/* ==================================================================== * Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include #include #include #include #include #include #include #include #include "internal.h" #include "../modes/internal.h" typedef struct { union { double align; AES_KEY ks; } ks; block128_f block; union { cbc128_f cbc; ctr128_f ctr; } stream; } EVP_AES_KEY; typedef struct { union { double align; AES_KEY ks; } ks; /* AES key schedule to use */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ GCM128_CONTEXT gcm; uint8_t *iv; /* Temporary IV store */ int ivlen; /* IV length */ int taglen; int iv_gen; /* It is OK to generate IVs */ ctr128_f ctr; } EVP_AES_GCM_CTX; #if !defined(OPENSSL_NO_ASM) && \ (defined(OPENSSL_X86_64) || defined(OPENSSL_X86)) #define VPAES extern unsigned int OPENSSL_ia32cap_P[]; static char vpaes_capable(void) { return (OPENSSL_ia32cap_P[1] & (1 << (41 - 32))) != 0; } #if defined(OPENSSL_X86_64) #define BSAES static char bsaes_capable(void) { return vpaes_capable(); } #endif #elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_ARM) #include "../arm_arch.h" #if __ARM_ARCH__ >= 7 #define BSAES static char bsaes_capable(void) { return CRYPTO_is_NEON_capable(); } #endif /* __ARM_ARCH__ >= 7 */ #endif /* OPENSSL_ARM */ #if defined(BSAES) /* On platforms where BSAES gets defined (just above), then these functions are * provided by asm. */ void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, uint8_t ivec[16], int enc); void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, const uint8_t ivec[16]); #else static char bsaes_capable(void) { return 0; } /* On other platforms, bsaes_capable() will always return false and so the * following will never be called. */ void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, uint8_t ivec[16], int enc) { abort(); } void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, const uint8_t ivec[16]) { abort(); } #endif #if defined(VPAES) /* On platforms where VPAES gets defined (just above), then these functions are * provided by asm. */ int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, uint8_t *ivec, int enc); #else static char vpaes_capable(void) { return 0; } /* On other platforms, vpaes_capable() will always return false and so the * following will never be called. */ int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) { abort(); } int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) { abort(); } void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { abort(); } void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { abort(); } void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, uint8_t *ivec, int enc) { abort(); } #endif #if !defined(OPENSSL_NO_ASM) && \ (defined(OPENSSL_X86_64) || defined(OPENSSL_X86)) int aesni_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); int aesni_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); void aesni_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); void aesni_ecb_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, int enc); void aesni_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, const AES_KEY *key, uint8_t *ivec, int enc); void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks, const void *key, const uint8_t *ivec); #if defined(OPENSSL_X86_64) size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len, const void *key, uint8_t ivec[16], uint64_t *Xi); #define AES_gcm_encrypt aesni_gcm_encrypt size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len, const void *key, uint8_t ivec[16], uint64_t *Xi); #define AES_gcm_decrypt aesni_gcm_decrypt void gcm_ghash_avx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in, size_t len); #define AES_GCM_ASM(gctx) \ (gctx->ctr == aesni_ctr32_encrypt_blocks && gctx->gcm.ghash == gcm_ghash_avx) #endif /* OPENSSL_X86_64 */ #else /* On other platforms, aesni_capable() will always return false and so the * following will never be called. */ void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { abort(); } int aesni_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) { abort(); } void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks, const