/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include #include #include #include #include "ssl_locl.h" static int tls_decrypt_ticket(SSL *s, const unsigned char *tick, int ticklen, const unsigned char *sess_id, int sesslen, SSL_SESSION **psess); static int ssl_check_clienthello_tlsext_early(SSL *s); int ssl_check_serverhello_tlsext(SSL *s); SSL3_ENC_METHOD TLSv1_enc_data={ tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS1_FINISH_MAC_LENGTH, tls1_cert_verify_mac, TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, 0, SSL3_HM_HEADER_LENGTH, ssl3_set_handshake_header, ssl3_handshake_write }; SSL3_ENC_METHOD TLSv1_1_enc_data={ tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS1_FINISH_MAC_LENGTH, tls1_cert_verify_mac, TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, SSL_ENC_FLAG_EXPLICIT_IV, SSL3_HM_HEADER_LENGTH, ssl3_set_handshake_header, ssl3_handshake_write }; SSL3_ENC_METHOD TLSv1_2_enc_data={ tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS1_FINISH_MAC_LENGTH, tls1_cert_verify_mac, TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, SSL_ENC_FLAG_EXPLICIT_IV|SSL_ENC_FLAG_SIGALGS|SSL_ENC_FLAG_SHA256_PRF |SSL_ENC_FLAG_TLS1_2_CIPHERS, SSL3_HM_HEADER_LENGTH, ssl3_set_handshake_header, ssl3_handshake_write }; long tls1_default_timeout(void) { /* 2 hours, the 24 hours mentioned in the TLSv1 spec * is way too long for http, the cache would over fill */ return(60*60*2); } int tls1_new(SSL *s) { if (!ssl3_new(s)) return(0); s->method->ssl_clear(s); return(1); } void tls1_free(SSL *s) { if (s->tlsext_session_ticket) { OPENSSL_free(s->tlsext_session_ticket); } ssl3_free(s); } void tls1_clear(SSL *s) { ssl3_clear(s); s->version = s->method->version; } static int compare_uint16_t(const void *p1, const void *p2) { uint16_t u1 = *((const uint16_t*)p1); uint16_t u2 = *((const uint16_t*)p2); if (u1 < u2) { return -1; } else if (u1 > u2) { return 1; } else { return 0; } } /* Per http://tools.ietf.org/html/rfc5246#section-7.4.1.4, there may not be more * than one extension of the same type in a ClientHello or ServerHello. This * function does an initial scan over the extensions block to filter those * out. */ static int tls1_check_duplicate_extensions(const CBS *cbs) { CBS extensions = *cbs; size_t num_extensions = 0, i = 0; uint16_t *extension_types = NULL; int ret = 0; /* First pass: count the extensions. */ while (CBS_len(&extensions) > 0) { uint16_t type; CBS extension; if (!CBS_get_u16(&extensions, &type) || !CBS_get_u16_length_prefixed(&extensions, &extension)) { goto done; } num_extensions++; } extension_types = (uint16_t*)OPENSSL_malloc(sizeof(uint16_t) * num_extensions); if (extension_types == NULL) { OPENSSL_PUT_ERROR(SSL, tls1_check_duplicate_extensions, ERR_R_MALLOC_FAILURE); goto done; } /* Second pass: gather the extension types. */ extensions = *cbs; for (i = 0; i < num_extensions; i++) { CBS extension; if (!CBS_get_u16(&extensions, &extension_types[i]) || !CBS_get_u16_length_prefixed(&extensions, &extension)) { /* This should not happen. */ goto done; } } assert(CBS_len(&extensions) == 0); /* Sort the extensions and make sure there are no duplicates. */ qsort(extension_types, num_extensions, sizeof(uint16_t), compare_uint16_t); for (i = 1; i < num_extensions; i++) { if (extension_types[i-1] == extension_types[i]) { goto done; } } ret = 1; done: if (extension_types) OPENSSL_free(extension_types); return ret; } char ssl_early_callback_init(struct ssl_early_callback_ctx *ctx) { CBS client_hello, session_id, cipher_suites, compression_methods, extensions; CBS_init(&client_hello, ctx->client_hello, ctx->client_hello_len); /* Skip client version. */ if (!CBS_skip(&client_hello, 2)) return 0; /* Skip client nonce. */ if (!CBS_skip(&client_hello, 32)) return 0; /* Extract session_id. */ if (!CBS_get_u8_length_prefixed(&client_hello, &session_id)) return 0; ctx->session_id = CBS_data(&session_id); ctx->session_id_len = CBS_len(&session_id); /* Skip past DTLS cookie */ if (ctx->ssl->version == DTLS1_VERSION || ctx->ssl->version == DTLS1_BAD_VER) { CBS cookie; if (!CBS_get_u8_length_prefixed(&client_hello, &cookie)) return 0; } /* Extract cipher_suites. */ if (!CBS_get_u16_length_prefixed(&client_hello, &cipher_suites) || CBS_len(&cipher_suites) < 2 || (CBS_len(&cipher_suites) & 1) != 0) return 0; ctx->cipher_suites = CBS_data(&cipher_suites); ctx->cipher_suites_len = CBS_len(&cipher_suites); /* Extract compression_methods. */ if (!CBS_get_u8_length_prefixed(&client_hello, &compression_methods) || CBS_len(&compression_methods) < 1) return 0; ctx->compression_methods = CBS_data(&compression_methods); ctx->compression_methods_len = CBS_len(&compression_methods); /* If the ClientHello ends here then it's valid, but doesn't have any * extensions. (E.g. SSLv3.) */ if (CBS_len(&client_hello) == 0) { ctx->extensions = NULL; ctx->extensions_len = 0; return 1; } /* Extract extensions and check it is valid. */ if (!CBS_get_u16_length_prefixed(&client_hello, &extensions) || !tls1_check_duplicate_extensions(&extensions) || CBS_len(&client_hello) != 0) return 0; ctx->extensions = CBS_data(&extensions); ctx->extensions_len = CBS_len(&extensions); return 1; } char SSL_early_callback_ctx_extension_get(const struct ssl_early_callback_ctx *ctx, uint16_t extension_type, const unsigned char **out_data, size_t *out_len) { CBS extensions; CBS_init(&extensions, ctx->extensions, ctx->extensions_len); while (CBS_len(&extensions) != 0) { uint16_t type; CBS extension; /* Decode the next extension. */ if (!CBS_get_u16(&extensions, &type) || !CBS_get_u16_length_prefixed(&extensions, &extension)) return 0; if (type == extension_type) { *out_data = CBS_data(&extension); *out_len = CBS_len(&extension); return 1; } } return 0; } #ifndef OPENSSL_NO_EC static int nid_list[] = { NID_sect163k1, /* sect163k1 (1) */ NID_sect163r1, /* sect163r1 (2) */ NID_sect163r2, /* sect163r2 (3) */ NID_sect193r1, /* sect193r1 (4) */ NID_sect193r2, /* sect193r2 (5) */ NID_sect233k1, /* sect233k1 (6) */ NID_sect233r1, /* sect233r1 (7) */ NID_sect239k1, /* sect239k1 (8) */ NID_sect283k1, /* sect283k1 (9) */ NID_sect283r1, /* sect283r1 (10) */ NID_sect409k1, /* sect409k1 (11) */ NID_sect409r1, /* sect409r1 (12) */ NID_sect571k1, /* sect571k1 (13) */ NID_sect571r1, /* sect571r1 (14) */ NID_secp160k1, /* secp160k1 (15) */ NID_secp160r1, /* secp160r1 (16) */ NID_secp160r2, /* secp160r2 (17) */ NID_secp192k1, /* secp192k1 (18) */ NID_X9_62_prime192v1, /* secp192r1 (19) */ NID_secp224k1, /* secp224k1 (20) */ NID_secp224r1, /* secp224r1 (21) */ NID_secp256k1, /* secp256k1 (22) */ NID_X9_62_prime256v1, /* secp256r1 (23) */ NID_secp384r1, /* secp384r1 (24) */ NID_secp521r1, /* secp521r1 (25) */ NID_brainpoolP256r1, /* brainpoolP256r1 (26) */ NID_brainpoolP384r1, /* brainpoolP384r1 (27) */ NID_brainpoolP512r1 /* brainpool512r1 (28) */ }; static const unsigned char ecformats_default[] = { TLSEXT_ECPOINTFORMAT_uncompressed, }; static const unsigned char eccurves_default[] = { 0,23, /* secp256r1 (23) */ 0,24, /* secp384r1 (24) */ 0,25, /* secp521r1 (25) */ }; static const unsigned char suiteb_curves[] = { 0, TLSEXT_curve_P_256, 0, TLSEXT_curve_P_384 }; int tls1_ec_curve_id2nid(int curve_id) { /* ECC curves from draft-ietf-tls-ecc-12.txt (Oct. 17, 2005) */ if ((curve_id < 1) || ((unsigned int)curve_id > sizeof(nid_list)/sizeof(nid_list[0]))) return 0; return nid_list[curve_id-1]; } int tls1_ec_nid2curve_id(int nid) { /* ECC curves from draft-ietf-tls-ecc-12.txt (Oct. 17, 2005) */ switch (nid) { case NID_sect163k1: /* sect163k1 (1) */ return 1; case NID_sect163r1: /* sect163r1 (2) */ return 2; case NID_sect163r2: /* sect163r2 (3) */ return 3; case NID_sect193r1: /* sect193r1 (4) */ return 4; case NID_sect193r2: /* sect193r2 (5) */ return 5; case NID_sect233k1: /* sect233k1 (6) */ return 6; case NID_sect233r1: /* sect233r1 (7) */ return 7; case NID_sect239k1: /* sect239k1 (8) */ return 8; case NID_sect283k1: /* sect283k1 (9) */ return 9; case NID_sect283r1: /* sect283r1 (10) */ return 10; case NID_sect409k1: /* sect409k1 (11) */ return 11; case NID_sect409r1: /* sect409r1 (12) */ return 12; case NID_sect571k1: /* sect571k1 (13) */ return 13; case NID_sect571r1: /* sect571r1 (14) */ return 14; case NID_secp160k1: /* secp160k1 (15) */ return 15; case NID_secp160r1: /* secp160r1 (16) */ return 16; case NID_secp160r2: /* secp160r2 (17) */ return 17; case NID_secp192k1: /* secp192k1 (18) */ return 18; case NID_X9_62_prime192v1: /* secp192r1 (19) */ return 19; case NID_secp224k1: /* secp224k1 (20) */ return 20; case NID_secp224r1: /* secp224r1 (21) */ return 21; case NID_secp256k1: /* secp256k1 (22) */ return 22; case NID_X9_62_prime256v1: /* secp256r1 (23) */ return 23; case NID_secp384r1: /* secp384r1 (24) */ return 24; case NID_secp521r1: /* secp521r1 (25) */ return 25; case NID_brainpoolP256r1: /* brainpoolP256r1 (26) */ return 26; case NID_brainpoolP384r1: /* brainpoolP384r1 (27) */ return 27; case NID_brainpoolP512r1: /* brainpool512r1 (28) */ return 28; default: return 0; } } /* Get curves list, if "sess" is set return client curves otherwise * preferred list */ static void tls1_get_curvelist(SSL *s, int sess, const unsigned char **pcurves, size_t *pcurveslen) { if (sess) { *pcurves = s->session->tlsext_ellipticcurvelist; *pcurveslen = s->session->tlsext_ellipticcurvelist_length; return; } /* For Suite B mode only include P-256, P-384 */ switch (tls1_suiteb(s)) { case SSL_CERT_FLAG_SUITEB_128_LOS: *pcurves = suiteb_curves; *pcurveslen = sizeof(suiteb_curves); break; case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: *pcurves = suiteb_curves; *pcurveslen = 2; break; case SSL_CERT_FLAG_SUITEB_192_LOS: *pcurves = suiteb_curves + 2; *pcurveslen = 2; break; default: *pcurves = s->tlsext_ellipticcurvelist; *pcurveslen = s->tlsext_ellipticcurvelist_length; } if (!*pcurves) { *pcurves = eccurves_default; *pcurveslen = sizeof(eccurves_default); } } /* tls1_check_curve parses ECParameters out of |cbs|, modifying it. It * checks the curve is one of our preferences and writes the * NamedCurve value to |*out_curve_id|. It returns one on success and * zero on error. */ int tls1_check_curve(SSL *s, CBS *cbs, uint16_t *out_curve_id) { uint8_t curve_type; uint16_t curve_id; const unsigned char *curves; size_t curveslen, i; /* Only support named curves. */ if (!CBS_get_u8(cbs, &curve_type) || curve_type != NAMED_CURVE_TYPE || !CBS_get_u16(cbs, &curve_id)) return 0; /* Check curve matches Suite B preferences */ if (tls1_suiteb(s)) { unsigned long cid = s->s3->tmp.new_cipher->id; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { if (curve_id != TLSEXT_curve_P_256) return 0; } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { if (curve_id != TLSEXT_curve_P_384) return 0; } else /* Should never happen */ return 0; } /* TODO(davidben): tls1_get_curvelist should return a list of * uint16_t rather than make the caller care about * endianness. */ tls1_get_curvelist(s, 0, &curves, &curveslen); for (i = 0; i < curveslen; i += 2, curves += 2) { if (curve_id == (curves[0] << 8 | curves[1])) { *out_curve_id = curve_id; return 1; } } return 0; } /* Return nth shared curve. If nmatch == -1 return number of * matches. For nmatch == -2 return the NID of the curve to use for * an EC tmp key. */ int tls1_shared_curve(SSL *s, int nmatch) { const unsigned char *pref, *supp; size_t preflen, supplen, i, j; int k; /* Can't do anything on client side */ if (s->server == 0) return -1; if (nmatch == -2) { if (tls1_suiteb(s)) { /* For Suite B ciphersuite determines curve: we * already know these are acceptable due to previous * checks. */ unsigned long cid = s->s3->tmp.new_cipher->id; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) return NID_X9_62_prime256v1; /* P-256 */ if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) return NID_secp384r1; /* P-384 */ /* Should never happen */ return NID_undef; } /* If not Suite B just return first preference shared curve */ nmatch = 0; } tls1_get_curvelist(s, !!