/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include "../internal.h" /* IMPLEMENTATION NOTES. * * The 32-bit hash algorithms share a common byte-order neutral collector and * padding function implementations that operate on unaligned data, * ../md32_common.h. This SHA-512 implementation does not. Reasons * [in reverse order] are: * * - It's the only 64-bit hash algorithm for the moment of this writing, * there is no need for common collector/padding implementation [yet]; * - By supporting only a transform function that operates on *aligned* data * the collector/padding function is simpler and easier to optimize. */ #if !defined(OPENSSL_NO_ASM) && \ (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \ defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) #define SHA512_ASM #endif #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \ defined(__ARM_FEATURE_UNALIGNED) #define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA #endif int SHA384_Init(SHA512_CTX *sha) { sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8); sha->h[1] = UINT64_C(0x629a292a367cd507); sha->h[2] = UINT64_C(0x9159015a3070dd17); sha->h[3] = UINT64_C(0x152fecd8f70e5939); sha->h[4] = UINT64_C(0x67332667ffc00b31); sha->h[5] = UINT64_C(0x8eb44a8768581511); sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7); sha->h[7] = UINT64_C(0x47b5481dbefa4fa4); sha->Nl = 0; sha->Nh = 0; sha->num = 0; sha->md_len = SHA384_DIGEST_LENGTH; return 1; } int SHA512_Init(SHA512_CTX *sha) { sha->h[0] = UINT64_C(0x6a09e667f3bcc908); sha->h[1] = UINT64_C(0xbb67ae8584caa73b); sha->h[2] = UINT64_C(0x3c6ef372fe94f82b); sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1); sha->h[4] = UINT64_C(0x510e527fade682d1); sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f); sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b); sha->h[7] = UINT64_C(0x5be0cd19137e2179); sha->Nl = 0; sha->Nh = 0; sha->num = 0; sha->md_len = SHA512_DIGEST_LENGTH; return 1; } uint8_t *SHA384(const uint8_t *data, size_t len, uint8_t *out) { SHA512_CTX ctx; static uint8_t buf[SHA384_DIGEST_LENGTH]; /* TODO(fork): remove this static buffer. */ if (out == NULL) { out = buf; } SHA384_Init(&ctx); SHA384_Update(&ctx, data, len); SHA384_Final(out, &ctx); OPENSSL_cleanse(&ctx, sizeof(ctx)); return out; } uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t *out) { SHA512_CTX ctx; static uint8_t buf[SHA512_DIGEST_LENGTH]; /* TODO(fork): remove this static buffer. */ if (out == NULL) { out = buf; } SHA512_Init(&ctx); SHA512_Update(&ctx, data, len); SHA512_Final(out, &ctx); OPENSSL_cleanse(&ctx, sizeof(ctx)); return out; } #if !defined(SHA512_ASM) static #endif void sha512_block_data_order(uint64_t *state, const uint64_t *W, size_t num); int SHA384_Final(uint8_t *md, SHA512_CTX *sha) { return SHA512_Final(md, sha); } int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) { return SHA512_Update(sha, data, len); } void SHA512_Transform(SHA512_CTX *c, const uint8_t *block) { #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA if ((size_t)block % sizeof(c->u.d[0]) != 0) { OPENSSL_memcpy(c->u.p, block, sizeof(c->u.p)); block = c->u.p; } #endif sha512_block_data_order(c->h, (uint64_t *)block, 1); } int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) { uint64_t l; uint8_t *p = c->u.p; const uint8_t *data = (const uint8_t *)in_data; if (len == 0) { return 1; } l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff); if (l < c->Nl) { c->Nh++; } if (sizeof(len) >= 8) { c->Nh += (((uint64_t)len) >> 61); } c->Nl = l; if (c->num != 0) { size_t n = sizeof(c->u) - c->num; if (len < n) { OPENSSL_memcpy(p + c->num, data, len); c->num += (unsigned int)len; return 1; } else { OPENSSL_memcpy(p + c->num, data, n), c->num = 0; len -= n; data += n; sha512_block_data_order(c->h, (uint64_t *)p, 1); } } if (len >= sizeof(c->u)) { #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA if ((size_t)data % sizeof(c->u.d[0]) != 0) { while (len >= sizeof(c->u)) { OPENSSL_memcpy(p, data, sizeof(c->u)); sha512_block_data_order(c->h, (uint64_t *)p, 1); len -= sizeof(c->u); data += sizeof(c->u); } } else #endif { sha512_block_data_order(c->h, (uint64_t *)data, len / sizeof(c->u)); data += len; len %= sizeof(c->u); data -= len; } } if (len != 0) { OPENSSL_memcpy(p, data, len); c->num = (int)len; } return 1; } int SHA512_Final(uint8_t *md, SHA512_CTX *sha) { uint8_t *p = (uint8_t *)sha->u.p; size_t n = sha->num; p[n] = 0x80; /* There always is a room for one */ n++; if (n > (sizeof(sha->u) - 16)) { OPENSSL_memset(p + n, 0, sizeof(sha->u) - n); n = 0; sha512_block_data_order(sha->h, (uint64_t *)p, 1); } OPENSSL_memset(p + n, 0, sizeof(sha->u) - 16 - n); p[sizeof(sha->u) - 1] = (uint8_t)(sha->Nl); p[sizeof(sha->u) - 2] = (uint8_t)(sha->Nl >> 8); p[sizeof(sha->u) - 3] = (uint8_t)(sha->Nl >> 16); p[sizeof(sha->u) - 4] = (uint8_t)(sha->Nl >> 24); p[sizeof(sha->u) - 5] = (uint8_t)(sha->Nl >> 32); p[sizeof(sha->u) - 6] = (uint8_t)(sha->Nl >> 40); p[sizeof(sha->u) - 7] = (uint8_t)(sha->Nl >> 48); p[sizeof(sha->u) - 8] = (uint8_t)(sha->Nl >> 56); p[sizeof(sha->u) - 9] = (uint8_t)(sha->Nh); p[sizeof(sha->u) - 