void *key, const uint8_t *ivec) { abort(); } #endif static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, const uint8_t *iv, int enc) { int ret, mode; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK; if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) { ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)AES_decrypt; dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt; } else if (vpaes_capable()) { ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)vpaes_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL; } else { ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)AES_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL; } } else if (bsaes_capable() && mode == EVP_CIPH_CTR_MODE) { ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)AES_encrypt; dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks; } else if (vpaes_capable()) { ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)vpaes_encrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL; } else { ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f)AES_encrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL; } if (ret < 0) { OPENSSL_PUT_ERROR(CIPHER, aes_init_key, CIPHER_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (dat->stream.cbc) { (*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv, ctx->encrypt); } else if (ctx->encrypt) { CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, dat->block); } else { CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, dat->block); } return 1; } static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { size_t bl = ctx->cipher->block_size; size_t i; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (len < bl) { return 1; } for (i = 0, len -= bl; i <= len; i += bl) { (*dat->block)(in + i, out + i, &dat->ks); } return 1; } static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { unsigned int num = ctx->num; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (dat->stream.ctr) { CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, ctx->iv, ctx->buf, &num, dat->stream.ctr); } else { CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, ctx->iv, ctx->buf, &num, dat->block); } ctx->num = (size_t)num; return 1; } static ctr128_f aes_gcm_set_key(AES_KEY *aes_key, GCM128_CONTEXT *gcm_ctx, const uint8_t *key, size_t key_len) { if (bsaes_capable()) { AES_set_encrypt_key(key, key_len * 8, aes_key); CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt); return (ctr128_f)bsaes_ctr32_encrypt_blocks; } if (vpaes_capable()) { vpaes_set_encrypt_key(key, key_len * 8, aes_key); CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)vpaes_encrypt); return NULL; } AES_set_encrypt_key(key, key_len * 8, aes_key); CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt); return NULL; } static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, const uint8_t *iv, int enc) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; if (!iv && !key) { return 1; } if (key) { gctx->ctr = aes_gcm_set_key(&gctx->ks.ks, &gctx->gcm, key, ctx->key_len); /* If we have an iv can set it directly, otherwise use saved IV. */ if (iv == NULL && gctx->iv_set) { iv = gctx->iv; } if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); } else { memcpy(gctx->iv, iv, gctx->ivlen); } gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } static int aes_gcm_cleanup(EVP_CIPHER_CTX *c) { EVP_AES_GCM_CTX *gctx = c->cipher_data; OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); if (gctx->iv != c->iv) { OPENSSL_free(gctx->iv); } return 1; } /* increment counter (64-bit int) by 1 */ static void ctr64_inc(uint8_t *counter) { int n = 8; uint8_t c; do { --n; c = counter[n]; ++c; counter[n] = c; if (c) { return; } } while (n); } static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_GCM_CTX *gctx = c->cipher_data; switch (type) { case EVP_CTRL_INIT: gctx->key_set = 0; gctx->iv_set = 0; gctx->ivlen = c->cipher->iv_len; gctx->iv = c->iv; gctx->taglen = -1; gctx->iv_gen = 0; return 1; case EVP_CTRL_GCM_SET_IVLEN: if (arg <= 0) { return 0; } /* Allocate