(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE), &supp, &supplen); tls1_get_curvelist(s, !(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE), &pref, &preflen); preflen /= 2; supplen /= 2; k = 0; for (i = 0; i < preflen; i++, pref+=2) { const unsigned char *tsupp = supp; for (j = 0; j < supplen; j++, tsupp+=2) { if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) { if (nmatch == k) { int id = (pref[0] << 8) | pref[1]; return tls1_ec_curve_id2nid(id); } k++; } } } if (nmatch == -1) return k; return 0; } int tls1_set_curves(unsigned char **pext, size_t *pextlen, int *curves, size_t ncurves) { unsigned char *clist, *p; size_t i; /* Bitmap of curves included to detect duplicates: only works * while curve ids < 32 */ unsigned long dup_list = 0; clist = OPENSSL_malloc(ncurves * 2); if (!clist) return 0; for (i = 0, p = clist; i < ncurves; i++) { unsigned long idmask; int id; id = tls1_ec_nid2curve_id(curves[i]); idmask = 1L << id; if (!id || (dup_list & idmask)) { OPENSSL_free(clist); return 0; } dup_list |= idmask; s2n(id, p); } if (*pext) OPENSSL_free(*pext); *pext = clist; *pextlen = ncurves * 2; return 1; } /* TODO(fork): remove */ #if 0 #define MAX_CURVELIST 28 typedef struct { size_t nidcnt; int nid_arr[MAX_CURVELIST]; } nid_cb_st; static int nid_cb(const char *elem, int len, void *arg) { nid_cb_st *narg = arg; size_t i; int nid; char etmp[20]; if (narg->nidcnt == MAX_CURVELIST) return 0; if (len > (int)(sizeof(etmp) - 1)) return 0; memcpy(etmp, elem, len); etmp[len] = 0; nid = EC_curve_nist2nid(etmp); if (nid == NID_undef) nid = OBJ_sn2nid(etmp); if (nid == NID_undef) nid = OBJ_ln2nid(etmp); if (nid == NID_undef) return 0; for (i = 0; i < narg->nidcnt; i++) if (narg->nid_arr[i] == nid) return 0; narg->nid_arr[narg->nidcnt++] = nid; return 1; } /* Set curves based on a colon separate list */ int tls1_set_curves_list(unsigned char **pext, size_t *pextlen, const char *str) { nid_cb_st ncb; ncb.nidcnt = 0; if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb)) return 0; if (pext == NULL) return 1; return tls1_set_curves(pext, pextlen, ncb.nid_arr, ncb.nidcnt); } #endif /* For an EC key set TLS id and required compression based on parameters */ static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id, EC_KEY *ec) { int is_prime = 1, id; const EC_GROUP *grp; if (!ec) return 0; /* TODO(fork): remove. All curves are prime now. */ grp = EC_KEY_get0_group(ec); if (!grp) return 0; #if 0 /* Determine if it is a prime field */ meth = EC_GROUP_method_of(grp); if (!meth) return 0; if (EC_METHOD_get_field_type(meth) == NID_X9_62_prime_field) is_prime = 1; else is_prime = 0; #endif /* Determine curve ID */ id = EC_GROUP_get_curve_name(grp); id = tls1_ec_nid2curve_id(id); /* If we have an ID set it, otherwise set arbitrary explicit curve */ if (id) { curve_id[0] = 0; curve_id[1] = (unsigned char)id; } else { curve_id[0] = 0xff; if (is_prime) curve_id[1] = 0x01; else curve_id[1] = 0x02; } if (comp_id) { if (EC_KEY_get0_public_key(ec) == NULL) return 0; if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_COMPRESSED) { if (is_prime) *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime; else *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2; } else *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed; } return 1; } /* Check an EC key is compatible with extensions */ static int tls1_check_ec_key(SSL *s, unsigned char *curve_id, unsigned char *comp_id) { const unsigned char *p; size_t plen, i; int j; /* If point formats extension present check it, otherwise everything * is supported (see RFC4492). */ if (comp_id && s->session->tlsext_ecpointformatlist) { p = s->session->tlsext_ecpointformatlist; plen = s->session->tlsext_ecpointformatlist_length; for (i = 0; i < plen; i++, p++) { if (*comp_id == *p) break; } if (i == plen) return 0; } if (!curve_id) return 1; /* Check curve is consistent with client and server preferences */ for (j = 0; j <= 1; j++) { tls1_get_curvelist(s, j, &p, &plen); for (i = 0; i < plen; i+=2, p+=2) { if (p[0] == curve_id[0] && p[1] == curve_id[1]) break; } if (i == plen) return 0; /* For clients can only check sent curve list */ if (!s->server) return 1; } return 1; } static void tls1_get_formatlist(SSL *s, const unsigned char **pformats, size_t *pformatslen) { /* If we have a custom point format list use it otherwise * use default */ if (s->tlsext_ecpointformatlist) { *pformats = s->tlsext_ecpointformatlist; *pformatslen = s->tlsext_ecpointformatlist_length; } else { *pformats = ecformats_default; /* For Suite B we don't support char2 fields */ if (tls1_suiteb(s)) *pformatslen = sizeof(ecformats_default) - 1; else *pformatslen = sizeof(ecformats_default); } } /* Check cert parameters compatible with extensions: currently just checks * EC certificates have compatible curves and compression. */ static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md) { unsigned char comp_id, curve_id[2]; EVP_PKEY *pkey; int rv; pkey = X509_get_pubkey(x); if (!pkey) return 0; /* If not EC nothing to do */ if (pkey->type != EVP_PKEY_EC) { EVP_PKEY_free(pkey); return 1; } rv = tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec); EVP_PKEY_free(pkey); if (!rv) return 0; /* Can't check curve_id for client certs as we don't have a * supported curves extension. */ rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id); if (!rv) return 0; /* Special case for suite B. We *MUST* sign using SHA256+P-256 or * SHA384+P-384, adjust digest if necessary. */ if (set_ee_md && tls1_suiteb(s)) { int check_md; size_t i; CERT *c = s->cert; if (curve_id[0]) return 0; /* Check to see we have necessary signing algorithm */ if (curve_id[1] == TLSEXT_curve_P_256) check_md = NID_ecdsa_with_SHA256; else if (curve_id[1] == TLSEXT_curve_P_384) check_md = NID_ecdsa_with_SHA384; else return 0; /* Should never happen */ for (i = 0; i < c->shared_sigalgslen; i++) if (check_md == c->shared_sigalgs[i].signandhash_nid) break; if (i == c->shared_sigalgslen) return 0; if (set_ee_md == 2) { if (check_md == NID_ecdsa_with_SHA256) c->pkeys[SSL_PKEY_ECC].digest = EVP_sha256(); else c->pkeys[SSL_PKEY_ECC].digest = EVP_sha384(); } } return rv; } /* Check EC temporary key is compatible with client extensions */ int tls1_check_ec_tmp_key(SSL *s, unsigned long cid) { unsigned char curve_id[2]; EC_KEY *ec = s->cert->ecdh_tmp; #ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL /* Allow any curve: not just those peer supports */ if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL) return 1; #endif /* If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, * no other curves permitted. */ if (tls1_suiteb(s)) { /* Curve to check determined by ciphersuite */ if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) curve_id[1] = TLSEXT_curve_P_256; else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) curve_id[1] = TLSEXT_curve_P_384; else return 0; curve_id[0] = 0; /* Check this curve is acceptable */ if (!tls1_check_ec_key(s, curve_id, NULL)) return 0; /* If auto or setting curve from callback assume OK */ if (s->cert->ecdh_tmp_auto || s->cert->ecdh_tmp_cb) return 1; /* Otherwise check curve is acceptable */ else { unsigned char curve_tmp[2]; if (!ec) return 0; if (!tls1_set_ec_id(curve_tmp, NULL, ec)) return 0; if (!curve_tmp[0] || curve_tmp[1] == curve_id[1]) return 1; return 0; } } if (s->cert->ecdh_tmp_auto) { /* Need a shared curve */ if (tls1_shared_curve(s, 0)) return 1; else return 0; } if (!ec) { if (s->cert->ecdh_tmp_cb) return 1; else return 0; } if (!tls1_set_ec_id(curve_id, NULL, ec)) return 0; /* Set this to allow use of invalid curves for testing */ #if 0 return 1; #else return tls1_check_ec_key(s, curve_id, NULL); #endif } #else static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md) { return 1; } #endif /* OPENSSL_NO_EC */ /* List of supported signature algorithms and hashes. Should make this * customisable at some point, for now include everything we support. */ #define tlsext_sigalg_rsa(md) md, TLSEXT_signature_rsa, #ifdef OPENSSL_NO_DSA #define tlsext_sigalg_dsa(md) /* */ #else #define tlsext_sigalg_dsa(md) md, TLSEXT_signature_dsa, #endif #ifdef OPENSSL_NO_ECDSA #define tlsext_sigalg_ecdsa(md) /* */ #else #define tlsext_sigalg_ecdsa(md) md, TLSEXT_signature_ecdsa, #endif #define tlsext_sigalg(md) \ tlsext_sigalg_rsa(md) \ tlsext_sigalg_dsa(md) \ tlsext_sigalg_ecdsa(md) static unsigned char tls12_sigalgs[] = { #ifndef OPENSSL_NO_SHA512 tlsext_sigalg(TLSEXT_hash_sha512) tlsext_sigalg(TLSEXT_hash_sha384) #endif #ifndef OPENSSL_NO_SHA256 tlsext_sigalg(TLSEXT_hash_sha256) tlsext_sigalg(TLSEXT_hash_sha224) #endif #ifndef OPENSSL_NO_SHA tlsext_sigalg(TLSEXT_hash_sha1) #endif }; #ifndef OPENSSL_NO_ECDSA static unsigned char suiteb_sigalgs[] = { tlsext_sigalg_ecdsa(TLSEXT_hash_sha256) tlsext_sigalg_ecdsa(TLSEXT_hash_sha384) }; #endif size_t tls12_get_psigalgs(SSL *s, const unsigned char **psigs) { /* If Suite B mode use Suite B sigalgs only, ignore any other * preferences. */ #ifndef OPENSSL_NO_EC switch (tls1_suiteb(s)) { case SSL_CERT_FLAG_SUITEB_128_LOS: *psigs = suiteb_sigalgs; return sizeof(suiteb_sigalgs); case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: *psigs = suiteb_sigalgs; return 2; case SSL_CERT_FLAG_SUITEB_192_LOS: *psigs = suiteb_sigalgs + 2; return 2; } #endif /* If server use client authentication sigalgs if not NULL */ if (s->server && s->cert->client_sigalgs) { *psigs = s->cert->client_sigalgs; return s->cert->client_sigalgslen; } else if (s->cert->conf_sigalgs) { *psigs = s->cert->conf_sigalgs; return s->cert->conf_sigalgslen; } else { *psigs = tls12_sigalgs; return sizeof(tls12_sigalgs); } } /* tls12_check_peer_sigalg parses a SignatureAndHashAlgorithm out of * |cbs|. It checks it is consistent with |s|'s sent supported * signature algorithms and, if so, writes the relevant digest into * |*out_md| and returns 1. Otherwise it returns 0 and writes an alert * into |*out_alert|. */ int tls12_check_peer_sigalg(const EVP_MD **out_md, int *out_alert, SSL *s, CBS *cbs, EVP_PKEY *pkey) { const unsigned char *sent_sigs; size_t sent_sigslen, i; int