/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #ifndef OPENSSL_HEADER_EVP_H #define OPENSSL_HEADER_EVP_H #include #include // OpenSSL included digest and cipher functions in this header so we include // them for users that still expect that. // // TODO(fork): clean up callers so that they include what they use. #include #include #include #include #include #if defined(__cplusplus) extern "C" { #endif // EVP abstracts over public/private key algorithms. // Public key objects. // EVP_PKEY_new creates a new, empty public-key object and returns it or NULL // on allocation failure. OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new(void); // EVP_PKEY_free frees all data referenced by |pkey| and then frees |pkey| // itself. OPENSSL_EXPORT void EVP_PKEY_free(EVP_PKEY *pkey); // EVP_PKEY_up_ref increments the reference count of |pkey| and returns one. OPENSSL_EXPORT int EVP_PKEY_up_ref(EVP_PKEY *pkey); // EVP_PKEY_is_opaque returns one if |pkey| is opaque. Opaque keys are backed by // custom implementations which do not expose key material and parameters. It is // an error to attempt to duplicate, export, or compare an opaque key. OPENSSL_EXPORT int EVP_PKEY_is_opaque(const EVP_PKEY *pkey); // EVP_PKEY_cmp compares |a| and |b| and returns one if they are equal, zero if // not and a negative number on error. // // WARNING: this differs from the traditional return value of a "cmp" // function. OPENSSL_EXPORT int EVP_PKEY_cmp(const EVP_PKEY *a, const EVP_PKEY *b); // EVP_PKEY_copy_parameters sets the parameters of |to| to equal the parameters // of |from|. It returns one on success and zero on error. OPENSSL_EXPORT int EVP_PKEY_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from); // EVP_PKEY_missing_parameters returns one if |pkey| is missing needed // parameters or zero if not, or if the algorithm doesn't take parameters. OPENSSL_EXPORT int EVP_PKEY_missing_parameters(const EVP_PKEY *pkey); // EVP_PKEY_size returns the maximum size, in bytes, of a signature signed by // |pkey|. For an RSA key, this returns the number of bytes needed to represent // the modulus. For an EC key, this returns the maximum size of a DER-encoded // ECDSA signature. OPENSSL_EXPORT int EVP_PKEY_size(const EVP_PKEY *pkey); // EVP_PKEY_bits returns the "size", in bits, of |pkey|. For an RSA key, this // returns the bit length of the modulus. For an EC key, this returns the bit // length of the group order. OPENSSL_EXPORT int EVP_PKEY_bits(EVP_PKEY *pkey); // EVP_PKEY_id returns the type of |pkey|, which is one of the |EVP_PKEY_*| // values. OPENSSL_EXPORT int EVP_PKEY_id(const EVP_PKEY *pkey); // EVP_PKEY_type returns |nid| if |nid| is a known key type and |NID_undef| // otherwise. OPENSSL_EXPORT int EVP_PKEY_type(int nid); // Getting and setting concrete public key types. // // The following functions get and set the underlying public key in an // |EVP_PKEY| object. The |set1| functions take an additional reference to the // underlying key and return one on success or zero if |key| is NULL. The // |assign| functions adopt the caller's reference and return one on success or // zero if |key| is NULL. The |get1| functions return a fresh reference to the // underlying object or NULL if |pkey| is not of the correct type. The |get0| // functions behave the same but return a non-owning pointer. OPENSSL_EXPORT int EVP_PKEY_set1_RSA(EVP_PKEY *pkey, RSA *key); OPENSSL_EXPORT int EVP_PKEY_assign_RSA(EVP_PKEY *pkey, RSA *key); OPENSSL_EXPORT RSA *EVP_PKEY_get0_RSA(EVP_PKEY *pkey); OPENSSL_EXPORT RSA *EVP_PKEY_get1_RSA(EVP_PKEY *pkey); OPENSSL_EXPORT int EVP_PKEY_set1_DSA(EVP_PKEY *pkey, DSA *key); OPENSSL_EXPORT int EVP_PKEY_assign_DSA(EVP_PKEY *pkey, DSA *key); OPENSSL_EXPORT DSA *EVP_PKEY_get0_DSA(EVP_PKEY *pkey); OPENSSL_EXPORT DSA *EVP_PKEY_get1_DSA(EVP_PKEY *pkey); OPENSSL_EXPORT int EVP_PKEY_set1_EC_KEY(EVP_PKEY *pkey, EC_KEY *key); OPENSSL_EXPORT int EVP_PKEY_assign_EC_KEY(EVP_PKEY *pkey, EC_KEY *key); OPENSSL_EXPORT EC_KEY *EVP_PKEY_get0_EC_KEY(EVP_PKEY *pkey); OPENSSL_EXPORT EC_KEY *EVP_PKEY_get1_EC_KEY(EVP_PKEY *pkey); // EVP_PKEY_new_ed25519_public returns a newly allocated |EVP_PKEY| wrapping an // Ed25519 public key, or NULL on allocation error. OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new_ed25519_public( const uint8_t