memory for IV if needed */ if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) { if (gctx->iv != c->iv) { OPENSSL_free(gctx->iv); } gctx->iv = OPENSSL_malloc(arg); if (!gctx->iv) { return 0; } } gctx->ivlen = arg; return 1; case EVP_CTRL_GCM_SET_TAG: if (arg <= 0 || arg > 16 || c->encrypt) { return 0; } memcpy(c->buf, ptr, arg); gctx->taglen = arg; return 1; case EVP_CTRL_GCM_GET_TAG: if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) { return 0; } memcpy(ptr, c->buf, arg); return 1; case EVP_CTRL_GCM_SET_IV_FIXED: /* Special case: -1 length restores whole IV */ if (arg == -1) { memcpy(gctx->iv, ptr, gctx->ivlen); gctx->iv_gen = 1; return 1; } /* Fixed field must be at least 4 bytes and invocation field * at least 8. */ if (arg < 4 || (gctx->ivlen - arg) < 8) { return 0; } if (arg) { memcpy(gctx->iv, ptr, arg); } if (c->encrypt && RAND_pseudo_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) { return 0; } gctx->iv_gen = 1; return 1; case EVP_CTRL_GCM_IV_GEN: if (gctx->iv_gen == 0 || gctx->key_set == 0) { return 0; } CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); if (arg <= 0 || arg > gctx->ivlen) { arg = gctx->ivlen; } memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); /* Invocation field will be at least 8 bytes in size and * so no need to check wrap around or increment more than * last 8 bytes. */ ctr64_inc(gctx->iv + gctx->ivlen - 8); gctx->iv_set = 1; return 1; case EVP_CTRL_GCM_SET_IV_INV: if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) { return 0; } memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); gctx->iv_set = 1; return 1; case EVP_CTRL_COPY: { EVP_CIPHER_CTX *out = ptr; EVP_AES_GCM_CTX *gctx_out = out->cipher_data; if (gctx->gcm.key) { if (gctx->gcm.key != &gctx->ks) { return 0; } gctx_out->gcm.key = &gctx_out->ks; } if (gctx->iv == c->iv) { gctx_out->iv = out->iv; } else { gctx_out->iv = OPENSSL_malloc(gctx->ivlen); if (!gctx_out->iv) { return 0; } memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); } return 1; } default: return -1; } } static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; /* If not set up, return error */ if (!gctx->key_set) { return -1; } if (!gctx->iv_set) { return -1; } if (in) { if (out == NULL) { if (!CRYPTO_gcm128_aad(&gctx->gcm, in, len)) { return -1; } } else if (ctx->encrypt) { if (gctx->ctr) { size_t bulk = 0; #if defined(AES_GCM_ASM) if (len >= 32 && AES_GCM_ASM(gctx)) { size_t res = (16 - gctx->gcm.mres) % 16; if (!CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) { return -1; } bulk = AES_gcm_encrypt(in + res, out + res, len - res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } #endif if (!CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in + bulk, out + bulk, len - bulk, gctx->ctr)) { return -1; } } else { size_t bulk = 0; if (!CRYPTO_gcm128_encrypt(&gctx->gcm, in + bulk, out + bulk, len - bulk)) { return -1; } } } else { if (gctx->ctr) { size_t bulk = 0; #if defined(AES_GCM_ASM) if (len >= 16 && AES_GCM_ASM(gctx)) { size_t res = (16 - gctx->gcm.mres) % 16; if (!CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) { return -1; } bulk = AES_gcm_decrypt(in + res, out + res, len - res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } #endif if (!CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in + bulk, out + bulk, len - bulk, gctx->ctr)) { return -1; } } else { size_t bulk = 0; if (!CRYPTO_gcm128_decrypt(&gctx->gcm, in + bulk, out + bulk, len - bulk)) { return -1; } } } return len; } else { if (!ctx->encrypt) { if (gctx->taglen < 0 || !CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0) { return -1; } gctx->iv_set = 0; return 0; } CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); gctx->taglen = 16; /* Don't reuse the IV */ gctx->iv_set = 0; return 0; } } static const EVP_CIPHER aes_128_cbc = { NID_aes_128_cbc, 16 /* block_size */, 16 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, NULL /* app_data */, aes_init_key, aes_cbc_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_128_ctr = { NID_aes_128_ctr, 1 /* block_size */, 16 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, NULL /* app_data */, aes_init_key, aes_ctr_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_128_ecb = { NID_aes_128_ecb, 16 /* block_size */, 16 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, NULL /* app_data */, aes_init_key, aes_ecb_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_128_gcm = { NID_aes_128_gcm, 1 /* block_size */, 16 /* key_size */, 12 /* iv_len */, sizeof(EVP_AES_GCM_CTX), EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER, NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, aes_gcm_ctrl}; static const EVP_CIPHER aes_256_cbc = { NID_aes_128_cbc, 16 /* block_size */, 32 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, NULL /* app_data */, aes_init_key, aes_cbc_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_256_ctr = { NID_aes_128_ctr, 1 /* block_size */, 32 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, NULL /* app_data */, aes_init_key, aes_ctr_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_256_ecb = { NID_aes_128_ecb, 16 /* block_size */, 32 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, NULL /* app_data */, aes_init_key, aes_ecb_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aes_256_gcm = { NID_aes_128_gcm, 1 /* block_size */, 32 /* key_size */, 12 /* iv_len */, sizeof(EVP_AES_GCM_CTX), EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER, NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, aes_gcm_ctrl}; #if !defined(OPENSSL_NO_ASM) && \ (defined(OPENSSL_X86_64) || defined(OPENSSL_X86)) /* AES-NI section. */ static char aesni_capable(void) { return (OPENSSL_ia32cap_P[1] & (1 << (57 - 32))) != 0; } static int aesni_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, const uint8_t *iv, int enc) { int ret, mode; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK; if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { ret = aesni_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data); dat->block = (block128_f)aesni_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)aesni_cbc_encrypt : NULL; } else { ret = aesni_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data); dat->block = (block128_f)aesni_encrypt; if (mode == EVP_CIPH_CBC_MODE) { dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt; } else if (mode == EVP_CIPH_CTR_MODE) { dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; } else { dat->stream.cbc = NULL; } } if (ret < 0) { OPENSSL_PUT_ERROR(CIPHER, aesni_init_key, CIPHER_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv, ctx->encrypt); return 1; } static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { size_t bl = ctx->cipher->block_size; if (len < bl) { return 1; } aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt); return 1; } static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, const uint8_t *iv, int enc) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; if (!iv && !key) { return 1; } if (key) { aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)aesni_encrypt); gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; /* If we have an iv can set it directly, otherwise use * saved IV. */ if (iv == NULL && gctx->iv_set) { iv = gctx->iv; } if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); } else { memcpy(gctx->iv, iv, gctx->ivlen); } gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } static const EVP_CIPHER aesni_128_cbc = { NID_aes_128_cbc, 16 /* block_size */, 16 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, NULL /* app_data */, aesni_init_key, aesni_cbc_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_128_ctr = { NID_aes_128_ctr, 1 /* block_size */, 16 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, NULL /* app_data */, aesni_init_key, aes_ctr_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_128_ecb = { NID_aes_128_ecb, 16 /* block_size */, 16 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, NULL /* app_data */, aesni_init_key, aesni_ecb_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_128_gcm = { NID_aes_128_gcm, 1 /* block_size */, 16 /* key_size */, 12 /* iv_len */, sizeof(EVP_AES_GCM_CTX), EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER, NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, aes_gcm_ctrl}; static const EVP_CIPHER aesni_256_cbc = { NID_aes_128_cbc, 16 /* block_size */, 32 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, NULL /* app_data */, aesni_init_key, aesni_cbc_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_256_ctr = { NID_aes_128_ctr, 1 /* block_size */, 32 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, NULL /* app_data */, aesni_init_key, aes_ctr_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_256_ecb = { NID_aes_128_ecb, 16 /* block_size */, 32 /* key_size */, 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, NULL /* app_data */, aesni_init_key, aesni_ecb_cipher, NULL /* cleanup */, NULL /* ctrl */}; static const EVP_CIPHER aesni_256_gcm = { NID_aes_256_gcm, 1 /* block_size */, 32 /* key_size */, 12 /* iv_len */, sizeof(EVP_AES_GCM_CTX), EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_FLAG_AEAD_CIPHER, NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, aes_gcm_ctrl}; #define EVP_CIPHER_FUNCTION(keybits, mode) \ const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \ if (aesni_capable()) { \ return &aesni_##keybits##_##mode; \ } else { \ return &aes_##keybits##_##mode; \ } \ } #else /* ^^^ OPENSSL_X86_64 || OPENSSL_X86 */ static char aesni_capable(void) { return 0; } #define EVP_CIPHER_FUNCTION(keybits, mode) \ const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \ return &aes_##keybits##_##mode; \ } #endif EVP_CIPHER_FUNCTION(128, cbc) EVP_CIPHER_FUNCTION(128, ctr) EVP_CIPHER_FUNCTION(128, ecb) EVP_CIPHER_FUNCTION(128, gcm) EVP_CIPHER_FUNCTION(256, cbc) EVP_CIPHER_FUNCTION(256, ctr) EVP_CIPHER_FUNCTION(256, ecb) EVP_CIPHER_FUNCTION(256, gcm) #define EVP_AEAD_AES_GCM_TAG_LEN 16 struct aead_aes_gcm_ctx { union { double align; AES_KEY ks; } ks; GCM128_CONTEXT gcm; ctr128_f ctr; uint8_t tag_len; }; static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len) { struct aead_aes_gcm_ctx *gcm_ctx; const size_t key_bits = key_len * 8; if (key_bits != 128 && key_bits != 256) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_init, CIPHER_R_BAD_KEY_LENGTH); return 0; /* EVP_AEAD_CTX_init should catch this. */ } if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { tag_len = EVP_AEAD_AES_GCM_TAG_LEN; } if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_init, CIPHER_R_TAG_TOO_LARGE); return 0; } gcm_ctx = OPENSSL_malloc(sizeof(struct aead_aes_gcm_ctx)); if (gcm_ctx == NULL) { return 0; } if (aesni_capable()) { aesni_set_encrypt_key(key, key_len * 8, &gcm_ctx->ks.ks); CRYPTO_gcm128_init(&gcm_ctx->gcm, &gcm_ctx->ks.ks, (block128_f)aesni_encrypt); gcm_ctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; } else { gcm_ctx->ctr = aes_gcm_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm, key, key_len); } gcm_ctx->tag_len = tag_len; ctx->aead_state = gcm_ctx; return 1; } static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) { struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; OPENSSL_cleanse(gcm_ctx, sizeof(struct aead_aes_gcm_ctx)); OPENSSL_free(gcm_ctx); } static int aead_aes_gcm_seal(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len) { size_t bulk = 0; const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; GCM128_CONTEXT gcm; if (in_len + gcm_ctx->tag_len < in_len) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_seal, CIPHER_R_TOO_LARGE); return 0; } if (max_out_len < in_len + gcm_ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_seal, CIPHER_R_BUFFER_TOO_SMALL); return 0; } memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm)); CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len); if (ad_len > 0 && !CRYPTO_gcm128_aad(&gcm, ad, ad_len)) { return 0; } if (gcm_ctx->ctr) { if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, in + bulk, out + bulk, in_len - bulk, gcm_ctx->ctr)) { return 0; } } else { if (!CRYPTO_gcm128_encrypt(&gcm, in + bulk, out + bulk, in_len - bulk)) { return 0; } } CRYPTO_gcm128_tag(&gcm, out + in_len, gcm_ctx->tag_len); *out_len = in_len + gcm_ctx->tag_len; return 1; } static int