sigalg = tls12_get_sigid(pkey); uint8_t hash, signature; /* Should never happen */ if (sigalg == -1) { OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, ERR_R_INTERNAL_ERROR); *out_alert = SSL_AD_INTERNAL_ERROR; return 0; } if (!CBS_get_u8(cbs, &hash) || !CBS_get_u8(cbs, &signature)) { OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_DECODE_ERROR); *out_alert = SSL_AD_DECODE_ERROR; return 0; } /* Check key type is consistent with signature */ if (sigalg != signature) { OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_WRONG_SIGNATURE_TYPE); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return 0; } #ifndef OPENSSL_NO_EC if (pkey->type == EVP_PKEY_EC) { unsigned char curve_id[2], comp_id; /* Check compression and curve matches extensions */ if (!tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec)) { *out_alert = SSL_AD_INTERNAL_ERROR; return 0; } if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) { OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_WRONG_CURVE); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return 0; } /* If Suite B only P-384+SHA384 or P-256+SHA-256 allowed */ if (tls1_suiteb(s)) { if (curve_id[0]) { *out_alert = SSL_AD_ILLEGAL_PARAMETER; return 0; } if (curve_id[1] == TLSEXT_curve_P_256) { if (hash != TLSEXT_hash_sha256) { OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_ILLEGAL_SUITEB_DIGEST); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return 0; } } else if (curve_id[1] == TLSEXT_curve_P_384) { if (hash != TLSEXT_hash_sha384) { OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_ILLEGAL_SUITEB_DIGEST); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return 0; } } else { *out_alert = SSL_AD_ILLEGAL_PARAMETER; return 0; } } } else if (tls1_suiteb(s)) { *out_alert = SSL_AD_ILLEGAL_PARAMETER; return 0; } #endif /* Check signature matches a type we sent */ sent_sigslen = tls12_get_psigalgs(s, &sent_sigs); for (i = 0; i < sent_sigslen; i+=2, sent_sigs+=2) { if (hash == sent_sigs[0] && signature == sent_sigs[1]) break; } /* Allow fallback to SHA1 if not strict mode */ if (i == sent_sigslen && (hash != TLSEXT_hash_sha1 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_WRONG_SIGNATURE_TYPE); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return 0; } *out_md = tls12_get_hash(hash); if (*out_md == NULL) { OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_UNKNOWN_DIGEST); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return 0; } /* Store the digest used so applications can retrieve it if they * wish. */ if (s->session && s->session->sess_cert) s->session->sess_cert->peer_key->digest = *out_md; return 1; } /* Get a mask of disabled algorithms: an algorithm is disabled * if it isn't supported or doesn't appear in supported signature * algorithms. Unlike ssl_cipher_get_disabled this applies to a specific * session and not global settings. * */ void ssl_set_client_disabled(SSL *s) { CERT *c = s->cert; const unsigned char *sigalgs; size_t i, sigalgslen; int have_rsa = 0, have_dsa = 0, have_ecdsa = 0; c->mask_a = 0; c->mask_k = 0; /* Don't allow TLS 1.2 only ciphers if we don't suppport them */ if (!SSL_CLIENT_USE_TLS1_2_CIPHERS(s)) c->mask_ssl = SSL_TLSV1_2; else c->mask_ssl = 0; /* Now go through all signature algorithms seeing if we support * any for RSA, DSA, ECDSA. Do this for all versions not just * TLS 1.2. */ sigalgslen = tls12_get_psigalgs(s, &sigalgs); for (i = 0; i < sigalgslen; i += 2, sigalgs += 2) { switch(sigalgs[1]) { case TLSEXT_signature_rsa: have_rsa = 1; break; #ifndef OPENSSL_NO_DSA case TLSEXT_signature_dsa: have_dsa = 1; break; #endif #ifndef OPENSSL_NO_ECDSA case TLSEXT_signature_ecdsa: have_ecdsa = 1; break; #endif } } /* Disable auth and static DH if we don't include any appropriate * signature algorithms. */ if (!have_rsa) { c->mask_a |= SSL_aRSA; c->mask_k |= SSL_kDHr|SSL_kECDHr; } if (!have_dsa) { c->mask_a |= SSL_aDSS; c->mask_k |= SSL_kDHd; } if (!have_ecdsa) { c->mask_a |= SSL_aECDSA; c->mask_k |= SSL_kECDHe; } #ifndef OPENSSL_NO_PSK /* with PSK there must be client callback set */ if (!s->psk_client_callback) { c->mask_a |= SSL_aPSK; c->mask_k |= SSL_kPSK; } #endif /* OPENSSL_NO_PSK */ c->valid = 1; } /* header_len is the length of the ClientHello header written so far, used to * compute padding. It does not include the record header. Pass 0 if no padding * is to be done. */ unsigned char *ssl_add_clienthello_tlsext(SSL *s, unsigned char *buf, unsigned char *limit, size_t header_len) { int extdatalen=0; unsigned char *ret = buf; unsigned char *orig = buf; #ifndef OPENSSL_NO_EC /* See if we support any ECC ciphersuites */ int using_ecc = 0; if (s->version >= TLS1_VERSION || SSL_IS_DTLS(s)) { int i; unsigned long alg_k, alg_a; STACK_OF(SSL_CIPHER) *cipher_stack = SSL_get_ciphers(s); for (i = 0; i < sk_SSL_CIPHER_num(cipher_stack); i++) { SSL_CIPHER *c = sk_SSL_CIPHER_value(cipher_stack, i); alg_k = c->algorithm_mkey; alg_a = c->algorithm_auth; if ((alg_k & (SSL_kEECDH|SSL_kECDHr|SSL_kECDHe) || (alg_a & SSL_aECDSA))) { using_ecc = 1; break; } } } #endif /* don't add extensions for SSLv3 unless doing secure renegotiation */ if (s->client_version == SSL3_VERSION && !s->s3->send_connection_binding) return orig; ret+=2; if (ret>=limit) return NULL; /* this really never occurs, but ... */ if (s->tlsext_hostname != NULL) { /* Add TLS extension servername to the Client Hello message */ unsigned long size_str; long lenmax; /* check for enough space. 4 for the servername type and entension length 2 for servernamelist length 1 for the hostname type 2 for hostname length + hostname length */ if ((lenmax = limit - ret - 9) < 0 || (size_str = strlen(s->tlsext_hostname)) > (unsigned long)lenmax) return NULL; /* extension type and length */ s2n(TLSEXT_TYPE_server_name,ret); s2n(size_str+5,ret); /* length of servername list */ s2n(size_str+3,ret); /* hostname type, length and hostname */ *(ret++) = (unsigned char) TLSEXT_NAMETYPE_host_name; s2n(size_str,ret); memcpy(ret, s->tlsext_hostname, size_str); ret+=size_str; } /* Add RI if renegotiating */ if (s->renegotiate) { int el; if(!ssl_add_clienthello_renegotiate_ext(s, 0, &el, 0)) { OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR); return NULL; } if((limit - ret - 4 - el) < 0) return NULL; s2n(TLSEXT_TYPE_renegotiate,ret); s2n(el,ret); if(!ssl_add_clienthello_renegotiate_ext(s, ret, &el, el)) { OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR); return NULL; } ret += el; } if (!(SSL_get_options(s) & SSL_OP_NO_TICKET)) { int ticklen; if (!s->new_session && s->session && s->session->tlsext_tick) ticklen = s->session->tlsext_ticklen; else if (s->session && s->tlsext_session_ticket && s->tlsext_session_ticket->data) { ticklen = s->tlsext_session_ticket->length; s->session->tlsext_tick = OPENSSL_malloc(ticklen); if (!s->session->tlsext_tick) return NULL; memcpy(s->session->tlsext_tick, s->tlsext_session_ticket->data, ticklen); s->session->tlsext_ticklen = ticklen; } else ticklen = 0; if (ticklen == 0 && s->tlsext_session_ticket && s->tlsext_session_ticket->data == NULL) goto skip_ext; /* Check for enough room 2 for extension type, 2 for len * rest for ticket */ if ((long)(limit - ret - 4 - ticklen) < 0) return NULL; s2n(TLSEXT_TYPE_session_ticket,ret); s2n(ticklen,ret); if (ticklen) { memcpy(ret, s->session->tlsext_tick, ticklen); ret += ticklen; } } skip_ext: if (SSL_USE_SIGALGS(s)) { size_t salglen; const unsigned char *salg; salglen = tls12_get_psigalgs(s, &salg); if ((size_t)(limit - ret) < salglen + 6) return NULL; s2n(TLSEXT_TYPE_signature_algorithms,ret); s2n(salglen + 2, ret); s2n(salglen, ret); memcpy(ret, salg, salglen); ret += salglen; } /* TODO(fork): we probably want OCSP stapling, but it currently pulls in a lot of code. */ #if 0 if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp) { int i; long extlen, idlen, itmp; OCSP_RESPID *id; idlen = 0; for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++) { id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i); itmp = i2d_OCSP_RESPID(id, NULL); if (itmp <= 0) return NULL; idlen += itmp + 2; } if (s->tlsext_ocsp_exts) { extlen = i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, NULL); if (extlen < 0) return NULL; } else extlen = 0; if ((long)(limit - ret - 7 - extlen - idlen) < 0) return NULL; s2n(TLSEXT_TYPE_status_request, ret); if (extlen + idlen > 0xFFF0) return NULL; s2n(extlen + idlen + 5, ret); *(ret++) = TLSEXT_STATUSTYPE_ocsp; s2n(idlen, ret); for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++) { /* save position of id len */ unsigned char *q = ret; id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i); /* skip over id len */ ret += 2; itmp = i2d_OCSP_RESPID(id, &ret); /* write id len */ s2n(itmp, q); } s2n(extlen, ret); if (extlen > 0) i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, &ret); } #endif #ifndef OPENSSL_NO_NEXTPROTONEG if (s->ctx->next_proto_select_cb && !s->s3->tmp.finish_md_len) { /* The client advertises an emtpy extension to indicate its * support for Next Protocol Negotiation */ if (limit - ret - 4 < 0) return NULL; s2n(TLSEXT_TYPE_next_proto_neg,ret); s2n(0,ret); } #endif if (s->alpn_client_proto_list && !s->s3->tmp.finish_md_len) { if ((size_t)(limit - ret) < 6 + s->alpn_client_proto_list_len) return NULL; s2n(TLSEXT_TYPE_application_layer_protocol_negotiation,ret); s2n(2 + s->alpn_client_proto_list_len,ret); s2n(s->alpn_client_proto_list_len,ret); memcpy(ret, s->alpn_client_proto_list, s->alpn_client_proto_list_len); ret += s->alpn_client_proto_list_len; } if (s->tlsext_channel_id_enabled) { /* The client advertises an emtpy extension to indicate its * support for Channel ID. */ if (limit - ret - 4 < 0) return NULL; if (s->ctx->tlsext_channel_id_enabled_new) s2n(TLSEXT_TYPE_channel_id_new,ret); else s2n(TLSEXT_TYPE_channel_id,ret); s2n(0,ret); } if(SSL_get_srtp_profiles(s)) { int el; ssl_add_clienthello_use_srtp_ext(s, 0, &el, 0); if((limit - ret - 4 - el) < 0) return NULL; s2n(TLSEXT_TYPE_use_srtp,ret); s2n(el,ret); if(ssl_add_clienthello_use_srtp_ext(s, ret, &el, el)) { OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR); return NULL; } ret += el; } #ifndef OPENSSL_NO_EC if (using_ecc) { /* Add TLS extension ECPointFormats to the ClientHello message */ long lenmax; const unsigned char *plist; size_t plistlen; tls1_get_formatlist(s, &plist, &plistlen); if ((lenmax = limit - ret - 5) < 0) return NULL; if (plistlen > (size_t)lenmax) return NULL; if (plistlen > 255) { OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR); return NULL; } s2n(TLSEXT_TYPE_ec_point_formats,ret); s2n(plistlen + 1,ret); *(ret++) = (unsigned char)plistlen ; memcpy(ret, plist, plistlen); ret+=plistlen; /* Add TLS extension EllipticCurves to the ClientHello message */ plist = s->tlsext_ellipticcurvelist; tls1_get_curvelist(s, 0, &plist, &plistlen); if ((lenmax = limit - ret - 6) < 0) return NULL; if (plistlen > (size_t)lenmax) return NULL; if (plistlen > 65532) { OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR); return