public_key[32]); // EVP_PKEY_new_ed25519_private returns a newly allocated |EVP_PKEY| wrapping an // Ed25519 private key, or NULL on allocation error. OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new_ed25519_private( const uint8_t private_key[64]); #define EVP_PKEY_NONE NID_undef #define EVP_PKEY_RSA NID_rsaEncryption #define EVP_PKEY_RSA_PSS NID_rsassaPss #define EVP_PKEY_DSA NID_dsa #define EVP_PKEY_EC NID_X9_62_id_ecPublicKey #define EVP_PKEY_ED25519 NID_ED25519 // EVP_PKEY_assign sets the underlying key of |pkey| to |key|, which must be of // the given type. It returns one if successful or zero if the |type| argument // is not one of the |EVP_PKEY_*| values or if |key| is NULL. OPENSSL_EXPORT int EVP_PKEY_assign(EVP_PKEY *pkey, int type, void *key); // EVP_PKEY_set_type sets the type of |pkey| to |type|. It returns one if // successful or zero if the |type| argument is not one of the |EVP_PKEY_*| // values. If |pkey| is NULL, it simply reports whether the type is known. OPENSSL_EXPORT int EVP_PKEY_set_type(EVP_PKEY *pkey, int type); // EVP_PKEY_cmp_parameters compares the parameters of |a| and |b|. It returns // one if they match, zero if not, or a negative number of on error. // // WARNING: the return value differs from the usual return value convention. OPENSSL_EXPORT int EVP_PKEY_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b); // ASN.1 functions // EVP_parse_public_key decodes a DER-encoded SubjectPublicKeyInfo structure // (RFC 5280) from |cbs| and advances |cbs|. It returns a newly-allocated // |EVP_PKEY| or NULL on error. If the key is an EC key, the curve is guaranteed // to be set. // // The caller must check the type of the parsed public key to ensure it is // suitable and validate other desired key properties such as RSA modulus size // or EC curve. OPENSSL_EXPORT EVP_PKEY *EVP_parse_public_key(CBS *cbs); // EVP_marshal_public_key marshals |key| as a DER-encoded SubjectPublicKeyInfo // structure (RFC 5280) and appends the result to |cbb|. It returns one on // success and zero on error. OPENSSL_EXPORT int EVP_marshal_public_key(CBB *cbb, const EVP_PKEY *key); // EVP_parse_private_key decodes a DER-encoded PrivateKeyInfo structure (RFC // 5208) from |cbs| and advances |cbs|. It returns a newly-allocated |EVP_PKEY| // or NULL on error. // // The caller must check the type of the parsed private key to ensure it is // suitable and validate other desired key properties such as RSA modulus size // or EC curve. // // A PrivateKeyInfo ends with an optional set of attributes. These are not // processed and so this function will silently ignore any trailing data in the // structure. OPENSSL_EXPORT EVP_PKEY *EVP_parse_private_key(CBS *cbs); // EVP_marshal_private_key marshals |key| as a DER-encoded PrivateKeyInfo // structure (RFC 5208) and appends the result to |cbb|. It returns one on // success and zero on error. OPENSSL_EXPORT int EVP_marshal_private_key(CBB *cbb, const EVP_PKEY *key); // Signing // EVP_DigestSignInit sets up |ctx| for a signing operation with |type| and // |pkey|. The |ctx| argument must have been initialised with // |EVP_MD_CTX_init|. If |pctx| is not NULL, the |EVP_PKEY_CTX| of the signing // operation will be written to |*pctx|; this can be used to set alternative // signing options. // // For single-shot signing algorithms which do not use a pre-hash, such as // Ed25519, |type| should be NULL. The |EVP_MD_CTX| itself is unused but is // present so the API is uniform. See |EVP_DigestSign|. // // It returns one on success, or zero on error. OPENSSL_EXPORT int EVP_DigestSignInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx, const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey); // EVP_DigestSignUpdate appends |len| bytes from |data| to the data which will // be signed in |EVP_DigestSignFinal|. It returns one. // // This function performs a streaming signing operation and will fail for // signature algorithms which do not support this. Use |EVP_DigestSign| for a // single-shot operation. OPENSSL_EXPORT int EVP_DigestSignUpdate(EVP_MD_CTX *ctx, const void *data, size_t len); // EVP_DigestSignFinal signs the data that has been included by one or more // calls to |EVP_DigestSignUpdate|. If |out_sig| is NULL then |*out_sig_len| is // set to the maximum number of output