aead_aes_gcm_open(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len) { size_t bulk = 0; const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN]; size_t plaintext_len; GCM128_CONTEXT gcm; if (in_len < gcm_ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_open, CIPHER_R_BAD_DECRYPT); return 0; } plaintext_len = in_len - gcm_ctx->tag_len; if (max_out_len < plaintext_len) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_open, CIPHER_R_BUFFER_TOO_SMALL); return 0; } memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm)); CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len); if (!CRYPTO_gcm128_aad(&gcm, ad, ad_len)) { return 0; } if (gcm_ctx->ctr) { if (!CRYPTO_gcm128_decrypt_ctr32(&gcm, in + bulk, out + bulk, in_len - bulk - gcm_ctx->tag_len, gcm_ctx->ctr)) { return 0; } } else { if (!CRYPTO_gcm128_decrypt(&gcm, in + bulk, out + bulk, in_len - bulk - gcm_ctx->tag_len)) { return 0; } } CRYPTO_gcm128_tag(&gcm, tag, gcm_ctx->tag_len); if (CRYPTO_memcmp(tag, in + plaintext_len, gcm_ctx->tag_len) != 0) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_open, CIPHER_R_BAD_DECRYPT); return 0; } *out_len = plaintext_len; return 1; } static const EVP_AEAD aead_aes_128_gcm = { 16, /* key len */ 12, /* nonce len */ EVP_AEAD_AES_GCM_TAG_LEN, /* overhead */ EVP_AEAD_AES_GCM_TAG_LEN, /* max tag length */ aead_aes_gcm_init, aead_aes_gcm_cleanup, aead_aes_gcm_seal, aead_aes_gcm_open, }; static const EVP_AEAD aead_aes_256_gcm = { 32, /* key len */ 12, /* nonce len */ EVP_AEAD_AES_GCM_TAG_LEN, /* overhead */ EVP_AEAD_AES_GCM_TAG_LEN, /* max tag length */ aead_aes_gcm_init, aead_aes_gcm_cleanup, aead_aes_gcm_seal, aead_aes_gcm_open, }; const EVP_AEAD *EVP_aead_aes_128_gcm(void) { return &aead_aes_128_gcm; } const EVP_AEAD *EVP_aead_aes_256_gcm(void) { return &aead_aes_256_gcm; } /* AES Key Wrap is specified in * http://csrc.nist.gov/groups/ST/toolkit/documents/kms/key-wrap.pdf * or https://tools.ietf.org/html/rfc3394 */ struct aead_aes_key_wrap_ctx { uint8_t key[32]; unsigned key_bits; }; static int aead_aes_key_wrap_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len) { struct aead_aes_key_wrap_ctx *kw_ctx; const size_t key_bits = key_len * 8; if (key_bits != 128 && key_bits != 256) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_init, CIPHER_R_BAD_KEY_LENGTH); return 0; /* EVP_AEAD_CTX_init should catch this. */ } if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { tag_len = 8; } if (tag_len != 8) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_init, CIPHER_R_UNSUPPORTED_TAG_SIZE); return 0; } kw_ctx = OPENSSL_malloc(sizeof(struct aead_aes_key_wrap_ctx)); if (kw_ctx == NULL) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_init, ERR_R_MALLOC_FAILURE); return 0; } memcpy(kw_ctx->key, key, key_len); kw_ctx->key_bits = key_bits; ctx->aead_state = kw_ctx; return 1; } static void aead_aes_key_wrap_cleanup(EVP_AEAD_CTX *ctx) { struct aead_aes_key_wrap_ctx *kw_ctx = ctx->aead_state; OPENSSL_cleanse(kw_ctx, sizeof(struct aead_aes_key_wrap_ctx)); OPENSSL_free(kw_ctx); } /* kDefaultAESKeyWrapNonce is the default nonce value given in 2.2.3.1. */ static const uint8_t kDefaultAESKeyWrapNonce[8] = {0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6}; static int aead_aes_key_wrap_seal(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len) { const struct aead_aes_key_wrap_ctx *kw_ctx = ctx->aead_state; union { double align; AES_KEY ks; } ks; /* Variables in this function match up with the variables in the second half * of section 2.2.1. */ unsigned i, j, n; uint8_t A[AES_BLOCK_SIZE]; if (ad_len != 0) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal, CIPHER_R_UNSUPPORTED_AD_SIZE); return 0; } if (nonce_len == 0) { nonce = kDefaultAESKeyWrapNonce; nonce_len = sizeof(kDefaultAESKeyWrapNonce); } if (nonce_len != 8) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal, CIPHER_R_UNSUPPORTED_NONCE_SIZE); return 0; } if (in_len % 8 != 0) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal, CIPHER_R_UNSUPPORTED_INPUT_SIZE); return 0; } /* The code below only handles a 32-bit |t| thus 6*|n| must be less