NULL; } s2n(TLSEXT_TYPE_elliptic_curves,ret); s2n(plistlen + 2, ret); /* NB: draft-ietf-tls-ecc-12.txt uses a one-byte prefix for * elliptic_curve_list, but the examples use two bytes. * http://www1.ietf.org/mail-archive/web/tls/current/msg00538.html * resolves this to two bytes. */ s2n(plistlen, ret); memcpy(ret, plist, plistlen); ret+=plistlen; } #endif /* OPENSSL_NO_EC */ #ifdef TLSEXT_TYPE_padding /* Add padding to workaround bugs in F5 terminators. * See https://tools.ietf.org/html/draft-agl-tls-padding-03 * * NB: because this code works out the length of all existing * extensions it MUST always appear last. */ if (header_len > 0) { header_len += ret - orig; if (header_len > 0xff && header_len < 0x200) { size_t padding_len = 0x200 - header_len; /* Extensions take at least four bytes to encode. Always * include least one byte of data if including the * extension. WebSphere Application Server 7.0 is * intolerant to the last extension being zero-length. */ if (padding_len >= 4 + 1) padding_len -= 4; else padding_len = 1; if (limit - ret - 4 - (long)padding_len < 0) return NULL; s2n(TLSEXT_TYPE_padding, ret); s2n(padding_len, ret); memset(ret, 0, padding_len); ret += padding_len; } } #endif if ((extdatalen = ret-orig-2)== 0) return orig; s2n(extdatalen, orig); return ret; } unsigned char *ssl_add_serverhello_tlsext(SSL *s, unsigned char *buf, unsigned char *limit) { int extdatalen=0; unsigned char *orig = buf; unsigned char *ret = buf; #ifndef OPENSSL_NO_NEXTPROTONEG int next_proto_neg_seen; #endif #ifndef OPENSSL_NO_EC unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey; unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth; int using_ecc = (alg_k & (SSL_kEECDH|SSL_kECDHr|SSL_kECDHe)) || (alg_a & SSL_aECDSA); using_ecc = using_ecc && (s->session->tlsext_ecpointformatlist != NULL); #endif /* don't add extensions for SSLv3, unless doing secure renegotiation */ if (s->version == SSL3_VERSION && !s->s3->send_connection_binding) return orig; ret+=2; if (ret>=limit) return NULL; /* this really never occurs, but ... */ if (!s->hit && s->servername_done == 1 && s->session->tlsext_hostname != NULL) { if ((long)(limit - ret - 4) < 0) return NULL; s2n(TLSEXT_TYPE_server_name,ret); s2n(0,ret); } if(s->s3->send_connection_binding) { int el; if(!ssl_add_serverhello_renegotiate_ext(s, 0, &el, 0)) { OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, ERR_R_INTERNAL_ERROR); return NULL; } if((limit - ret - 4 - el) < 0) return NULL; s2n(TLSEXT_TYPE_renegotiate,ret); s2n(el,ret); if(!ssl_add_serverhello_renegotiate_ext(s, ret, &el, el)) { OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, ERR_R_INTERNAL_ERROR); return NULL; } ret += el; } #ifndef OPENSSL_NO_EC if (using_ecc) { const unsigned char *plist; size_t plistlen; /* Add TLS extension ECPointFormats to the ServerHello message */ long lenmax; tls1_get_formatlist(s, &plist, &plistlen); if ((lenmax = limit - ret - 5) < 0) return NULL; if (plistlen > (size_t)lenmax) return NULL; if (plistlen > 255) { OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, ERR_R_INTERNAL_ERROR); return NULL; } s2n(TLSEXT_TYPE_ec_point_formats,ret); s2n(plistlen + 1,ret); *(ret++) = (unsigned char) plistlen; memcpy(ret, plist, plistlen); ret+=plistlen; } /* Currently the server should not respond with a SupportedCurves extension */ #endif /* OPENSSL_NO_EC */ if (s->tlsext_ticket_expected && !(SSL_get_options(s) & SSL_OP_NO_TICKET)) { if ((long)(limit - ret - 4) < 0) return NULL; s2n(TLSEXT_TYPE_session_ticket,ret); s2n(0,ret); } if (s->tlsext_status_expected) { if ((long)(limit - ret - 4) < 0) return NULL; s2n(TLSEXT_TYPE_status_request,ret); s2n(0,ret); } if(s->srtp_profile) { int el; ssl_add_serverhello_use_srtp_ext(s, 0, &el, 0); if((limit - ret - 4 - el) < 0) return NULL; s2n(TLSEXT_TYPE_use_srtp,ret); s2n(el,ret); if(ssl_add_serverhello_use_srtp_ext(s, ret, &el, el)) { OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, ERR_R_INTERNAL_ERROR); return NULL; } ret+=el; } #ifndef OPENSSL_NO_NEXTPROTONEG next_proto_neg_seen = s->s3->next_proto_neg_seen; s->s3->next_proto_neg_seen = 0; if (next_proto_neg_seen && s->ctx->next_protos_advertised_cb) { const unsigned char *npa; unsigned int npalen; int r; r = s->ctx->next_protos_advertised_cb(s, &npa, &npalen, s->ctx->next_protos_advertised_cb_arg); if (r == SSL_TLSEXT_ERR_OK) { if ((long)(limit - ret - 4 - npalen) < 0) return NULL; s2n(TLSEXT_TYPE_next_proto_neg,ret); s2n(npalen,ret); memcpy(ret, npa, npalen); ret += npalen; s->s3->next_proto_neg_seen = 1; } } #endif if (s->s3->alpn_selected) { const uint8_t *selected = s->s3->alpn_selected; size_t len = s->s3->alpn_selected_len; if ((long)(limit - ret - 4 - 2 - 1 - len) < 0) return NULL; s2n(TLSEXT_TYPE_application_layer_protocol_negotiation,ret); s2n(3 + len,ret); s2n(1 + len,ret); *ret++ = len; memcpy(ret, selected, len); ret += len; } /* If the client advertised support for Channel ID, and we have it * enabled, then we want to echo it back. */ if (s->s3->tlsext_channel_id_valid) { if (limit - ret - 4 < 0) return NULL; if (s->s3->tlsext_channel_id_new) s2n(TLSEXT_TYPE_channel_id_new,ret); else s2n(TLSEXT_TYPE_channel_id,ret); s2n(0,ret); } if ((extdatalen = ret-orig-2) == 0) return orig; s2n(extdatalen, orig); return ret; } /* tls1_alpn_handle_client_hello is called to process the ALPN extension in a * ClientHello. * cbs: the contents of the extension, not including the type and length. * out_alert: a pointer to the alert value to send in the event of a zero * return. * * returns: 1 on success. */ static int tls1_alpn_handle_client_hello(SSL *s, CBS *cbs, int *out_alert) { CBS protocol_name_list; const unsigned char *selected; unsigned char selected_len; int r; if (s->ctx->alpn_select_cb == NULL) return 1; if (!CBS_get_u16_length_prefixed(cbs, &protocol_name_list) || CBS_len(cbs) != 0 || CBS_len(&protocol_name_list) < 2) goto parse_error; /* Validate the protocol list. */ CBS protocol_name_list_copy = protocol_name_list; while (CBS_len(&protocol_name_list_copy) > 0) { CBS protocol_name; if (!CBS_get_u8_length_prefixed(&protocol_name_list_copy, &protocol_name)) goto parse_error; } r = s->ctx->alpn_select_cb(s, &selected, &selected_len, CBS_data(&protocol_name_list), CBS_len(&protocol_name_list), s->ctx->alpn_select_cb_arg); if (r == SSL_TLSEXT_ERR_OK) { if (s->s3->alpn_selected) OPENSSL_free(s->s3->alpn_selected); s->s3->alpn_selected = OPENSSL_malloc(selected_len); if (!s->s3->alpn_selected) { *out_alert = SSL_AD_INTERNAL_ERROR; return 0; } memcpy(s->s3->alpn_selected, selected, selected_len); s->s3->alpn_selected_len = selected_len; } return 1; parse_error: *out_alert = SSL_AD_DECODE_ERROR; return 0; } static int ssl_scan_clienthello_tlsext(SSL *s, CBS *cbs, int *out_alert) { int renegotiate_seen = 0; CBS extensions; size_t i; s->servername_done = 0; s->tlsext_status_type = -1; #ifndef OPENSSL_NO_NEXTPROTONEG s->s3->next_proto_neg_seen = 0; #endif if (s->s3->alpn_selected) { OPENSSL_free(s->s3->alpn_selected); s->s3->alpn_selected = NULL; } /* Clear any signature algorithms extension received */ if (s->cert->peer_sigalgs) { OPENSSL_free(s->cert->peer_sigalgs); s->cert->peer_sigalgs = NULL; } /* Clear any shared sigtnature algorithms */ if (s->cert->shared_sigalgs) { OPENSSL_free(s->cert->shared_sigalgs); s->cert->shared_sigalgs = NULL; } /* Clear certificate digests and validity flags */ for (i = 0; i < SSL_PKEY_NUM; i++) { s->cert->pkeys[i].digest = NULL; s->cert->pkeys[i].valid_flags = 0; } /* TODO(fork): we probably want OCSP stapling support, but this pulls in * a lot of code. */ #if 0 /* Clear OCSP state. */ s->tlsext_status_type = -1; if (s->tlsext_ocsp_ids) { sk_OCSP_RESPID_pop_free(s->tlsext_ocsp_ids, OCSP_RESPID_free); s->tlsext_ocsp_ids = NULL; } if (s->tlsext_ocsp_exts) { sk_X509_EXTENSION_pop_free(s->tlsext_ocsp_exts, X509_EXTENSION_free); s->tlsext_ocsp_exts = NULL; } #endif /* There may be no extensions. */ if (CBS_len(cbs) == 0) { goto ri_check; } /* Decode the extensions block and check it is valid. */ if (!CBS_get_u16_length_prefixed(cbs, &extensions) || !tls1_check_duplicate_extensions(&extensions)) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } while (CBS_len(&extensions) != 0) { uint16_t type; CBS extension; /* Decode the next extension. */ if (!CBS_get_u16(&extensions, &type) || !CBS_get_u16_length_prefixed(&extensions, &extension)) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } if (s->tlsext_debug_cb) { s->tlsext_debug_cb(s, 0, type, (unsigned char*)CBS_data(&extension), CBS_len(&extension), s->tlsext_debug_arg); } /* The servername extension is treated as follows: - Only the hostname type is supported with a maximum length of 255. - The servername is rejected if too long or if it contains zeros, in which case an fatal alert is generated. - The servername field is maintained together with the session cache. - When a session is resumed, the servername call back invoked in order to allow the application to position itself to the right context. - The servername is acknowledged if it is new for a session or when it is identical to a previously used for the same session. Applications can control the behaviour. They can at any time set a 'desirable' servername for a new SSL object. This can be the case for example with HTTPS when a Host: header field is received and a renegotiation is requested. In this case, a possible servername presented in the new client hello is only acknowledged if it matches the value of the Host: field. - Applications must use SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION if they provide for changing an explicit servername context for the session, i.e. when the session has been established with a servername extension. - On session reconnect, the servername extension may be absent. */ if (type == TLSEXT_TYPE_server_name) { CBS server_name_list; if (!CBS_get_u16_length_prefixed(&extension, &server_name_list) || CBS_len(&server_name_list) < 1 || CBS_len(&extension) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } /* Decode each ServerName in the extension. */ while (CBS_len(&server_name_list) > 0) { uint8_t name_type; CBS host_name; /* Decode the NameType. */ if (!CBS_get_u8(&server_name_list, &name_type)) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } /* Only host_name is supported. */ if (name_type != TLSEXT_NAMETYPE_host_name) continue; if (!s->hit) { if (s->session->tlsext_hostname) { /* The ServerNameList MUST NOT contain more than one name of the same name_type. */ *out_alert = SSL_AD_DECODE_ERROR; return 0; } if (!CBS_get_u16_length_prefixed(&server_name_list, &host_name) || CBS_len(&host_name) < 1) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } if (CBS_len(&host_name) > TLSEXT_MAXLEN_host_name || CBS_contains_zero_byte(&host_name)) { *out_alert = SSL_AD_UNRECOGNIZED_NAME; return 0; } /* Copy the hostname as a string. */ if (!CBS_strdup(&host_name, &s->session->tlsext_hostname)) { *out_alert = SSL_AD_INTERNAL_ERROR; return 0; } s->servername_done = 1; } else { s->servername_done = s->session->tlsext_hostname && strlen(s->session->tlsext_hostname) == CBS_len(&host_name) && strncmp(s->session->tlsext_hostname, (char *)CBS_data(&host_name), CBS_len(&host_name)) == 0; } } } #ifndef OPENSSL_NO_EC else if (type == TLSEXT_TYPE_ec_point_formats) { CBS ec_point_format_list; if (!CBS_get_u8_length_prefixed(&extension, &ec_point_format_list) || CBS_len(&extension) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } if (!s->hit) { if (!CBS_stow(&ec_point_format_list, &s->session->tlsext_ecpointformatlist, &s->session->tlsext_ecpointformatlist_length)) { *out_alert = SSL_AD_INTERNAL_ERROR; return 0; } } } else if (type == TLSEXT_TYPE_elliptic_curves) { CBS elliptic_curve_list; if (!CBS_get_u16_length_prefixed(&extension, &elliptic_curve_list) || CBS_len(&extension) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } if (!s->hit) { if (!CBS_stow(&elliptic_curve_list, &s->session->tlsext_ellipticcurvelist, &s->session->tlsext_ellipticcurvelist_length)) { *out_alert = SSL_AD_INTERNAL_ERROR; return 0; } } } #endif /* OPENSSL_NO_EC */ else if (type == TLSEXT_TYPE_session_ticket) { if (s->tls_session_ticket_ext_cb && !s->tls_session_ticket_ext_cb(s, CBS_data(&extension), CBS_len(&extension), s->tls_session_ticket_ext_cb_arg)) { *out_alert = SSL_AD_INTERNAL_ERROR; return 0; } } else if (type == TLSEXT_TYPE_renegotiate) { if (!ssl_parse_clienthello_renegotiate_ext(s, &extension, out_alert)) return 0; renegotiate_seen = 1; } else if (type == TLSEXT_TYPE_signature_algorithms) { CBS supported_signature_algorithms; if (!CBS_get_u16_length_prefixed(&extension, &supported_signature_algorithms) || CBS_len(&extension) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } /* Ensure the signature algorithms are non-empty. It * contains a list of SignatureAndHashAlgorithms * which are two bytes each. */ if (CBS_len(&supported_signature_algorithms) == 0 || (CBS_len(&supported_signature_algorithms) % 2) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } if (!tls1_process_sigalgs(s, CBS_data(&supported_signature_algorithms), CBS_len(&supported_signature_algorithms))) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } /* If sigalgs received and no shared algorithms fatal * error. */ if (s->cert->peer_sigalgs && !s->cert->shared_sigalgs) { OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, SSL_R_NO_SHARED_SIGATURE_ALGORITHMS); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return 0; } } /* TODO(fork): we probably want OCSP stapling support, but this pulls in a lot of code. */ #if 0 else if (type == TLSEXT_TYPE_status_request) { uint8_t status_type; CBS responder_id_list; CBS request_extensions; if (!CBS_get_u8(&extension, &status_type)) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } /* Only OCSP is supported. */ if (status_type != TLSEXT_STATUSTYPE_ocsp) continue; s->tlsext_status_type = status_type; /* Extension consists of a responder_id_list and * request_extensions. */ if (!CBS_get_u16_length_prefixed(&extension, &responder_id_list) || !CBS_get_u16_length_prefixed(&extension, &request_extensions) || CBS_len(&extension) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } if (CBS_len(&responder_id_list) > 0) { s->tlsext_ocsp_ids = sk_OCSP_RESPID_new_null(); if (s->tlsext_ocsp_ids == NULL) { *out_alert = SSL_AD_INTERNAL_ERROR; return 0; } } /* Parse out the responder IDs. */ while (CBS_len(&responder_id_list) > 0) { CBS responder_id; OCSP_RESPID *id; const uint8_t *data; /* Each ResponderID must have size at least 1. */ if (!CBS_get_u16_length_prefixed(&responder_id_list, &responder_id) || CBS_len(&responder_id) < 1) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } /* TODO(fork): Add CBS versions of d2i_FOO_BAR. */ data = CBS_data(&responder_id); id = d2i_OCSP_RESPID(NULL, &data, CBS_len(&responder_id)); if (!id) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } if (!CBS_skip(&responder_id, data - CBS_data(&responder_id))) { /* This should never happen. */ *out_alert = SSL_AD_INTERNAL_ERROR; OCSP_RESPID_free(id); return 0; } if (CBS_len(&responder_id) != 0) { *out_alert = SSL_AD_DECODE_ERROR; OCSP_RESPID_free(id); return 0; } if (!sk_OCSP_RESPID_push(s->tlsext_ocsp_ids, id)) { *out_alert = SSL_AD_INTERNAL_ERROR; OCSP_RESPID_free(id); return 0; } } /* Parse out request_extensions. */ if (CBS_len(&request_extensions) > 0) { const uint8_t *data; data = CBS_data(&request_extensions); s->tlsext_ocsp_exts = d2i_X509_EXTENSIONS(NULL, &data, CBS_len(&request_extensions)); if (s->tlsext_ocsp_exts == NULL) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } if (!CBS_skip(&request_extensions, data - CBS_data(&request_extensions))) { /* This should never happen. */ *out_alert = SSL_AD_INTERNAL_ERROR; return 0; } if (CBS_len(&request_extensions) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } } } #endif #ifndef OPENSSL_NO_NEXTPROTONEG else if (type == TLSEXT_TYPE_next_proto_neg && s->s3->tmp.finish_md_len == 0 && s->s3->alpn_selected == NULL) { /* The extension must be empty. */ if (CBS_len(&extension) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } /* We shouldn't accept this extension on a * renegotiation. * * s->new_session will be set on renegotiation, but we * probably shouldn't rely that it couldn't be set on * the initial renegotation too in certain cases (when * there's some other reason to disallow resuming an * earlier session -- the current code won't be doing * anything like that, but this might change). * A valid sign that there's been a previous handshake * in this connection is if s->s3->tmp.finish_md_len > * 0. (We are talking about a check that will happen * in the Hello protocol round, well before a new * Finished message could have been computed.) */ s->s3->next_proto_neg_seen = 1; } #endif else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation && s->ctx->alpn_select_cb && s->s3->tmp.finish_md_len == 0) { if (!tls1_alpn_handle_client_hello(s, &extension, out_alert)) return 0; #ifndef OPENSSL_NO_NEXTPROTONEG /* ALPN takes precedence over NPN. */ s->s3->next_proto_neg_seen = 0; #endif } else if (type == TLSEXT_TYPE_channel_id && s->tlsext_channel_id_enabled) { /* The extension must be empty. */ if (CBS_len(&extension) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } s->s3->tlsext_channel_id_valid = 1; } else if (type == TLSEXT_TYPE_channel_id_new && s->tlsext_channel_id_enabled) { /* The extension must be empty. */ if (CBS_len(&extension) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } s->s3->tlsext_channel_id_valid = 1; s->s3->tlsext_channel_id_new = 1; } /* session ticket processed earlier */ else if (type == TLSEXT_TYPE_use_srtp) { if (!ssl_parse_clienthello_use_srtp_ext(s, &extension, out_alert)) return 0; } } ri_check: /* Need RI if renegotiating */ if (!renegotiate_seen && s->renegotiate && !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) { *out_alert = SSL_AD_HANDSHAKE_FAILURE; OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED); return 0; } /* If no signature algorithms extension set default values */ if (!s->cert->peer_sigalgs) ssl_cert_set_default_md(s->cert); return 1; } int ssl_parse_clienthello_tlsext(SSL *s, CBS *cbs) { int alert = -1; if (ssl_scan_clienthello_tlsext(s, cbs, &alert) <= 0) { ssl3_send_alert(s, SSL3_AL_FATAL, alert); return 0; } if (ssl_check_clienthello_tlsext_early(s) <= 0) { OPENSSL_PUT_ERROR(SSL, ssl_parse_clienthello_tlsext, SSL_R_CLIENTHELLO_TLSEXT); return 0; } return 1; } #ifndef OPENSSL_NO_NEXTPROTONEG /* ssl_next_proto_validate validates a Next Protocol Negotiation block. No * elements of zero length are allowed and the set of elements must exactly fill * the length of the block. */ static char ssl_next_proto_validate(const CBS *cbs) { CBS copy = *cbs; while (CBS_len(©) != 0) { CBS proto; if (!CBS_get_u8_length_prefixed(©, &proto) || CBS_len(&proto) == 0) { return 0; } } return 1; } #endif static int ssl_scan_serverhello_tlsext(SSL *s, CBS *cbs, int *out_alert) { int tlsext_servername = 0; int renegotiate_seen = 0; CBS extensions; #ifndef OPENSSL_NO_NEXTPROTONEG s->s3->next_proto_neg_seen = 0; #endif if (s->s3->alpn_selected) { OPENSSL_free(s->s3->alpn_selected); s->s3->alpn_selected = NULL; } /* There may be no extensions. */ if (CBS_len(cbs) == 0) { goto ri_check; } /* Decode the extensions block and check it is valid. */ if (!CBS_get_u16_length_prefixed(cbs, &extensions) || !tls1_check_duplicate_extensions(&extensions)) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } while (CBS_len(&extensions) != 0) { uint16_t type; CBS extension; /* Decode the next extension. */ if (!CBS_get_u16(&extensions, &type) || !CBS_get_u16_length_prefixed(&extensions, &extension)) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } if (s->tlsext_debug_cb) { s->tlsext_debug_cb(s, 1, type, (unsigned char*)CBS_data(&extension), CBS_len(&extension), s->tlsext_debug_arg); } if (type == TLSEXT_TYPE_server_name) { /* The extension must be empty. */ if (CBS_len(&extension) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } /* We must have sent it in ClientHello. */ if (s->tlsext_hostname == NULL) { *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; return 0; } tlsext_servername = 1; } #ifndef OPENSSL_NO_EC else if (type == TLSEXT_TYPE_ec_point_formats) { CBS ec_point_format_list; if (!CBS_get_u8_length_prefixed(&extension, &ec_point_format_list) || CBS_len(&extension) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } if (!CBS_stow(&ec_point_format_list, &s->session->tlsext_ecpointformatlist, &s->session->tlsext_ecpointformatlist_length)) { *out_alert = SSL_AD_INTERNAL_ERROR; return 0; } } #endif /* OPENSSL_NO_EC */ else if (type == TLSEXT_TYPE_session_ticket) { if (s->tls_session_ticket_ext_cb && !s->tls_session_ticket_ext_cb(s, CBS_data(&extension), CBS_len(&extension), s->tls_session_ticket_ext_cb_arg)) { *out_alert = SSL_AD_INTERNAL_ERROR; return 0; } if ((SSL_get_options(s) & SSL_OP_NO_TICKET) || CBS_len(&extension) > 0) { *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; return 0; } s->tlsext_ticket_expected = 1; } else if (type == TLSEXT_TYPE_status_request) { /* The extension MUST be empty and may only sent if * we've requested a status request message. */ if (CBS_len(&extension) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } if (s->tlsext_status_type == -1) { *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; return 0; } /* Set a flag to expect a CertificateStatus message */ s->tlsext_status_expected = 1; } #ifndef OPENSSL_NO_NEXTPROTONEG else if (type == TLSEXT_TYPE_next_proto_neg && s->s3->tmp.finish_md_len == 0) { unsigned char *selected; unsigned char selected_len; /* We must have requested it. */ if (s->ctx->next_proto_select_cb == NULL) { *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; return 0; } /* The data must be valid. */ if (!ssl_next_proto_validate(&extension)) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } if (s->ctx->next_proto_select_cb(s, &selected, &selected_len, CBS_data(&extension), CBS_len(&extension), s->ctx->next_proto_select_cb_arg) != SSL_TLSEXT_ERR_OK) { *out_alert = SSL_AD_INTERNAL_ERROR; return 0; } s->next_proto_negotiated = BUF_memdup(selected, selected_len); if (s->next_proto_negotiated == NULL) { *out_alert = SSL_AD_INTERNAL_ERROR; return 0; } s->next_proto_negotiated_len = selected_len; s->s3->next_proto_neg_seen = 1; } #endif else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation) { CBS protocol_name_list, protocol_name; /* We must have requested it. */ if (s->alpn_client_proto_list == NULL) { *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; return 0; } /* The extension data consists of a ProtocolNameList * which must have exactly one ProtocolName. Each of * these is length-prefixed. */ if (!CBS_get_u16_length_prefixed(&extension, &protocol_name_list) || CBS_len(&extension) != 0 || !CBS_get_u8_length_prefixed(&protocol_name_list, &protocol_name) || CBS_len(&protocol_name_list) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } if (!CBS_stow(&protocol_name, &s->s3->alpn_selected, &s->s3->alpn_selected_len)) { *out_alert = SSL_AD_INTERNAL_ERROR; return 0; } } else if (type == TLSEXT_TYPE_channel_id) { if (CBS_len(&extension) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } s->s3->tlsext_channel_id_valid = 1; } else if (type == TLSEXT_TYPE_channel_id_new) { if (CBS_len(&extension) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return 0; } s->s3->tlsext_channel_id_valid = 1; s->s3->tlsext_channel_id_new = 1; } else if (type == TLSEXT_TYPE_renegotiate) { if (!ssl_parse_serverhello_renegotiate_ext(s, &extension, out_alert)) return 0; renegotiate_seen = 1; } else if (type == TLSEXT_TYPE_use_srtp) { if (!ssl_parse_serverhello_use_srtp_ext(s, &extension, out_alert)) return 0; } } if (!s->hit && tlsext_servername == 1) { if (s->tlsext_hostname) { if (s->session->tlsext_hostname == NULL) { s->session->tlsext_hostname = BUF_strdup(s->tlsext_hostname); if (!s->session->tlsext_hostname) { *out_alert = SSL_AD_UNRECOGNIZED_NAME; return 0; } } else { *out_alert = SSL_AD_DECODE_ERROR; return 0; } } } ri_check: /* Determine if we need to see RI. Strictly speaking if we want to * avoid an attack we should *always* see RI even on initial server * hello because the client doesn't see any renegotiation during an * attack. However this would mean we could not connect to any server * which doesn't support RI so for the immediate future tolerate RI * absence on initial connect only. */ if (!renegotiate_seen && !(s->options & SSL_OP_LEGACY_SERVER_CONNECT) && !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) { *out_alert = SSL_AD_HANDSHAKE_FAILURE; OPENSSL_PUT_ERROR(SSL, ssl_scan_serverhello_tlsext, SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED); return 0; } return 1; } int ssl_prepare_clienthello_tlsext(SSL *s) { return 1; } int ssl_prepare_serverhello_tlsext(SSL *s) { return 1; } static int ssl_check_clienthello_tlsext_early(SSL *s) { int ret=SSL_TLSEXT_ERR_NOACK; int al = SSL_AD_UNRECOGNIZED_NAME; #ifndef OPENSSL_NO_EC /* The handling of the ECPointFormats extension is done elsewhere, namely in * ssl3_choose_cipher in s3_lib.c. */ /* The handling of the EllipticCurves extension is done elsewhere, namely in * ssl3_choose_cipher in s3_lib.c. */ #endif if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0) ret = s->ctx->tlsext_servername_callback(s, &al, s->ctx->tlsext_servername_arg); else if (s->initial_ctx != NULL && s->initial_ctx->tlsext_servername_callback != 0) ret = s->initial_ctx->tlsext_servername_callback(s, &al, s->initial_ctx->tlsext_servername_arg); switch (ret) { case SSL_TLSEXT_ERR_ALERT_FATAL: ssl3_send_alert(s,SSL3_AL_FATAL,al); return -1; case SSL_TLSEXT_ERR_ALERT_WARNING: ssl3_send_alert(s,SSL3_AL_WARNING,al); return 1; case SSL_TLSEXT_ERR_NOACK: s->servername_done=0; default: return 1; } } int ssl_check_clienthello_tlsext_late(SSL *s) { int ret = SSL_TLSEXT_ERR_OK; int al; /* If status request then ask callback what to do. * Note: this must be called after servername callbacks in case * the certificate has changed, and must be called after the cipher * has been chosen because this may influence which certificate is sent */ if ((s->tlsext_status_type != -1) && s->ctx && s->ctx->tlsext_status_cb) { int r; CERT_PKEY *certpkey; certpkey = ssl_get_server_send_pkey(s); /* If no certificate can't return certificate status */ if (certpkey == NULL) { s->tlsext_status_expected = 0; return 1; } /* Set current certificate to one we will use so * SSL_get_certificate et al can pick it up. */ s->cert->key = certpkey; r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg); switch (r) { /* We don't want to send a status request response */ case SSL_TLSEXT_ERR_NOACK: s->tlsext_status_expected = 0; break; /* status request response should be sent */ case SSL_TLSEXT_ERR_OK: if (s->tlsext_ocsp_resp) s->tlsext_status_expected = 1; else s->tlsext_status_expected = 0; break; /* something bad happened */ case SSL_TLSEXT_ERR_ALERT_FATAL: ret = SSL_TLSEXT_ERR_ALERT_FATAL; al = SSL_AD_INTERNAL_ERROR; goto err; } } else s->tlsext_status_expected = 0; err: switch (ret) { case SSL_TLSEXT_ERR_ALERT_FATAL: ssl3_send_alert(s, SSL3_AL_FATAL, al); return -1; case SSL_TLSEXT_ERR_ALERT_WARNING: ssl3_send_alert(s, SSL3_AL_WARNING, al); return 1; default: return 1; } } int ssl_check_serverhello_tlsext(SSL *s) { int ret=SSL_TLSEXT_ERR_NOACK; int al = SSL_AD_UNRECOGNIZED_NAME; #ifndef OPENSSL_NO_EC /* If we are client and using an elliptic curve cryptography cipher * suite, then if server returns an EC point formats lists extension * it must contain uncompressed. */ unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey; unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth; if ((s->tlsext_ecpointformatlist != NULL) && (s->tlsext_ecpointformatlist_length > 0) && (s->session->tlsext_ecpointformatlist != NULL) && (s->session->tlsext_ecpointformatlist_length > 0) && ((alg_k & (SSL_kEECDH|SSL_kECDHr|SSL_kECDHe)) || (alg_a & SSL_aECDSA))) { /* we are using an ECC cipher */ size_t i; unsigned char *list; int found_uncompressed = 0; list = s->session->tlsext_ecpointformatlist; for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++) { if (*(list++) == TLSEXT_ECPOINTFORMAT_uncompressed) { found_uncompressed = 1; break; } } if (!found_uncompressed) { OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, SSL_R_TLS_INVALID_ECPOINTFORMAT_LIST); return -1; } } ret = SSL_TLSEXT_ERR_OK; #endif /* OPENSSL_NO_EC */ if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0) ret = s->ctx->tlsext_servername_callback(s, &al, s->ctx->tlsext_servername_arg); else if (s->initial_ctx != NULL && s->initial_ctx->tlsext_servername_callback != 0) ret = s->initial_ctx->tlsext_servername_callback(s, &al, s->initial_ctx->tlsext_servername_arg); /* If we've requested certificate status and we wont get one * tell the callback */ if ((s->tlsext_status_type != -1) && !(s->tlsext_status_expected) && s->ctx && s->ctx->tlsext_status_cb) { int r; /* Set resp to NULL, resplen to -1 so callback knows * there is no response. */ if (s->tlsext_ocsp_resp) { OPENSSL_free(s->tlsext_ocsp_resp); s->tlsext_ocsp_resp = NULL; } s->tlsext_ocsp_resplen = -1; r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg); if (r == 0) { al = SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE; ret = SSL_TLSEXT_ERR_ALERT_FATAL; } if (r < 0) { al = SSL_AD_INTERNAL_ERROR; ret = SSL_TLSEXT_ERR_ALERT_FATAL; } } switch (ret) { case SSL_TLSEXT_ERR_ALERT_FATAL: ssl3_send_alert(s,SSL3_AL_FATAL,al); return -1; case SSL_TLSEXT_ERR_ALERT_WARNING: ssl3_send_alert(s,SSL3_AL_WARNING,al); return 1; case SSL_TLSEXT_ERR_NOACK: s->servername_done=0; default: return 1; } } int ssl_parse_serverhello_tlsext(SSL *s, CBS *cbs) { int alert = -1; if (s->version < SSL3_VERSION) return 1; if (ssl_scan_serverhello_tlsext(s, cbs, &alert) <= 0) { ssl3_send_alert(s, SSL3_AL_FATAL, alert); return 0; } if (ssl_check_serverhello_tlsext(s) <= 0) { OPENSSL_PUT_ERROR(SSL, ssl_parse_serverhello_tlsext, SSL_R_SERVERHELLO_TLSEXT); return 0; } return 1; } /* Since the server cache lookup is done early on in the processing of the * ClientHello, and other operations depend on the result, we need to handle * any TLS session ticket extension at the same time. * * ctx: contains the early callback context, which is the result of a * shallow parse of the ClientHello. * ret: (output) on return, if a ticket was decrypted, then this is set to * point to the resulting session. * * If s->tls_session_secret_cb is set then we are expecting a pre-shared key * ciphersuite, in which case we have no use for session tickets and one will * never be decrypted, nor will s->tlsext_ticket_expected be set to 1. * * Returns: * -1: fatal error, either from parsing or decrypting the ticket. * 0: no ticket was found (or was ignored, based on settings). * 1: a zero length extension was found, indicating that the client supports * session tickets but doesn't currently have one to offer. * 2: either s->tls_session_secret_cb was set, or a ticket was offered but * couldn't be decrypted because of a non-fatal error. * 3: a ticket was successfully decrypted and *ret was set. * * Side effects: * Sets s->tlsext_ticket_expected to 1 if the server will have to issue * a new session ticket to the client because the client indicated support * (and s->tls_session_secret_cb is NULL) but the client either doesn't have * a session ticket or we couldn't use the one it gave us, or if * s->ctx->tlsext_ticket_key_cb asked to renew the client's ticket. * Otherwise, s->tlsext_ticket_expected is set to 0. */ int tls1_process_ticket(SSL *s, const struct ssl_early_callback_ctx *ctx, SSL_SESSION **ret) { *ret = NULL; s->tlsext_ticket_expected = 0; const unsigned char *data; size_t len; int r; /* If tickets disabled behave as if no ticket present * to permit stateful resumption. */ if (SSL_get_options(s) & SSL_OP_NO_TICKET) return 0; if ((s->version <= SSL3_VERSION) && !ctx->extensions) return 0; if (!SSL_early_callback_ctx_extension_get( ctx, TLSEXT_TYPE_session_ticket, &data, &len)) { return 0; } if (len == 0) { /* The client will accept a ticket but doesn't * currently have one. */ s->tlsext_ticket_expected = 1; return 1; } if (s->tls_session_secret_cb) { /* Indicate that the ticket couldn't be * decrypted rather than generating the session * from ticket now, trigger abbreviated * handshake based on external mechanism to * calculate the master secret later. */ return 2; } r = tls_decrypt_ticket(s, data, len, ctx->session_id, ctx->session_id_len, ret); switch (r) { case 2: /* ticket couldn't be decrypted */ s->tlsext_ticket_expected = 1; return 2; case 3: /* ticket was decrypted */ return r; case 4: /* ticket decrypted but need to renew */ s->tlsext_ticket_expected = 1; return 3; default: /* fatal error */ return -1; } } /* tls_decrypt_ticket attempts to decrypt a session ticket. * * etick: points to the body of the session ticket extension. * eticklen: the length of the session tickets extenion. * sess_id: points at the session ID. * sesslen: the length of the session ID. * psess: (output) on return, if a ticket was