/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include #include "internal.h" int ssl_is_key_type_supported(int key_type) { return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC; } static int ssl_set_pkey(CERT *cert, EVP_PKEY *pkey) { if (!ssl_is_key_type_supported(pkey->type)) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); return 0; } if (cert->chain != NULL && sk_CRYPTO_BUFFER_value(cert->chain, 0) != NULL && /* Sanity-check that the private key and the certificate match. */ !ssl_cert_check_private_key(cert, pkey)) { return 0; } EVP_PKEY_free(cert->privatekey); EVP_PKEY_up_ref(pkey); cert->privatekey = pkey; return 1; } int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) { EVP_PKEY *pkey; int ret; if (rsa == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); return 0; } pkey = EVP_PKEY_new(); if (pkey == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB); return 0; } RSA_up_ref(rsa); EVP_PKEY_assign_RSA(pkey, rsa); ret = ssl_set_pkey(ssl->cert, pkey); EVP_PKEY_free(pkey); return ret; } int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) { if (pkey == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); return 0; } return ssl_set_pkey(ssl->cert, pkey); } int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der, size_t der_len) { if (der_len > LONG_MAX) { OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); return 0; } const uint8_t *p = der; EVP_PKEY *pkey = d2i_PrivateKey(type, NULL, &p, (long)der_len); if (pkey == NULL || p != der + der_len) { OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); EVP_PKEY_free(pkey); return 0; } int ret = SSL_use_PrivateKey(ssl, pkey); EVP_PKEY_free(pkey); return ret; } int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) { int ret; EVP_PKEY *pkey; if (rsa == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); return 0; } pkey = EVP_PKEY_new(); if (pkey == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB); return 0; } RSA_up_ref(rsa); EVP_PKEY_assign_RSA(pkey, rsa); ret = ssl_set_pkey(ctx->cert, pkey); EVP_PKEY_free(pkey); return ret; } int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der, size_t der_len) { RSA *rsa = RSA_private_key_from_bytes(der, der_len); if (rsa == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); return 0; } int ret = SSL_CTX_use_RSAPrivateKey(ctx, rsa); RSA_free(rsa); return ret; } int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) { if (pkey == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); return 0; } return ssl_set_pkey(ctx->cert, pkey); } int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der, size_t der_len) { if (der_len > LONG_MAX) { OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); return 0; } const uint8_t *p = der; EVP_PKEY *pkey = d2i_PrivateKey(type, NULL, &p, (long)der_len); if (pkey == NULL || p != der + der_len) { OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); EVP_PKEY_free(pkey); return 0; } int ret = SSL_CTX_use_PrivateKey(ctx, pkey); EVP_PKEY_free(pkey); return ret; } void SSL_set_private_key_method(SSL *ssl, const SSL_PRIVATE_KEY_METHOD *key_method) { ssl->cert->key_method = key_method; } void SSL_CTX_set_private_key_method(SSL_CTX *ctx, const SSL_PRIVATE_KEY_METHOD *key_method) { ctx->cert->key_method = key_method; } static int set_signing_algorithm_prefs(CERT *cert, const uint16_t *prefs, size_t num_prefs) { OPENSSL_free(cert->sigalgs); cert->num_sigalgs = 0; cert->sigalgs = BUF_memdup(prefs, num_prefs * sizeof(prefs[0])); if (cert->sigalgs == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return 0; } cert->num_sigalgs = num_prefs; return 1; } int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs, size_t num_prefs) { return set_signing_algorithm_prefs(ctx->cert, prefs, num_prefs); } int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs, size_t num_prefs) { return set_signing_algorithm_prefs(ssl->cert, prefs, num_prefs); } int SSL_set_private_key_digest_prefs(SSL *ssl, const int *digest_nids, size_t num_digests) { OPENSSL_free(ssl->cert->sigalgs); OPENSSL_COMPILE_ASSERT(sizeof(int) >= 2 * sizeof(uint16_t), digest_list_conversion_cannot_overflow); ssl->cert->num_sigalgs = 0; ssl->cert->sigalgs = OPENSSL_malloc(sizeof(uint16_t) * 2 * num_digests); if (ssl->cert->sigalgs == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return 0; } /* Convert the digest list to a signature algorithms list. * * TODO(davidben): Replace this API with one that can express RSA-PSS, etc. */ for (size_t i = 0; i < num_digests; i++) { switch (digest_nids[i]) { case NID_sha1: ssl->cert->sigalgs[ssl->cert->num_sigalgs] = SSL_SIGN_RSA_PKCS1_SHA1; ssl->cert->sigalgs[ssl->cert->num_sigalgs + 1] = SSL_SIGN_ECDSA_SHA1; ssl->cert->num_sigalgs += 2; break; case NID_sha256: ssl->cert->sigalgs[ssl->cert->num_sigalgs] = SSL_SIGN_RSA_PKCS1_SHA256; ssl->cert->sigalgs[ssl->cert->num_sigalgs + 1] = SSL_SIGN_ECDSA_SECP256R1_SHA256; ssl->cert->num_sigalgs += 2; break; case NID_sha384: ssl->cert->sigalgs[ssl->cert->num_sigalgs] = SSL_SIGN_RSA_PKCS1_SHA384; ssl->cert->sigalgs[ssl->cert->num_sigalgs + 1] = SSL_SIGN_ECDSA_SECP384R1_SHA384; ssl->cert->num_sigalgs += 2; break; case NID_sha512: ssl->cert->sigalgs[ssl->cert->num_sigalgs] = SSL_SIGN_RSA_PKCS1_SHA512; ssl->cert->sigalgs[ssl->cert->num_sigalgs + 1] = SSL_SIGN_ECDSA_SECP521R1_SHA512; ssl->cert->num_sigalgs += 2; break; } } return 1; } int ssl_has_private_key(const SSL *ssl) { return ssl->cert->privatekey != NULL || ssl->cert->key_method != NULL; } int ssl_is_ecdsa_key_type(int type) { switch (type) { case NID_secp224r1: case NID_X9_62_prime256v1: case NID_secp384r1: case NID_secp521r1: return 1; default: return 0; } } int ssl_private_key_type(SSL *ssl) { if (ssl->cert->key_method != NULL) { return ssl->cert->key_method->type(ssl); } switch (EVP_PKEY_id(ssl->cert->privatekey)) { case EVP_PKEY_RSA: return NID_rsaEncryption; case EVP_PKEY_EC: return EC_GROUP_get_curve_name( EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(ssl->cert->privatekey))); default: return NID_undef; } } size_t ssl_private_key_max_signature_len(SSL *ssl) { if (ssl->cert->key_method != NULL) { return ssl->cert->key_method->max_signature_len(ssl); } return EVP_PKEY_size(ssl->cert->privatekey); } static int is_rsa_pkcs1(const EVP_MD **out_md, uint16_t sigalg) { switch (sigalg) { case SSL_SIGN_RSA_PKCS1_MD5_SHA1: *out_md = EVP_md5_sha1(); return 1; case SSL_SIGN_RSA_PKCS1_SHA1: *out_md = EVP_sha1(); return 1; case SSL_SIGN_RSA_PKCS1_SHA256: *out_md = EVP_sha256(); return 1; case SSL_SIGN_RSA_PKCS1_SHA384: *out_md = EVP_sha384(); return 1; case SSL_SIGN_RSA_PKCS1_SHA512: *out_md = EVP_sha512(); return 1; default: return 0; } } static int is_rsa_pss(const EVP_MD **out_md, uint16_t sigalg) { switch (sigalg) { case SSL_SIGN_RSA_PSS_SHA256: *out_md = EVP_sha256(); return 1; case SSL_SIGN_RSA_PSS_SHA384: *out_md = EVP_sha384(); return 1; case SSL_SIGN_RSA_PSS_SHA512: *out_md = EVP_sha512(); return 1; default: return 0; } } static int is_ecdsa(int *out_curve, const EVP_MD **out_md, uint16_t sigalg) { switch (sigalg) { case SSL_SIGN_ECDSA_SHA1: *out_curve = NID_undef; *out_md = EVP_sha1(); return 1; case SSL_SIGN_ECDSA_SECP256R1_SHA256: *out_curve = NID_X9_62_prime256v1; *out_md = EVP_sha256(); return 1; case SSL_SIGN_ECDSA_SECP384R1_SHA384: *out_curve = NID_secp384r1; *out_md = EVP_sha384(); return 1; case SSL_SIGN_ECDSA_SECP521R1_SHA512: *out_curve = NID_secp521r1; *out_md = EVP_sha512(); return 1; default: return 0; } } static int setup_ctx(SSL *ssl, EVP_PKEY_CTX *ctx, uint16_t signature_algorithm) { EVP_PKEY *pkey = EVP_PKEY_CTX_get0_pkey(ctx); const EVP_MD *md; if (is_rsa_pkcs1(&md, signature_algorithm) && ssl3_protocol_version(ssl) < TLS1_3_VERSION) { if (pkey->type != EVP_PKEY_RSA) { OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } return EVP_PKEY_CTX_set_signature_md(ctx, md); } if (is_rsa_pss(&md, signature_algorithm)) { if (pkey->type != EVP_PKEY_RSA) { OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } return EVP_PKEY_CTX_set_signature_md(ctx, md) && EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PSS_PADDING) && EVP_PKEY_CTX_set_rsa_pss_saltlen(ctx, -1 /* salt len = hash len */); } int curve; if (is_ecdsa(&curve, &md, signature_algorithm)) { EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(pkey); if (ec_key == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } /* In TLS 1.3, the curve is also specified by the signature algorithm. */ if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION && (curve == NID_undef || EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)) != curve)) { OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } return EVP_PKEY_CTX_set_signature_md(ctx, md); } OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } enum ssl_private_key_result_t ssl_private_key_sign( SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, uint16_t signature_algorithm, const uint8_t *in, size_t in_len) { if (ssl->cert->key_method != NULL) { if (ssl->cert->key_method->sign != NULL) { return ssl->cert->key_method->sign(ssl, out, out_len, max_out, signature_algorithm, in, in_len); } /* TODO(davidben): Remove support for |sign_digest|-only * |SSL_PRIVATE_KEY_METHOD|s. */ const EVP_MD *md; int curve; if (!is_rsa_pkcs1(&md, signature_algorithm) && !is_ecdsa(&curve, &md, signature_algorithm)) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL_FOR_CUSTOM_KEY); return ssl_private_key_failure; } uint8_t hash[EVP_MAX_MD_SIZE]; unsigned hash_len; if (!EVP_Digest(in, in_len, hash, &hash_len, md, NULL)) { return ssl_private_key_failure; } return ssl->cert->key_method->sign_digest(ssl, out, out_len, max_out, md, hash, hash_len); } *out_len = max_out; EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(ssl->cert->privatekey, NULL); int ret = ctx != NULL && EVP_PKEY_sign_init(ctx) && setup_ctx(ssl, ctx, signature_algorithm) && EVP_PKEY_sign_message(ctx, out, out_len, in, in_len); EVP_PKEY_CTX_free(ctx); return ret ? ssl_private_key_success : ssl_private_key_failure; } int ssl_public_key_verify(SSL *ssl, const uint8_t *signature, size_t signature_len, uint16_t signature_algorithm, EVP_PKEY *pkey, const uint8_t *in, size_t in_len) { EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(pkey, NULL); int ret = ctx != NULL && EVP_PKEY_verify_init(ctx) && setup_ctx(ssl, ctx, signature_algorithm) && EVP_PKEY_verify_message(ctx, signature, signature_len, in, in_len); EVP_PKEY_CTX_free(ctx); return ret; } enum ssl_private_key_result_t ssl_private_key_decrypt( SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, const uint8_t *in, size_t in_len) { if (ssl->cert->key_method != NULL) { return ssl->cert->key_method->decrypt(ssl, out, out_len, max_out, in, in_len); } RSA *rsa = EVP_PKEY_get0_RSA(ssl->cert->privatekey); if (rsa == NULL) { /* Decrypt operations are only supported for RSA keys. */ OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return ssl_private_key_failure; } /* Decrypt with no padding. PKCS#1 padding will be removed as part * of the timing-sensitive code by the caller. */ if (!RSA_decrypt(rsa, out_len, out, max_out, in, in_len, RSA_NO_PADDING)) { return ssl_private_key_failure; } return ssl_private_key_success; } enum ssl_private_key_result_t ssl_private_key_complete(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) { /* Only custom keys may be asynchronous. */ return ssl->cert->key_method->complete(ssl, out, out_len, max_out); } int ssl_private_key_supports_signature_algorithm(SSL *ssl, uint16_t signature_algorithm) { const EVP_MD *md; if (is_rsa_pkcs1(&md, signature_algorithm) && ssl3_protocol_version(ssl) < TLS1_3_VERSION) { return ssl_private_key_type(ssl) == NID_rsaEncryption; } int curve; if (is_ecdsa(&curve, &md, signature_algorithm)) { int type = ssl_private_key_type(ssl); if (!ssl_is_ecdsa_key_type(type)) { return 0; } /* Prior to TLS 1.3, ECDSA curves did not match the signature algorithm. */ if (ssl3_protocol_version(ssl) < TLS1_3_VERSION) { return 1; } return curve != NID_undef && type == curve; } if (is_rsa_pss(&md, signature_algorithm)) { if (ssl_private_key_type(ssl) != NID_rsaEncryption) { return 0; } /* Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that * emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the * hash in TLS. Reasonable RSA key sizes are large enough for the largest * defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too large for * SHA-512. 1024-bit RSA is sometimes used for test credentials, so check * the size to fall back to another algorithm. */ if (ssl_private_key_max_signature_len(ssl) < 2 * EVP_MD_size(md) + 2) { return 0; } /* RSA-PSS is only supported by message-based private keys. */ if (ssl->cert->key_method != NULL && ssl->cert->key_method->sign == NULL) { return 0; } return 1; } return 0; }