than * 2^32, where |n| is |in_len| / 8. So in_len < 4/3 * 2^32 and we * conservatively cap it to 2^32-16 to stop 32-bit platforms complaining that * a comparision is always true. */ if (in_len > 0xfffffff0) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal, CIPHER_R_TOO_LARGE); return 0; } n = in_len / 8; if (n < 2) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal, CIPHER_R_UNSUPPORTED_INPUT_SIZE); return 0; } if (in_len + 8 < in_len) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal, CIPHER_R_TOO_LARGE); return 0; } if (max_out_len < in_len + 8) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal, CIPHER_R_BUFFER_TOO_SMALL); return 0; } if (AES_set_encrypt_key(kw_ctx->key, kw_ctx->key_bits, &ks.ks) < 0) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal, CIPHER_R_AES_KEY_SETUP_FAILED); return 0; } memmove(out + 8, in, in_len); memcpy(A, nonce, 8); for (j = 0; j < 6; j++) { for (i = 1; i <= n; i++) { uint32_t t; memcpy(A + 8, out + 8 * i, 8); AES_encrypt(A, A, &ks.ks); t = n * j + i; A[7] ^= t & 0xff; A[6] ^= (t >> 8) & 0xff; A[5] ^= (t >> 16) & 0xff; A[4] ^= (t >> 24) & 0xff; memcpy(out + 8 * i, A + 8, 8); } } memcpy(out, A, 8); *out_len = in_len + 8; return 1; } static int aead_aes_key_wrap_open(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len) { const struct aead_aes_key_wrap_ctx *kw_ctx = ctx->aead_state; union { double align; AES_KEY ks; } ks; /* Variables in this function match up with the variables in the second half * of section 2.2.1. */ unsigned i, j, n; uint8_t A[AES_BLOCK_SIZE]; if (ad_len != 0) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open, CIPHER_R_UNSUPPORTED_AD_SIZE); return 0; } if (nonce_len == 0) { nonce = kDefaultAESKeyWrapNonce; nonce_len = sizeof(kDefaultAESKeyWrapNonce); } if (nonce_len != 8) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open, CIPHER_R_UNSUPPORTED_NONCE_SIZE); return 0; } if (in_len % 8 != 0) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open, CIPHER_R_UNSUPPORTED_INPUT_SIZE); return 0; } /* The code below only handles a 32-bit |t| thus 6*|n| must be less than * 2^32, where |n| is |in_len| / 8. So in_len < 4/3 * 2^32 and we * conservatively cap it to 2^32-8 to stop 32-bit platforms complaining that * a comparision is always true. */ if (in_len > 0xfffffff8) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open, CIPHER_R_TOO_LARGE); return 0; } if (in_len < 24) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_open, CIPHER_R_BAD_DECRYPT); return 0; } n = (in_len / 8) - 1; if (max_out_len < in_len - 8) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open, CIPHER_R_BUFFER_TOO_SMALL); return 0; } if (AES_set_decrypt_key(kw_ctx->key, kw_ctx->key_bits, &ks.ks) < 0) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open, CIPHER_R_AES_KEY_SETUP_FAILED); return 0; } memcpy(A, in, 8); memmove(out, in + 8, in_len - 8); for (j = 5; j < 6; j--) { for (i = n; i > 0; i--) { uint32_t t; t = n * j + i; A[7] ^= t & 0xff; A[6] ^= (t >> 8) & 0xff; A[5] ^= (t >> 16) & 0xff; A[4] ^= (t >> 24) & 0xff; memcpy(A + 8, out + 8 * (i - 1), 8); AES_decrypt(A, A, &ks.ks); memcpy(out + 8 * (i - 1), A + 8, 8); } } if (CRYPTO_memcmp(A, nonce, 8) != 0) { OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_open, CIPHER_R_BAD_DECRYPT); return 0; } *out_len = in_len - 8; return 1; } static const EVP_AEAD aead_aes_128_key_wrap = { 16, /* key len */ 8, /* nonce len */ 8, /* overhead */ 8, /* max tag length */ aead_aes_key_wrap_init, aead_aes_key_wrap_cleanup, aead_aes_key_wrap_seal, aead_aes_key_wrap_open, }; static const EVP_AEAD aead_aes_256_key_wrap = { 32, /* key len */ 8, /* nonce len */ 8, /* overhead */ 8, /* max tag length */ aead_aes_key_wrap_init, aead_aes_key_wrap_cleanup, aead_aes_key_wrap_seal, aead_aes_key_wrap_open, }; const EVP_AEAD *EVP_aead_aes_128_key_wrap(void) { return &aead_aes_128_key_wrap; } const EVP_AEAD *EVP_aead_aes_256_key_wrap(void) { return &aead_aes_256_key_wrap; } int EVP_has_aes_hardware(void) { #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) return aesni_capable() && crypto_gcm_clmul_enabled(); #else return 0; #endif }