decrypted, then this is set to * point to the resulting session. * * Returns: * -1: fatal error, either from parsing or decrypting the ticket. * 2: the ticket couldn't be decrypted. * 3: a ticket was successfully decrypted and *psess was set. * 4: same as 3, but the ticket needs to be renewed. */ static int tls_decrypt_ticket(SSL *s, const unsigned char *etick, int eticklen, const unsigned char *sess_id, int sesslen, SSL_SESSION **psess) { SSL_SESSION *sess; unsigned char *sdec; const unsigned char *p; int slen, mlen, renew_ticket = 0; unsigned char tick_hmac[EVP_MAX_MD_SIZE]; HMAC_CTX hctx; EVP_CIPHER_CTX ctx; SSL_CTX *tctx = s->initial_ctx; /* Need at least keyname + iv + some encrypted data */ if (eticklen < 48) return 2; /* Initialize session ticket encryption and HMAC contexts */ HMAC_CTX_init(&hctx); EVP_CIPHER_CTX_init(&ctx); if (tctx->tlsext_ticket_key_cb) { unsigned char *nctick = (unsigned char *)etick; int rv = tctx->tlsext_ticket_key_cb(s, nctick, nctick + 16, &ctx, &hctx, 0); if (rv < 0) return -1; if (rv == 0) return 2; if (rv == 2) renew_ticket = 1; } else { /* Check key name matches */ if (memcmp(etick, tctx->tlsext_tick_key_name, 16)) return 2; HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16, tlsext_tick_md(), NULL); EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, tctx->tlsext_tick_aes_key, etick + 16); } /* Attempt to process session ticket, first conduct sanity and * integrity checks on ticket. */ mlen = HMAC_size(&hctx); if (mlen < 0) { EVP_CIPHER_CTX_cleanup(&ctx); return -1; } eticklen -= mlen; /* Check HMAC of encrypted ticket */ HMAC_Update(&hctx, etick, eticklen); HMAC_Final(&hctx, tick_hmac, NULL); HMAC_CTX_cleanup(&hctx); if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) return 2; /* Attempt to decrypt session data */ /* Move p after IV to start of encrypted ticket, update length */ p = etick + 16 + EVP_CIPHER_CTX_iv_length(&ctx); eticklen -= 16 + EVP_CIPHER_CTX_iv_length(&ctx); sdec = OPENSSL_malloc(eticklen); if (!sdec) { EVP_CIPHER_CTX_cleanup(&ctx); return -1; } EVP_DecryptUpdate(&ctx, sdec, &slen, p, eticklen); if (EVP_DecryptFinal_ex(&ctx, sdec + slen, &mlen) <= 0) return 2; slen += mlen; EVP_CIPHER_CTX_cleanup(&ctx); p = sdec; sess = d2i_SSL_SESSION(NULL, &p, slen); OPENSSL_free(sdec); if (sess) { /* The session ID, if non-empty, is used by some clients to * detect that the ticket has been accepted. So we copy it to * the session structure. If it is empty set length to zero * as required by standard. */ if (sesslen) memcpy(sess->session_id, sess_id, sesslen); sess->session_id_length = sesslen; *psess = sess; if (renew_ticket) return 4; else return 3; } ERR_clear_error(); /* For session parse failure, indicate that we need to send a new * ticket. */ return 2; } /* Tables to translate from NIDs to TLS v1.2 ids */ typedef struct { int nid; int id; } tls12_lookup; static tls12_lookup tls12_md[] = { {NID_md5, TLSEXT_hash_md5}, {NID_sha1, TLSEXT_hash_sha1}, {NID_sha224, TLSEXT_hash_sha224}, {NID_sha256, TLSEXT_hash_sha256}, {NID_sha384, TLSEXT_hash_sha384}, {NID_sha512, TLSEXT_hash_sha512} }; static tls12_lookup tls12_sig[] = { {EVP_PKEY_RSA, TLSEXT_signature_rsa}, {EVP_PKEY_DSA, TLSEXT_signature_dsa}, {EVP_PKEY_EC, TLSEXT_signature_ecdsa} }; static int tls12_find_id(int nid, tls12_lookup *table, size_t tlen) { size_t i; for (i = 0; i < tlen; i++) { if (table[i].nid == nid) return table[i].id; } return -1; } static int tls12_find_nid(int id, tls12_lookup *table, size_t tlen) { size_t i; for (i = 0; i < tlen; i++) { if ((table[i].id) == id) return table[i].nid; } return NID_undef; } int tls12_get_sigandhash(unsigned char *p, const EVP_PKEY *pk, const EVP_MD *md) { int sig_id, md_id; if (!md) return 0; md_id = tls12_find_id(EVP_MD_type(md), tls12_md, sizeof(tls12_md)/sizeof(tls12_lookup)); if (md_id == -1) return 0; sig_id = tls12_get_sigid(pk); if (sig_id == -1) return 0; p[0] = (unsigned char)md_id; p[1] = (unsigned char)sig_id; return 1; } int tls12_get_sigid(const EVP_PKEY *pk) { return tls12_find_id(pk->type, tls12_sig, sizeof(tls12_sig)/sizeof(tls12_lookup)); } const EVP_MD *tls12_get_hash(unsigned char hash_alg) { switch(hash_alg) { #ifndef OPENSSL_NO_MD5 case TLSEXT_hash_md5: return EVP_md5(); #endif #ifndef OPENSSL_NO_SHA case TLSEXT_hash_sha1: return EVP_sha1(); #endif #ifndef OPENSSL_NO_SHA256 case TLSEXT_hash_sha224: return EVP_sha224(); case TLSEXT_hash_sha256: return EVP_sha256(); #endif #ifndef OPENSSL_NO_SHA512 case TLSEXT_hash_sha384: return EVP_sha384(); case TLSEXT_hash_sha512: return EVP_sha512(); #endif default: return NULL; } } static int tls12_get_pkey_idx(unsigned char sig_alg) { switch(sig_alg) { case TLSEXT_signature_rsa: return SSL_PKEY_RSA_SIGN; #ifndef OPENSSL_NO_DSA case TLSEXT_signature_dsa: return SSL_PKEY_DSA_SIGN; #endif #ifndef OPENSSL_NO_ECDSA case TLSEXT_signature_ecdsa: return SSL_PKEY_ECC; #endif } return -1; } /* Convert TLS 1.2 signature algorithm extension values into NIDs */ static void tls1_lookup_sigalg(int *phash_nid, int *psign_nid, int *psignhash_nid, const unsigned char *data) { int sign_nid = 0, hash_nid = 0; if (!phash_nid && !psign_nid && !psignhash_nid) return; if (phash_nid || psignhash_nid) { hash_nid = tls12_find_nid(data[0], tls12_md, sizeof(tls12_md)/sizeof(tls12_lookup)); if (phash_nid) *phash_nid = hash_nid; } if (psign_nid || psignhash_nid) { sign_nid = tls12_find_nid(data[1], tls12_sig, sizeof(tls12_sig)/sizeof(tls12_lookup)); if (psign_nid) *psign_nid = sign_nid; } if (psignhash_nid) { if (sign_nid && hash_nid) OBJ_find_sigid_by_algs(psignhash_nid, hash_nid, sign_nid); else *psignhash_nid = NID_undef; } } /* Given preference and allowed sigalgs set shared sigalgs */ static int tls12_do_shared_sigalgs(TLS_SIGALGS *shsig, const unsigned char *pref, size_t preflen, const unsigned char *allow, size_t allowlen) { const unsigned char *ptmp, *atmp; size_t i, j, nmatch = 0; for (i = 0, ptmp = pref; i < preflen; i+=2, ptmp+=2) { /* Skip disabled hashes or signature algorithms */ if (tls12_get_hash(ptmp[0]) == NULL) continue; if (tls12_get_pkey_idx(ptmp[1]) == -1) continue; for (j = 0, atmp = allow; j < allowlen; j+=2, atmp+=2) { if (ptmp[0] == atmp[0] && ptmp[1] == atmp[1]) { nmatch++; if (shsig) { shsig->rhash = ptmp[0]; shsig->rsign = ptmp[1]; tls1_lookup_sigalg(&shsig->hash_nid, &shsig->sign_nid, &shsig->signandhash_nid, ptmp); shsig++; } break; } } } return nmatch; } /* Set shared signature algorithms for SSL structures */ static int tls1_set_shared_sigalgs(SSL *s) { const unsigned char *pref, *allow, *conf; size_t preflen, allowlen, conflen; size_t nmatch; TLS_SIGALGS *salgs = NULL; CERT *c = s->cert; unsigned int is_suiteb = tls1_suiteb(s); if (c->shared_sigalgs) { OPENSSL_free(c->shared_sigalgs); c->shared_sigalgs = NULL; } /* If client use client signature algorithms if not NULL */ if (!s->server && c->client_sigalgs && !is_suiteb) { conf = c->client_sigalgs; conflen = c->client_sigalgslen; } else if (c->conf_sigalgs && !is_suiteb) { conf = c->conf_sigalgs; conflen = c->conf_sigalgslen; } else conflen = tls12_get_psigalgs(s, &conf); if(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) { pref = conf; preflen = conflen; allow = c->peer_sigalgs; allowlen = c->peer_sigalgslen; } else { allow = conf; allowlen = conflen; pref = c->peer_sigalgs; preflen = c->peer_sigalgslen; } nmatch = tls12_do_shared_sigalgs(NULL, pref, preflen, allow, allowlen); if (!nmatch) return 1; salgs = OPENSSL_malloc(nmatch * sizeof(TLS_SIGALGS)); if (!salgs) return 0; nmatch = tls12_do_shared_sigalgs(salgs, pref, preflen, allow, allowlen); c->shared_sigalgs = salgs; c->shared_sigalgslen = nmatch; return 1; } /* Set preferred digest for each key type */ int tls1_process_sigalgs(SSL *s, const unsigned char *data, int dsize) { int idx; size_t i; const EVP_MD *md; CERT *c = s->cert; TLS_SIGALGS *sigptr; /* Extension ignored for inappropriate versions */ if (!SSL_USE_SIGALGS(s)) return 1; /* Length must be even */ if (dsize % 2 != 0) return 0; /* Should never happen */ if (!c) return 0; if (c->peer_sigalgs) OPENSSL_free(c->peer_sigalgs); c->peer_sigalgs = OPENSSL_malloc(dsize); if (!c->peer_sigalgs) return 0; c->peer_sigalgslen = dsize; memcpy(c->peer_sigalgs, data, dsize); tls1_set_shared_sigalgs(s); #ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL) { /* Use first set signature preference to force message * digest, ignoring any peer preferences. */ const unsigned char *sigs = NULL; if (s->server) sigs = c->conf_sigalgs; else sigs = c->client_sigalgs; if (sigs) { idx = tls12_get_pkey_idx(sigs[1]); md = tls12_get_hash(sigs[0]); c->pkeys[idx].digest = md; c->pkeys[idx].valid_flags = CERT_PKEY_EXPLICIT_SIGN; if (idx == SSL_PKEY_RSA_SIGN) { c->pkeys[SSL_PKEY_RSA_ENC].valid_flags = CERT_PKEY_EXPLICIT_SIGN; c->pkeys[SSL_PKEY_RSA_ENC].digest = md; } } } #endif for (i = 0, sigptr = c->shared_sigalgs; i < c->shared_sigalgslen; i++, sigptr++) { idx = tls12_get_pkey_idx(sigptr->rsign); if (idx > 0 && c->pkeys[idx].digest == NULL) { md = tls12_get_hash(sigptr->rhash); c->pkeys[idx].digest = md; c->pkeys[idx].valid_flags = CERT_PKEY_EXPLICIT_SIGN; if (idx == SSL_PKEY_RSA_SIGN) { c->pkeys[SSL_PKEY_RSA_ENC].valid_flags = CERT_PKEY_EXPLICIT_SIGN; c->pkeys[SSL_PKEY_RSA_ENC].digest = md; } } } /* In strict mode leave unset digests as NULL to indicate we can't * use the certificate for signing. */ if (!(s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { /* Set any remaining keys to default values. NOTE: if alg is * not supported it stays as NULL. */ #ifndef OPENSSL_NO_DSA if (!c->pkeys[SSL_PKEY_DSA_SIGN].digest) c->pkeys[SSL_PKEY_DSA_SIGN].digest = EVP_sha1(); #endif if (!c->pkeys[SSL_PKEY_RSA_SIGN].digest) { c->pkeys[SSL_PKEY_RSA_SIGN].digest = EVP_sha1(); c->pkeys[SSL_PKEY_RSA_ENC].digest = EVP_sha1(); } #ifndef OPENSSL_NO_ECDSA if (!c->pkeys[SSL_PKEY_ECC].digest) c->pkeys[SSL_PKEY_ECC].digest = EVP_sha1(); #endif } return 1; } int SSL_get_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash) { const unsigned char *psig = s->cert->peer_sigalgs; if (psig == NULL) return 0; if (idx >= 0) { idx <<= 1; if (idx >= (int)s->cert->peer_sigalgslen) return 0; psig += idx; if (rhash) *rhash = psig[0]; if (rsig) *rsig = psig[1]; tls1_lookup_sigalg(phash, psign, psignhash, psig); } return s->cert->peer_sigalgslen / 2; } int SSL_get_shared_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash) { TLS_SIGALGS *shsigalgs = s->cert->shared_sigalgs; if (!shsigalgs || idx >= (int)s->cert->shared_sigalgslen) return 0; shsigalgs += idx; if (phash) *phash = shsigalgs->hash_nid; if (psign) *psign = shsigalgs->sign_nid; if (psignhash) *psignhash = shsigalgs->signandhash_nid; if (rsig) *rsig = shsigalgs->rsign; if (rhash) *rhash = shsigalgs->rhash; return s->cert->shared_sigalgslen; } /* tls1_channel_id_hash calculates the signed data for a Channel ID on the given * SSL connection and writes it to |md|. */ int tls1_channel_id_hash(EVP_MD_CTX *md, SSL *s) { EVP_MD_CTX ctx; unsigned char temp_digest[EVP_MAX_MD_SIZE]; unsigned temp_digest_len; int i; static const char