10] = (uint8_t)(sha->Nh >> 8); p[sizeof(sha->u) - 11] = (uint8_t)(sha->Nh >> 16); p[sizeof(sha->u) - 12] = (uint8_t)(sha->Nh >> 24); p[sizeof(sha->u) - 13] = (uint8_t)(sha->Nh >> 32); p[sizeof(sha->u) - 14] = (uint8_t)(sha->Nh >> 40); p[sizeof(sha->u) - 15] = (uint8_t)(sha->Nh >> 48); p[sizeof(sha->u) - 16] = (uint8_t)(sha->Nh >> 56); sha512_block_data_order(sha->h, (uint64_t *)p, 1); if (md == NULL) { /* TODO(davidben): This NULL check is absent in other low-level hash 'final' * functions and is one of the few places one can fail. */ return 0; } switch (sha->md_len) { /* Let compiler decide if it's appropriate to unroll... */ case SHA384_DIGEST_LENGTH: for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) { uint64_t t = sha->h[n]; *(md++) = (uint8_t)(t >> 56); *(md++) = (uint8_t)(t >> 48); *(md++) = (uint8_t)(t >> 40); *(md++) = (uint8_t)(t >> 32); *(md++) = (uint8_t)(t >> 24); *(md++) = (uint8_t)(t >> 16); *(md++) = (uint8_t)(t >> 8); *(md++) = (uint8_t)(t); } break; case SHA512_DIGEST_LENGTH: for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) { uint64_t t = sha->h[n]; *(md++) = (uint8_t)(t >> 56); *(md++) = (uint8_t)(t >> 48); *(md++) = (uint8_t)(t >> 40); *(md++) = (uint8_t)(t >> 32); *(md++) = (uint8_t)(t >> 24); *(md++) = (uint8_t)(t >> 16); *(md++) = (uint8_t)(t >> 8); *(md++) = (uint8_t)(t); } break; /* ... as well as make sure md_len is not abused. */ default: /* TODO(davidben): This bad |md_len| case is one of the few places a * low-level hash 'final' function can fail. This should never happen. */ return 0; } return 1; } #ifndef SHA512_ASM static const uint64_t K512[80] = { UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd), UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc), UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019), UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118), UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe), UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2), UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1), UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694), UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3), UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65), UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483), UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5), UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210), UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4), UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725), UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70), UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926), UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df), UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8), UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b), UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001), UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30), UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910), UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8), UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53), UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8), UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb), UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3), UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60), UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec), UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9), UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b), UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207), UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178), UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6), UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b), UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493), UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c), UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a), UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817), }; #if defined(__GNUC__) && __GNUC__ >= 2 && !defined(OPENSSL_NO_ASM) #if defined(__x86_64) || defined(__x86_64__) #define ROTR(a, n) \ ({ \ uint64_t ret; \ __asm__("rorq %1, %0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \ ret; \ }) #define PULL64(x) \ ({ \ uint64_t ret = *((const uint64_t *)(&(x))); \ __asm__("bswapq %0" : "=r"(ret) : "0"(ret)); \ ret; \ }) #elif(defined(__i386) || defined(__i386__)) #define PULL64(x) \ ({ \ const unsigned int *p = (const unsigned int *)(&(x)); \ unsigned int hi = p[0], lo = p[1]; \ __asm__("bswapl %0; bswapl %1;" : "=r"(lo), "=r"(hi) : "0"(lo), "1"(hi)); \ ((uint64_t)hi) << 32 | lo; \ }) #elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64) #define ROTR(a, n) \ ({ \ uint64_t ret; \ __asm__("rotrdi %0, %1, %2" : "=r"(ret) : "r"(a), "K"(n)); \ ret; \ }) #elif defined(__aarch64__) #define ROTR(a, n) \ ({ \ uint64_t ret; \ __asm__("ror %0, %1, %2" : "=r"(ret) : "r"(a), "I"(n)); \ ret; \ }) #if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \ __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ #define PULL64(x) \ ({ \ uint64_t ret; \ __asm__("rev %0, %1" : "=r"(ret) : "r"(*((const uint64_t *)(&(x))))); \ ret; \ }) #endif #endif #elif defined(_MSC_VER) #if defined(_WIN64) /* applies to both IA-64 and AMD64 */ #pragma intrinsic(_rotr64) #define ROTR(a, n) _rotr64((a), n) #endif #if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) static uint64_t __fastcall __pull64be(const void *x) { _asm mov edx, [ecx + 0] _asm mov eax, [ecx + 4] _asm bswap edx _asm bswap eax } #define PULL64(x) __pull64be(&(x)) #if _MSC_VER <= 1200 #pragma inline_depth(0) #endif #endif #endif #ifndef PULL64 #define B(x, j) \ (((uint64_t)(*(((const uint8_t *)(&x)) + j))) << ((7 - j) * 8)) #define PULL64(x) \ (B(x, 0) | B(x, 1) | B(x, 2) | B(x, 3) | B(x, 4) | B(x, 5) | B(x, 6) | \ B(x, 7)) #endif #ifndef ROTR #define ROTR(x, s) (((x) >> s) | (x) << (64 - s)) #endif #define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39)) #define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41)) #define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7)) #define sigma1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6)) #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z))) #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #if defined(__i386) || defined(__i386__) || defined(_M_IX86) /* * This code should give better results on 32-bit CPU with less than * ~24 registers, both size and performance wise... */ static void sha512_block_data_order(uint64_t *state, const uint64_t *W, size_t num) { uint64_t A, E, T; uint64_t X[9 + 80], *F; int i; while (num--) { F = X + 80; A = state[0]; F[1] = state[1]; F[2] = state[2]; F[3] = state[3]; E = state[4]; F[5] = state[5]; F[6] = state[6]; F[7] = state[7]; for (i = 0; i < 16; i++, F--) { T = PULL64(W[i]); F[0] = A; F[4] = E; F[8] = T; T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i]; E = F[3] + T; A = T + Sigma0(A) + Maj(A, F[1], F[2]); } for (; i < 80; i++, F--) { T = sigma0(F[8 + 16 - 1]); T += sigma1(F[8 + 16 - 14]); T += F[8 + 16] + F[8 + 16 - 9]; F[0] = A; F[4] = E; F[8] = T; T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i]; E = F[3] + T; A = T + Sigma0(A) + Maj(A, F[1], F[2]); } state[0] += A; state[1] += F[1]; state[2] += F[2]; state[3] += F[3]; state[4] += E; state[5] += F[5]; state[6] += F[6]; state[7] += F[7]; W += 16; } } #else #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \ do { \ T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \ h = Sigma0(a) + Maj(a, b, c); \ d += T1; \ h += T1; \ } while (0) #define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \ do { \ s0 = X[(j + 1) & 0x0f]; \ s0 = sigma0(s0); \ s1 = X[(j + 14) & 0x0f]; \ s1 = sigma1(s1); \ T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \ ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \ } while (0) static void sha512_block_data_order(uint64_t *state, const uint64_t *W, size_t num) { uint64_t a, b, c, d, e, f, g, h, s0, s1, T1; uint64_t X[16]; int i; while (num--) { a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; T1 = X[0] = PULL64(W[0]); ROUND_00_15(0, a, b, c, d, e, f, g, h); T1 = X[1] = PULL64(W[1]); ROUND_00_15(1, h, a, b, c, d, e, f, g); T1 = X[2] = PULL64(W[2]); ROUND_00_15(2, g, h, a, b, c, d, e, f); T1 = X[3] = PULL64(W[3]); ROUND_00_15(3, f, g, h, a, b, c, d, e); T1 = X[4] = PULL64(W[4]); ROUND_00_15(4, e, f, g, h, a, b, c, d); T1 = X[5] = PULL64(W[5]); ROUND_00_15(5, d, e, f, g, h, a, b, c); T1 = X[6] = PULL64(W[6]); ROUND_00_15(6, c, d, e, f, g, h, a, b); T1 = X[7] = PULL64(W[7]); ROUND_00_15(7, b, c, d, e, f, g, h, a); T1 = X[8] = PULL64(W[8]); ROUND_00_15(8, a, b, c, d, e, f, g, h); T1 = X[9] = PULL64(W[9]); ROUND_00_15(9, h, a, b, c, d, e, f, g); T1 = X[10] = PULL64(W[10]); ROUND_00_15(10, g, h, a, b, c, d, e, f); T1 = X[11] = PULL64(W[11]); ROUND_00_15(11, f, g, h, a, b, c, d, e); T1 = X[12] = PULL64(W[12]); ROUND_00_15(12, e, f, g, h, a, b, c, d); T1 = X[13] = PULL64(W[13]); ROUND_00_15(13, d, e, f, g, h, a, b, c); T1 = X[14] = PULL64(W[14]); ROUND_00_15(14, c, d, e, f, g, h, a, b); T1 = X[15] = PULL64(W[15]); ROUND_00_15(15, b, c, d, e, f, g, h, a); for (i = 16; i < 80; i += 16) { ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X); ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X); ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X); ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X); ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X); ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X); ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X); ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X); ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X); ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X); ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X); ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X); ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X); ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X); ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X); ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X); } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; W += 16; } } #endif #endif /* SHA512_ASM */