s2,&DWP(8,$key)); &mov ($s3,&DWP(12,$key)); &xor ($s0,&DWP(0,$acc)); # xor input data &xor ($s1,&DWP(4,$acc)); &xor ($s2,&DWP(8,$acc)); &xor ($s3,&DWP(12,$acc)); &mov ($key,$_key); # load key &call ("_x86_AES_encrypt_compact"); &mov ($acc,$_inp); # load inp &mov ($key,$_out); # load out &mov (&DWP(0,$key),$s0); # save output data &mov (&DWP(4,$key),$s1); &mov (&DWP(8,$key),$s2); &mov (&DWP(12,$key),$s3); &mov ($s2,$_len); # load len &lea ($acc,&DWP(16,$acc)); # advance inp &mov ($_inp,$acc); # save inp &lea ($s3,&DWP(16,$key)); # advance out &mov ($_out,$s3); # save out &sub ($s2,16); # decrease len &cmp ($s2,16); &mov ($_len,$s2); # save len &jae (&label("slow_enc_loop_x86")); &test ($s2,15); &jnz (&label("slow_enc_tail")); &mov ($acc,$_ivp); # load ivp &mov ($s2,&DWP(8,$key)); # restore last dwords &mov ($s3,&DWP(12,$key)); &mov (&DWP(0,$acc),$s0); # save ivec &mov (&DWP(4,$acc),$s1); &mov (&DWP(8,$acc),$s2); &mov (&DWP(12,$acc),$s3); &mov ("esp",$_esp); &popf (); &function_end_A(); &pushf (); # kludge, never executed &set_label("slow_enc_tail",16); &emms () if (!$x86only); &mov ($key eq "edi"? $key:"",$s3); # load out to edi &mov ($s1,16); &sub ($s1,$s2); &cmp ($key,$acc eq "esi"? $acc:""); # compare with inp &je (&label("enc_in_place")); &align (4); &data_word(0xA4F3F689); # rep movsb # copy input &jmp (&label("enc_skip_in_place")); &set_label("enc_in_place"); &lea ($key,&DWP(0,$key,$s2)); &set_label("enc_skip_in_place"); &mov ($s2,$s1); &xor ($s0,$s0); &align (4); &data_word(0xAAF3F689); # rep stosb # zero tail &mov ($key,$_ivp); # restore ivp &mov ($acc,$s3); # output as input &mov ($s0,&DWP(0,$key)); &mov ($s1,&DWP(4,$key)); &mov ($_len,16); # len=16 &jmp (&label("slow_enc_loop_x86")); # one more spin... #--------------------------- SLOW DECRYPT ---------------------------# &set_label("slow_decrypt",16); if (!$x86only) { &bt ($_tmp,25); # check for SSE bit &jnc (&label("slow_dec_loop_x86")); &set_label("slow_dec_loop_sse",4); &movq ("mm0",&QWP(0,$acc)); # read input &movq ("mm4",&QWP(8,$acc)); &mov ($key,$_key); &call ("_sse_AES_decrypt_compact"); &mov ($acc,$_inp); # load inp &lea ($s0,$ivec); &mov ($s1,$_out); # load out &mov ($s2,$_len); # load len &mov ($key,$_ivp); # load ivp &movq ("mm1",&QWP(0,$acc)); # re-read input &movq ("mm5",&QWP(8,$acc)); &pxor ("mm0",&QWP(0,$key)); # xor iv &pxor ("mm4",&QWP(8,$key)); &movq (&QWP(0,$key),"mm1"); # copy input to iv &movq (&QWP(8,$key),"mm5"); &sub ($s2,16); # decrease len &jc (&label("slow_dec_partial_sse")); &movq (&QWP(0,$s1),"mm0"); # write output &movq (&QWP(8,$s1),"mm4"); &lea ($s1,&DWP(16,$s1)); # advance out &mov ($_out,$s1); # save out &lea ($acc,&DWP(16,$acc)); # advance inp &mov ($_inp,$acc); # save inp &mov ($_len,$s2); # save len &jnz (&label("slow_dec_loop_sse")); &emms (); &mov ("esp",$_esp); &popf (); &function_end_A(); &pushf (); # kludge, never executed &set_label("slow_dec_partial_sse",16); &movq (&QWP(0,$s0),"mm0"); # save output to temp &movq (&QWP(8,$s0),"mm4"); &emms (); &add ($s2 eq "ecx" ? "ecx":"",16); &mov ("edi",$s1); # out &mov ("esi",$s0); # temp &align (4); &data_word(0xA4F3F689); # rep movsb # copy partial output &mov ("esp",$_esp); &popf (); &function_end_A(); &pushf (); # kludge, never executed } &set_label("slow_dec_loop_x86",16); &mov ($s0,&DWP(0,$acc)); # read input &mov ($s1,&DWP(4,$acc)); &mov ($s2,&DWP(8,$acc)); &mov ($s3,&DWP(12,$acc)); &lea ($key,$ivec); &mov (&DWP(0,$key),$s0); # copy to temp &mov (&DWP(4,$key),$s1); &mov (&DWP(8,$key),$s2); &mov (&DWP(12,$key),$s3); &mov ($key,$_key); # load key &call ("_x86_AES_decrypt_compact"); &mov ($key,$_ivp); # load ivp &mov ($acc,$_len); # load len &xor ($s0,&DWP(0,$key)); # xor iv &xor ($s1,&DWP(4,$key)); &xor ($s2,&DWP(8,$key)); &xor ($s3,&DWP(12,$key)); &sub ($acc,16); &jc (&label("slow_dec_partial_x86")); &mov ($_len,$acc); # save len &mov ($acc,$_out); # load out &mov (&DWP(0,$acc),$s0); # write output &mov (&DWP(4,$acc),$s1); &mov (&DWP(8,$acc),$s2); &mov (&DWP(12,$acc),$s3); &lea ($acc,&DWP(16,$acc)); # advance out &mov ($_out,$acc); # save out &lea ($acc,$ivec); &mov ($s0,&DWP(0,$acc)); # read temp &mov ($s1,&DWP(4,$acc)); &mov ($s2,&DWP(8,$acc)); &mov ($s3,&DWP(12,$acc)); &mov (&DWP(0,$key),$s0); # copy it to iv &mov (&DWP(4,$key),$s1); &mov (&DWP(8,$key),$s2); &mov (&DWP(12,$key),$s3); &mov ($acc,$_inp); # load inp &lea ($acc,&DWP(16,$acc)); # advance inp &mov ($_inp,$acc); # save inp &jnz (&label("slow_dec_loop_x86")); &mov ("esp",$_esp); &popf (); &function_end_A(); &pushf (); # kludge, never executed &set_label("slow_dec_partial_x86",16); &lea ($acc,$ivec); &mov (&DWP(0,$acc),$s0); # save output to temp &mov (&DWP(4,$acc),$s1); &mov (&DWP(8,$acc),$s2); &mov (&DWP(12,$acc),$s3); &mov ($acc,$_inp); &mov ($s0,&DWP(0,$acc)); # re-read input &mov ($s1,&DWP(4,$acc)); &mov ($s2,&DWP(8,$acc)); &mov ($s3,&DWP(12,$acc)); &mov (&DWP(0,$key),$s0); # copy it to iv &mov (&DWP(4,$key),$s1); &mov (&DWP(8,$key),$s2); &mov (&DWP(12,$key),$s3); &mov ("ecx",$_len); &mov ("edi",$_out); &lea ("esi",$ivec); &align (4); &data_word(0xA4F3F689); # rep movsb # copy partial output &mov ("esp",$_esp); &popf (); &function_end("asm_AES_cbc_encrypt"); } #------------------------------------------------------------------# sub enckey() { &movz ("esi",&LB("edx")); # rk[i]>>0 &movz ("ebx",&BP(-128,$tbl,"esi",1)); &movz ("esi",&HB("edx")); # rk[i]>>8 &shl ("ebx",24); &xor ("eax","ebx"); &movz ("ebx",&BP(-128,$tbl,"esi",1)); &shr ("edx",16); &movz ("esi",&LB("edx")); # rk[i]>>16 &xor ("eax","ebx"); &movz ("ebx",&BP(-128,$tbl,"esi",1)); &movz ("esi",&HB("edx")); # rk[i]>>24 &shl ("ebx",8); &xor ("eax","ebx"); &movz ("ebx",&BP(-128,$tbl,"esi",1)); &shl ("ebx",16); &xor ("eax","ebx"); &xor ("eax",&DWP(1024-128,$tbl,"ecx",4)); # rcon } &function_begin("_x86_AES_set_encrypt_key"); &mov ("esi",&wparam(1)); # user supplied key &mov ("edi",&wparam(3)); # private key schedule &test ("esi",-1); &jz (&label("badpointer")); &test ("edi",-1); &jz (&label("badpointer")); &call (&label("pic_point")); &set_label("pic_point"); &blindpop($tbl); &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl)); &lea ($tbl,&DWP(2048+128,$tbl)); # prefetch Te4 &mov ("eax",&DWP(0-128,$tbl)); &mov ("ebx",&DWP(32-128,$tbl)); &mov ("ecx",&DWP(64-128,$tbl)); &mov ("edx",&DWP(96-128,$tbl)); &mov ("eax",&DWP(128-128,$tbl)); &mov ("ebx",&DWP(160-128,$tbl)); &mov ("ecx",&DWP(192-128,$tbl)); &mov ("edx",&DWP(224-128,$tbl)); &mov ("ecx",&wparam(2)); # number of bits in key &cmp ("ecx",128); &je (&label("10rounds")); &cmp ("ecx",192); &je (&label("12rounds")); &cmp ("ecx",256); &je (&label("14rounds")); &mov ("eax",-2); # invalid number of bits &jmp (&label("exit")); &set_label("10rounds"); &mov ("eax",&DWP(0,"esi")); # copy first 4 dwords &mov ("ebx",&DWP(4,"esi")); &mov ("ecx",&DWP(8,"esi")); &mov ("edx",&DWP(12,"esi")); &mov (&DWP(0,"edi"),"eax"); &mov (&DWP(4,"edi"),"ebx"); &mov (&DWP(8,"edi"),"ecx"); &mov (&DWP(12,"edi"),"edx"); &xor ("ecx","ecx"); &jmp (&label("10shortcut")); &align (4); &set_label("10loop"); &mov ("eax",&DWP(0,"edi")); # rk[0] &mov ("edx",&DWP(12,"edi")); # rk[3] &set_label("10shortcut"); &enckey (); &mov (&DWP(16,"edi"),"eax"); # rk[4] &xor ("eax",&DWP(4,"edi")); &mov (&DWP(20,"edi"),"eax"); # rk[5] &xor ("eax",&DWP(8,"edi")); &mov (&DWP(24,"edi"),"eax"); # rk[6] &xor ("eax",&DWP(12,"edi")); &mov (&DWP(28,"edi"),"eax"); # rk[7] &inc ("ecx"); &add ("edi",16); &cmp ("ecx",10); &jl (&label("10loop")); &mov (&DWP(80,"edi"),10); # setup number of rounds &xor ("eax","eax"); &jmp (&label("exit")); &set_label("12rounds"); &mov ("eax",&DWP(0,"esi")); # copy first 6 dwords &mov ("ebx",&DWP(4,"esi")); &mov ("ecx",&DWP(8,"esi")); &mov ("edx",&DWP(12,"esi")); &mov (&DWP(0,"edi"),"eax"); &mov (&DWP(4,"edi"),"ebx"); &mov (&DWP(8,"edi"),"ecx"); &mov (&DWP(12,"edi"),"edx"); &mov ("ecx",&DWP(16,"esi")); &mov ("edx",&DWP(20,"esi")); &mov (&DWP(16,"edi"),"ecx"); &mov (&DWP(20,"edi"),"edx"); &xor ("ecx","ecx"); &jmp (&label("12shortcut")); &align (4); &set_label("12loop"); &mov ("eax",&DWP(0,"edi")); # rk[0] &mov ("edx",&DWP(20,"edi")); # rk[5] &set_label("12shortcut"); &enckey (); &mov (&DWP(24,"edi"),"eax"); # rk[6] &xor ("eax",&DWP(4,"edi")); &mov (&DWP(28,"edi"),"eax"); # rk[7] &xor ("eax",&DWP(8,"edi")); &mov (&DWP(32,"edi"),"eax"); # rk[8] &xor ("eax",&DWP(12,"edi")); &mov (&DWP(36,"edi"),"eax"); # rk[9] &cmp ("ecx",7); &je (&label("12break")); &inc ("ecx"); &xor ("eax",&DWP(16,"edi")); &mov (&DWP(40,"edi"),"eax"); # rk[10] &xor ("eax",&DWP(20,"edi")); &mov (&DWP(44,"edi"),"eax"); # rk[11] &add ("edi",24); &jmp (&label("12loop")); &set_label("12break"); &mov (&DWP(72,"edi"),12); # setup number of rounds &xor ("eax","eax"); &jmp (&label("exit")); &set_label("14rounds"); &mov ("eax",&DWP(0,"esi")); # copy first 8 dwords &mov ("ebx",&DWP(4,"esi")); &mov ("ecx",&DWP(8,"esi")); &mov ("edx",&DWP(12,"esi")); &mov (&DWP(0,"edi"),"eax"); &mov (&DWP(4,"edi"),"ebx"); &mov (&DWP(8,"edi"),"ecx"); &mov (&DWP(12,"edi"),"edx"); &mov ("eax",&DWP(16,"esi")); &mov ("ebx",&DWP(20,"esi")); &mov ("ecx",&DWP(24,"esi")); &mov ("edx",&DWP(28,"esi")); &mov (&DWP(16,"edi"),"eax"); &mov (&DWP(20,"edi"),"ebx"); &mov (&DWP(24,"edi"),"ecx"); &mov (&DWP(28,"edi"),"edx"); &xor ("ecx","ecx"); &jmp (&label("14shortcut")); &align (4); &set_label("14loop"); &mov ("edx",&DWP(28,"edi")); # rk[7] &set_label("14shortcut"); &mov ("eax",&DWP(0,"edi")); # rk[0] &enckey (); &mov (&DWP(32,"edi"),"eax"); # rk[8] &xor ("eax",&DWP(4,"edi")); &mov (&DWP(36,"edi"),"eax"); # rk[9] &xor ("eax",&DWP(8,"edi")); &mov (&DWP(40,"edi"),"eax"); # rk[10] &xor ("eax",&DWP(12,"edi")); &mov (&DWP(44,"edi"),"eax"); # rk[11] &cmp ("ecx",6); &je (&label("14break")); &inc ("ecx"); &mov ("edx","eax"); &mov ("eax",&DWP(16,"edi")); # rk[4] &movz ("esi",&LB("edx")); # rk[11]>>0 &movz ("ebx",&BP(-128,$tbl,"esi",1)); &movz ("esi",&HB("edx")); # rk[11]>>8 &xor ("eax","ebx"); &movz ("ebx",&BP(-128,$tbl,"esi",1)); &shr ("edx",16); &shl ("ebx",8); &movz ("esi",&LB("edx")); # rk[11]>>16 &xor ("eax","ebx"); &movz ("ebx",&BP(-128,$tbl,"esi",1)); &movz ("esi",&HB("edx")); # rk[11]>>24 &shl ("ebx",16); &xor ("eax","ebx"); &movz ("ebx",&BP(-128,$tbl,"esi",1)); &shl ("ebx",24); &xor ("eax","ebx"); &mov (&DWP(48,"edi"),"eax"); # rk[12] &xor ("eax",&DWP(20,"edi")); &mov (&DWP(52,"edi"),"eax"); # rk[13] &xor ("eax",&DWP(24,"edi")); &mov (&DWP(56,"edi"),"eax"); # rk[14] &xor ("eax",&DWP(28,"edi")); &mov (&DWP(60,"edi"),"eax"); # rk[15] &add ("edi",32); &jmp (&label("14loop")); &set_label("14break"); &mov (&DWP(48,"edi"),14); # setup number of rounds &xor ("eax","eax"); &jmp (&label("exit")); &set_label("badpointer"); &mov ("eax",-1); &set_label("exit"); &function_end("_x86_AES_set_encrypt_key"); # int asm_AES_set_encrypt_key(const unsigned char *userKey, const int bits, # AES_KEY *key) &function_begin_B("asm_AES_set_encrypt_key"); &call ("_x86_AES_set_encrypt_key"); &ret (); &function_end_B("asm_AES_set_encrypt_key"); sub deckey() { my ($i,$key,$tp1,$tp2,$tp4,$tp8) = @_; my $tmp = $tbl; &mov ($tmp,0x80808080); &and ($tmp,$tp1); &lea ($tp2,&DWP(0,$tp1,$tp1)); &mov ($acc,$tmp); &shr ($tmp,7); &sub ($acc,$tmp); &and ($tp2,0xfefefefe); &and ($acc,0x1b1b1b1b); &xor ($tp2,$acc); &mov ($tmp,0x80808080); &and ($tmp,$tp2); &lea ($tp4,&DWP(0,$tp2,$tp2)); &mov ($acc,$tmp); &shr ($tmp,7); &sub ($acc,$tmp); &and ($tp4,0xfefefefe); &and ($acc,0x1b1b1b1b); &xor ($tp2,$tp1); # tp2^tp1 &xor ($tp4,$acc); &mov ($tmp,0x80808080); &and ($tmp,$tp4); &lea ($tp8,&DWP(0,$tp4,$tp4)); &mov ($acc,$tmp); &shr ($tmp,7); &xor ($tp4,$tp1); # tp4^tp1 &sub ($acc,$tmp); &and ($tp8,0xfefefefe); &and ($acc,0x1b1b1b1b); &rotl ($tp1,8); # = ROTATE(tp1,8) &xor ($tp8,$acc); &mov ($tmp,&DWP(4*($i+1),$key)); # modulo-scheduled load &xor ($tp1,$tp2); &xor ($tp2,$tp8); &xor ($tp1,$tp4); &rotl ($tp2,24); &xor ($tp4,$tp8); &xor ($tp1,$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1) &rotl ($tp4,16); &xor ($tp1,$tp2); # ^= ROTATE(tp8^tp2^tp1,24) &rotl ($tp8,8); &xor ($tp1,$tp4); # ^= ROTATE(tp8^tp4^tp1,16) &mov ($tp2,$tmp); &xor ($tp1,$tp8); # ^= ROTATE(tp8,8) &mov (&DWP(4*$i,$key),$tp1); } # int asm_AES_set_decrypt_key(const unsigned char *userKey, const int bits, # AES_KEY *key) &function_begin_B("asm_AES_set_decrypt_key"); &call ("_x86_AES_set_encrypt_key"); &cmp ("eax",0); &je (&label("proceed")); &ret (); &set_label("proceed"); &push ("ebp"); &push ("ebx"); &push ("esi"); &push ("edi"); &mov ("esi",&wparam(2)); &mov ("ecx",&DWP(240,"esi")); # pull number of rounds &lea ("ecx",&DWP(0,"","ecx",4)); &lea ("edi",&DWP(0,"esi","ecx",4)); # pointer to last chunk &set_label("invert",4); # invert order of chunks &mov ("eax",&DWP(0,"esi")); &mov ("ebx",&DWP(4,"esi")); &mov ("ecx",&DWP(0,"edi")); &mov ("edx",&DWP(4,"edi")); &mov (&DWP(0,"edi"),"eax"); &mov (&DWP(4,"edi"),"ebx"); &mov (&DWP(0,"esi"),"ecx"); &mov (&DWP(4,"esi"),"edx"); &mov ("eax",&DWP(8,"esi")); &mov ("ebx",&DWP(12,"esi")); &mov ("ecx",&DWP(8,"edi")); &mov ("edx",&DWP(12,"edi")); &mov (&DWP(8,"edi"),"eax"); &mov (&DWP(12,"edi"),"ebx"); &mov (&DWP(8,"esi"),"ecx"); &mov (&DWP(12,"esi"),"edx"); &add ("esi",16); &sub ("edi",16); &cmp ("esi","edi"); &jne (&label("invert")); &mov ($key,&wparam(2)); &mov ($acc,&DWP(240,$key)); # pull number of rounds &lea ($acc,&DWP(-2,$acc,$acc)); &lea ($acc,&DWP(0,$key,$acc,8)); &mov (&wparam(2),$acc); &mov ($s0,&DWP(16,$key)); # modulo-scheduled load &set_label("permute",4); # permute the key schedule &add ($key,16); &deckey (0,$key,$s0,$s1,$s2,$s3); &deckey (1,$key,$s1,$s2,$s3,$s0); &deckey (2,$key,$s2,$s3,$s0,$s1); &deckey (3,$key,$s3,$s0,$s1,$s2); &cmp ($key,&wparam(2)); &jb (&label("permute")); &xor ("eax","eax"); # return success &function_end("asm_AES_set_decrypt_key"); &asciz("AES for x86, CRYPTOGAMS by "); &asm_finish(); close STDOUT;