kClientIDMagic[] = "TLS Channel ID signature"; if (s->s3->handshake_buffer) if (!ssl3_digest_cached_records(s)) return 0; EVP_DigestUpdate(md, kClientIDMagic, sizeof(kClientIDMagic)); if (s->hit && s->s3->tlsext_channel_id_new) { static const char kResumptionMagic[] = "Resumption"; EVP_DigestUpdate(md, kResumptionMagic, sizeof(kResumptionMagic)); if (s->session->original_handshake_hash_len == 0) return 0; EVP_DigestUpdate(md, s->session->original_handshake_hash, s->session->original_handshake_hash_len); } EVP_MD_CTX_init(&ctx); for (i = 0; i < SSL_MAX_DIGEST; i++) { if (s->s3->handshake_dgst[i] == NULL) continue; EVP_MD_CTX_copy_ex(&ctx, s->s3->handshake_dgst[i]); EVP_DigestFinal_ex(&ctx, temp_digest, &temp_digest_len); EVP_DigestUpdate(md, temp_digest, temp_digest_len); } EVP_MD_CTX_cleanup(&ctx); return 1; } /* tls1_record_handshake_hashes_for_channel_id records the current handshake * hashes in |s->session| so that Channel ID resumptions can sign that data. */ int tls1_record_handshake_hashes_for_channel_id(SSL *s) { int digest_len; /* This function should never be called for a resumed session because * the handshake hashes that we wish to record are for the original, * full handshake. */ if (s->hit) return -1; /* It only makes sense to call this function if Channel IDs have been * negotiated. */ if (!s->s3->tlsext_channel_id_new) return -1; digest_len = tls1_handshake_digest( s, s->session->original_handshake_hash, sizeof(s->session->original_handshake_hash)); if (digest_len < 0) return -1; s->session->original_handshake_hash_len = digest_len; return 1; } /* TODO(fork): remove */ #if 0 #define MAX_SIGALGLEN (TLSEXT_hash_num * TLSEXT_signature_num * 2) typedef struct { size_t sigalgcnt; int sigalgs[MAX_SIGALGLEN]; } sig_cb_st; static int sig_cb(const char *elem, int len, void *arg) { sig_cb_st *sarg = arg; size_t i; char etmp[20], *p; int sig_alg, hash_alg; if (sarg->sigalgcnt == MAX_SIGALGLEN) return 0; if (len > (int)(sizeof(etmp) - 1)) return 0; memcpy(etmp, elem, len); etmp[len] = 0; p = strchr(etmp, '+'); if (!p) return 0; *p = 0; p++; if (!*p) return 0; if (!strcmp(etmp, "RSA")) sig_alg = EVP_PKEY_RSA; else if (!strcmp(etmp, "DSA")) sig_alg = EVP_PKEY_DSA; else if (!strcmp(etmp, "ECDSA")) sig_alg = EVP_PKEY_EC; else return 0; hash_alg = OBJ_sn2nid(p); if (hash_alg == NID_undef) hash_alg = OBJ_ln2nid(p); if (hash_alg == NID_undef) return 0; for (i = 0; i < sarg->sigalgcnt; i+=2) { if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg) return 0; } sarg->sigalgs[sarg->sigalgcnt++] = hash_alg; sarg->sigalgs[sarg->sigalgcnt++] = sig_alg; return 1; } /* Set suppored signature algorithms based on a colon separated list * of the form sig+hash e.g. RSA+SHA512:DSA+SHA512 */ int tls1_set_sigalgs_list(CERT *c, const char *str, int client) { sig_cb_st sig; sig.sigalgcnt = 0; if (!CONF_parse_list(str, ':', 1, sig_cb, &sig)) return 0; if (c == NULL) return 1; return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client); } #endif int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client) { unsigned char *sigalgs, *sptr; int rhash, rsign; size_t i; if (salglen & 1) return 0; sigalgs = OPENSSL_malloc(salglen); if (sigalgs == NULL) return 0; for (i = 0, sptr = sigalgs; i < salglen; i+=2) { rhash = tls12_find_id(*psig_nids++, tls12_md, sizeof(tls12_md)/sizeof(tls12_lookup)); rsign = tls12_find_id(*psig_nids++, tls12_sig, sizeof(tls12_sig)/sizeof(tls12_lookup)); if (rhash == -1 || rsign == -1) goto err; *sptr++ = rhash; *sptr++ = rsign; } if (client) { if (c->client_sigalgs) OPENSSL_free(c->client_sigalgs); c->client_sigalgs = sigalgs; c->client_sigalgslen = salglen; } else { if (c->conf_sigalgs) OPENSSL_free(c->conf_sigalgs); c->conf_sigalgs = sigalgs; c->conf_sigalgslen = salglen; } return 1; err: OPENSSL_free(sigalgs); return 0; } static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid) { int sig_nid; size_t i; if (default_nid == -1) return 1; sig_nid = X509_get_signature_nid(x); if (default_nid) return sig_nid == default_nid ? 1 : 0; for (i = 0; i < c->shared_sigalgslen; i++) if (sig_nid == c->shared_sigalgs[i].signandhash_nid) return 1; return 0; } /* Check to see if a certificate issuer name matches list of CA names */ static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x) { X509_NAME *nm; int i; nm = X509_get_issuer_name(x); for (i = 0; i < sk_X509_NAME_num(names); i++) { if(!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i))) return 1; } return 0; } /* Check certificate chain is consistent with TLS extensions and is * usable by server. This servers two purposes: it allows users to * check chains before passing them to the server and it allows the * server to check chains before attempting to use them. */ /* Flags which need to be set for a certificate when stict mode not set */ #define CERT_PKEY_VALID_FLAGS \ (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM) /* Strict mode flags */ #define CERT_PKEY_STRICT_FLAGS \ (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \ | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE) int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, int idx) { int i; int rv = 0; int check_flags = 0, strict_mode; CERT_PKEY *cpk = NULL; CERT *c = s->cert; unsigned int suiteb_flags = tls1_suiteb(s); /* idx == -1 means checking server chains */ if (idx != -1) { /* idx == -2 means checking client certificate chains */ if (idx == -2) { cpk = c->key; idx = cpk - c->pkeys; } else cpk = c->pkeys + idx; x = cpk->x509; pk = cpk->privatekey; chain = cpk->chain; strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT; /* If no cert or key, forget it */ if (!x || !pk) goto end; #ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL /* Allow any certificate to pass test */ if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL) { rv = CERT_PKEY_STRICT_FLAGS|CERT_PKEY_EXPLICIT_SIGN|CERT_PKEY_VALID|CERT_PKEY_SIGN; cpk->valid_flags = rv; return rv; } #endif } else { if (!x || !pk) goto end; idx = ssl_cert_type(x, pk); if (idx == -1) goto end; cpk = c->pkeys + idx; if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT) check_flags = CERT_PKEY_STRICT_FLAGS; else check_flags = CERT_PKEY_VALID_FLAGS; strict_mode = 1; } if (suiteb_flags) { int ok; if (check_flags) check_flags |= CERT_PKEY_SUITEB; ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags); if (ok != X509_V_OK) { if (check_flags) rv |= CERT_PKEY_SUITEB; else goto end; } } /* Check all signature algorithms are consistent with * signature algorithms extension if TLS 1.2 or later * and strict mode. */ if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) { int default_nid; unsigned char rsign = 0; if (c->peer_sigalgs) default_nid = 0; /* If no sigalgs extension use defaults from RFC5246 */ else { switch(idx) { case SSL_PKEY_RSA_ENC: case SSL_PKEY_RSA_SIGN: case SSL_PKEY_DH_RSA: rsign = TLSEXT_signature_rsa; default_nid = NID_sha1WithRSAEncryption; break; case SSL_PKEY_DSA_SIGN: case SSL_PKEY_DH_DSA: rsign = TLSEXT_signature_dsa; default_nid = NID_dsaWithSHA1; break; case SSL_PKEY_ECC: rsign = TLSEXT_signature_ecdsa; default_nid = NID_ecdsa_with_SHA1; break; default: default_nid = -1; break; } } /* If peer sent no signature algorithms extension and we * have set preferred signature algorithms check we support * sha1. */ if (default_nid > 0 && c->conf_sigalgs) { size_t j; const unsigned char *p = c->conf_sigalgs; for (j = 0; j < c->conf_sigalgslen; j += 2, p += 2) { if (p[0] == TLSEXT_hash_sha1 && p[1] == rsign) break; } if (j == c->conf_sigalgslen) { if (check_flags) goto skip_sigs; else goto end; } } /* Check signature algorithm of each cert in chain */ if (!tls1_check_sig_alg(c, x, default_nid)) { if (!check_flags) goto end; } else rv |= CERT_PKEY_EE_SIGNATURE; rv |= CERT_PKEY_CA_SIGNATURE; for (i = 0; i < sk_X509_num(chain); i++) { if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) { if (check_flags) { rv &= ~CERT_PKEY_CA_SIGNATURE; break; } else goto end; } } } /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */ else if(check_flags) rv |= CERT_PKEY_EE_SIGNATURE|CERT_PKEY_CA_SIGNATURE; skip_sigs: /* Check cert parameters are consistent */ if (tls1_check_cert_param(s, x, check_flags ? 1 : 2)) rv |= CERT_PKEY_EE_PARAM; else if (!check_flags) goto end; if (!s->server) rv |= CERT_PKEY_CA_PARAM; /* In strict mode check rest of chain too */ else if (strict_mode) { rv |= CERT_PKEY_CA_PARAM; for (i = 0; i < sk_X509_num(chain); i++) { X509 *ca = sk_X509_value(chain, i); if (!tls1_check_cert_param(s, ca, 0)) { if (check_flags) { rv &= ~CERT_PKEY_CA_PARAM; break; } else goto end; } } } if (!s->server && strict_mode) { STACK_OF(X509_NAME) *ca_dn; uint8_t check_type = 0; switch (pk->type) { case EVP_PKEY_RSA: check_type = TLS_CT_RSA_SIGN; break; case EVP_PKEY_DSA: check_type = TLS_CT_DSS_SIGN; break; case EVP_PKEY_EC: check_type = TLS_CT_ECDSA_SIGN; break; case EVP_PKEY_DH: case EVP_PKEY_DHX: { int cert_type = X509_certificate_type(x, pk); if (cert_type & EVP_PKS_RSA) check_type = TLS_CT_RSA_FIXED_DH; if (cert_type & EVP_PKS_DSA) check_type = TLS_CT_DSS_FIXED_DH; } } if (check_type) { if (s->s3->tmp.certificate_types && memchr(s->s3->tmp.certificate_types, check_type, s->s3->tmp.num_certificate_types)) { rv |= CERT_PKEY_CERT_TYPE; } if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags) goto end; } else rv |= CERT_PKEY_CERT_TYPE; ca_dn = s->s3->tmp.ca_names; if (!sk_X509_NAME_num(ca_dn)) rv |= CERT_PKEY_ISSUER_NAME; if (!(rv & CERT_PKEY_ISSUER_NAME)) { if (ssl_check_ca_name(ca_dn, x)) rv |= CERT_PKEY_ISSUER_NAME; } if (!(rv & CERT_PKEY_ISSUER_NAME)) { for (i = 0; i < sk_X509_num(chain); i++) { X509 *xtmp = sk_X509_value(chain, i); if (ssl_check_ca_name(ca_dn, xtmp)) { rv |= CERT_PKEY_ISSUER_NAME; break; } } } if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME)) goto end; } else rv |= CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE; if (!check_flags || (rv & check_flags) == check_flags) rv |= CERT_PKEY_VALID; end: if (TLS1_get_version(s) >= TLS1_2_VERSION) { if (cpk->valid_flags & CERT_PKEY_EXPLICIT_SIGN) rv |= CERT_PKEY_EXPLICIT_SIGN|CERT_PKEY_SIGN; else if (cpk->digest) rv |= CERT_PKEY_SIGN; } else rv |= CERT_PKEY_SIGN|CERT_PKEY_EXPLICIT_SIGN; /* When checking a CERT_PKEY structure all flags are irrelevant * if the chain is invalid. */ if (!check_flags) { if (rv & CERT_PKEY_VALID) cpk->valid_flags = rv; else { /* Preserve explicit sign flag, clear rest */ cpk->valid_flags &= CERT_PKEY_EXPLICIT_SIGN; return 0; } } return rv; } /* Set validity of certificates in an SSL structure */ void tls1_set_cert_validity(SSL *s) { tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_ENC); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_SIGN); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_RSA); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_DSA); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC); } /* User level utiity function to check a chain is suitable */ int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain) { return tls1_check_chain(s, x, pk, chain, -1); }