bytes. Otherwise, on entry, // |*out_sig_len| must contain the length of the |out_sig| buffer. If the call // is successful, the signature is written to |out_sig| and |*out_sig_len| is // set to its length. // // This function performs a streaming signing operation and will fail for // signature algorithms which do not support this. Use |EVP_DigestSign| for a // single-shot operation. // // It returns one on success, or zero on error. OPENSSL_EXPORT int EVP_DigestSignFinal(EVP_MD_CTX *ctx, uint8_t *out_sig, size_t *out_sig_len); // EVP_DigestSign signs |data_len| bytes from |data| using |ctx|. If |out_sig| // is NULL then |*out_sig_len| is set to the maximum number of output // bytes. Otherwise, on entry, |*out_sig_len| must contain the length of the // |out_sig| buffer. If the call is successful, the signature is written to // |out_sig| and |*out_sig_len| is set to its length. // // It returns one on success and zero on error. OPENSSL_EXPORT int EVP_DigestSign(EVP_MD_CTX *ctx, uint8_t *out_sig, size_t *out_sig_len, const uint8_t *data, size_t data_len); // Verifying // EVP_DigestVerifyInit sets up |ctx| for a signature verification operation // with |type| and |pkey|. The |ctx| argument must have been initialised with // |EVP_MD_CTX_init|. If |pctx| is not NULL, the |EVP_PKEY_CTX| of the signing // operation will be written to |*pctx|; this can be used to set alternative // signing options. // // For single-shot signing algorithms which do not use a pre-hash, such as // Ed25519, |type| should be NULL. The |EVP_MD_CTX| itself is unused but is // present so the API is uniform. See |EVP_DigestVerify|. // // It returns one on success, or zero on error. OPENSSL_EXPORT int EVP_DigestVerifyInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx, const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey); // EVP_DigestVerifyUpdate appends |len| bytes from |data| to the data which // will be verified by |EVP_DigestVerifyFinal|. It returns one. // // This function performs streaming signature verification and will fail for // signature algorithms which do not support this. Use |EVP_PKEY_verify_message| // for a single-shot verification. OPENSSL_EXPORT int EVP_DigestVerifyUpdate(EVP_MD_CTX *ctx, const void *data, size_t len); // EVP_DigestVerifyFinal verifies that |sig_len| bytes of |sig| are a valid // signature for the data that has been included by one or more calls to // |EVP_DigestVerifyUpdate|. It returns one on success and zero otherwise. // // This function performs streaming signature verification and will fail for // signature algorithms which do not support this. Use |EVP_PKEY_verify_message| // for a single-shot verification. OPENSSL_EXPORT int EVP_DigestVerifyFinal(EVP_MD_CTX *ctx, const uint8_t *sig, size_t sig_len); // EVP_DigestVerify verifies that |sig_len| bytes from |sig| are a valid // signature for |data|. It returns one on success or zero on error. OPENSSL_EXPORT int EVP_DigestVerify(EVP_MD_CTX *ctx, const uint8_t *sig, size_t sig_len, const uint8_t *data, size_t len); // Signing (old functions) // EVP_SignInit_ex configures |ctx|, which must already have been initialised, // for a fresh signing operation using the hash function |type|. It returns one // on success and zero otherwise. // // (In order to initialise |ctx|, either obtain it initialised with // |EVP_MD_CTX_create|, or use |EVP_MD_CTX_init|.) OPENSSL_EXPORT int EVP_SignInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl); // EVP_SignInit is a deprecated version of |EVP_SignInit_ex|. // // TODO(fork): remove. OPENSSL_EXPORT int EVP_SignInit(EVP_MD_CTX *ctx, const EVP_MD *type); // EVP_SignUpdate appends |len| bytes from |data| to the data which will be // signed in |EVP_SignFinal|. OPENSSL_EXPORT int EVP_SignUpdate(EVP_MD_CTX *ctx, const void *data, size_t len); // EVP_SignFinal signs the data that has been included by one or more calls to // |EVP_SignUpdate|, using the key |pkey|, and writes it to |sig|. On entry, // |sig| must point to at least |EVP_PKEY_size(pkey)| bytes of space. The // actual size of the signature is written to |*out_sig_len|. // // It returns one on success and zero otherwise. // // It does not modify |ctx|, thus it's possible to continue to use |ctx| in // order to sign a longer message. OPENSSL_EXPORT int EVP_SignFinal(const EVP_MD_CTX *ctx, uint8_t *sig, unsigned int *out_sig_len, EVP_PKEY *pkey); // Verifying (old functions) // EVP_VerifyInit_ex configures |ctx|, which must already have been // initialised, for a fresh signature verification operation using the hash // function |type|. It returns one on success and zero otherwise. // // (In order to initialise |ctx|, either obtain it initialised with // |EVP_MD_CTX_create|, or use |EVP_MD_CTX_init|.) OPENSSL_EXPORT int EVP_VerifyInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl); // EVP_VerifyInit is a deprecated version of |EVP_VerifyInit_ex|. // // TODO(fork): remove. OPENSSL_EXPORT int EVP_VerifyInit(EVP_MD_CTX *ctx, const EVP_MD *type); // EVP_VerifyUpdate appends |len| bytes from |data| to the data which will be // signed in |EVP_VerifyFinal|. OPENSSL_EXPORT int EVP_VerifyUpdate(EVP_MD_CTX *ctx, const void *data, size_t len); // EVP_VerifyFinal verifies that |sig_len| bytes of |sig| are a valid // signature, by |pkey|, for the data that has been included by one or more // calls to |EVP_VerifyUpdate|. // // It returns one on success and zero otherwise. // // It does not modify |ctx|, thus it's possible to continue to use |ctx| in // order to sign a longer message. OPENSSL_EXPORT int EVP_VerifyFinal(EVP_MD_CTX *ctx, const uint8_t *sig, size_t sig_len, EVP_PKEY *pkey); // Printing // EVP_PKEY_print_public prints a textual representation of the public key in // |pkey| to |out|. Returns one on success or zero otherwise. OPENSSL_EXPORT int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx); // EVP_PKEY_print_private prints a textual representation of the private key in // |pkey| to |out|. Returns one on success or zero otherwise. OPENSSL_EXPORT int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx); // EVP_PKEY_print_params prints a textual representation of the parameters in // |pkey| to |out|. Returns one on success or zero otherwise. OPENSSL_EXPORT int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx); // Password stretching. // // Password stretching functions take a low-entropy password and apply a slow // function that results in a key suitable for use in symmetric // cryptography. // PKCS5_PBKDF2_HMAC computes |iterations| iterations of PBKDF2 of |password| // and |salt|, using |digest|, and outputs |key_len| bytes to |out_key|. It // returns one on success and zero on error. OPENSSL_EXPORT int PKCS5_PBKDF2_HMAC(const char *password, size_t password_len, const uint8_t *salt, size_t salt_len, unsigned iterations, const EVP_MD *digest, size_t key_len, uint8_t *out_key); // PKCS5_PBKDF2_HMAC_SHA1 is the same as PKCS5_PBKDF2_HMAC, but with |digest| // fixed to |EVP_sha1|. OPENSSL_EXPORT int PKCS5_PBKDF2_HMAC_SHA1(const char *password, size_t password_len, const uint8_t *salt, size_t salt_len, unsigned iterations, size_t key_len, uint8_t *out_key); // EVP_PBE_scrypt expands |password| into a secret key of length |key_len| using // scrypt, as described in RFC 7914, and writes the result to |out_key|. It // returns one on success and zero on error. // // |N|, |r|, and |p| are as described in RFC 7914 section 6. They determine the // cost of the operation. If the memory required exceeds |max_mem|, the // operation will fail instead. If |max_mem| is zero, a defult limit of 32MiB // will be used. OPENSSL_EXPORT int EVP_PBE_scrypt(const char *password, size_t password_len, const uint8_t *salt, size_t salt_len, uint64_t N, uint64_t r, uint64_t p, size_t max_mem, uint8_t *out_key, size_t key_len); // Public key contexts. // // |EVP_PKEY_CTX| objects hold the context of an operation (e.g. signing or // encrypting) that uses a public key. // EVP_PKEY_CTX_new allocates a fresh |EVP_PKEY_CTX| for use with |pkey|. It // returns the context or NULL on error. OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_new(EVP_PKEY *pkey, ENGINE *e); // EVP_PKEY_CTX_new_id allocates a fresh |EVP_PKEY_CTX| for a key of type |id| // (e.g. |EVP_PKEY_HMAC|). This can be used for key generation where // |EVP_PKEY_CTX_new| can't be used because there isn't an |EVP_PKEY| to pass // it. It returns the context or NULL on error. OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_new_id(int id, ENGINE *e); // EVP_PKEY_CTX_free frees |ctx| and the data it owns. OPENSSL_EXPORT void EVP_PKEY_CTX_free(EVP_PKEY_CTX *ctx); // EVP_PKEY_CTX_dup allocates a fresh |EVP_PKEY_CTX| and sets it equal to the // state of |ctx|. It returns the fresh |EVP_PKEY_CTX| or NULL on error. OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_dup(EVP_PKEY_CTX *ctx); // EVP_PKEY_CTX_get0_pkey returns the |EVP_PKEY| associated with |ctx|. OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_CTX_get0_pkey(EVP_PKEY_CTX *ctx); // EVP_PKEY_sign_init initialises an |EVP_PKEY_CTX| for a signing operation. It // should be called before |EVP_PKEY_sign|. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_sign_init(EVP_PKEY_CTX *ctx); // EVP_PKEY_sign signs |digest_len| bytes from |digest| using |ctx|. If |sig| is // NULL, the maximum size of the signature is written to // |out_sig_len|. Otherwise, |*sig_len| must contain the number of bytes of // space available at |sig|. If sufficient, the signature will be written to // |sig| and |*sig_len| updated with the true length. // // This function expects a pre-hashed input and will fail for signature // algorithms which do not support this. Use |EVP_DigestSignInit| to sign an // unhashed input. // // WARNING: Setting |sig| to NULL only gives the maximum size of the // signature. The actual signature may be smaller. // // It returns one on success or zero on error. (Note: this differs from // OpenSSL, which can also return negative values to indicate an error. ) OPENSSL_EXPORT int EVP_PKEY_sign(EVP_PKEY_CTX *ctx, uint8_t *sig, size_t *sig_len, const uint8_t *digest, size_t digest_len); // EVP_PKEY_verify_init initialises an |EVP_PKEY_CTX| for a signature // verification operation. It should be called before |EVP_PKEY_verify|. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_verify_init(EVP_PKEY_CTX *ctx); // EVP_PKEY_verify verifies that |sig_len| bytes from |sig| are a valid // signature for |digest|. // // This function expects a pre-hashed input and will fail for signature // algorithms which do not support this. Use |EVP_DigestVerifyInit| to verify a // signature given the unhashed input. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_verify(EVP_PKEY_CTX *ctx, const uint8_t *sig, size_t sig_len, const uint8_t *digest, size_t digest_len); // EVP_PKEY_encrypt_init initialises an |EVP_PKEY_CTX| for an encryption // operation. It should be called before |EVP_PKEY_encrypt|. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_encrypt_init(EVP_PKEY_CTX *ctx); // EVP_PKEY_encrypt encrypts |in_len| bytes from |in|. If |out| is NULL, the // maximum size of the ciphertext is written to |out_len|. Otherwise, |*out_len| // must contain the number of bytes of space available at |out|. If sufficient, // the ciphertext will be written to |out| and |*out_len| updated with the true // length. // // WARNING: Setting |out| to NULL only gives the maximum size of the // ciphertext. The actual ciphertext may be smaller. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len, const uint8_t *in, size_t in_len); // EVP_PKEY_decrypt_init initialises an |EVP_PKEY_CTX| for a decryption // operation. It should be called before |EVP_PKEY_decrypt|. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_decrypt_init(EVP_PKEY_CTX *ctx); // EVP_PKEY_decrypt decrypts |in_len| bytes from |in|. If |out| is NULL, the // maximum size of the plaintext is written to |out_len|. Otherwise, |*out_len| // must contain the number of bytes of space available at |out|. If sufficient, // the ciphertext will be written to |out| and |*out_len| updated with the true // length. // // WARNING: Setting |out| to NULL only gives the maximum size of the // plaintext. The actual plaintext may be smaller. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_decrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len, const uint8_t *in, size_t in_len); // EVP_PKEY_verify_recover_init initialises an |EVP_PKEY_CTX| for a public-key // decryption operation. It should be called before |EVP_PKEY_verify_recover|. // // Public-key decryption is a very obscure operation that is only implemented // by RSA keys. It is effectively a signature verification operation that // returns the signed message directly. It is almost certainly not what you // want. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_verify_recover_init(EVP_PKEY_CTX *ctx); // EVP_PKEY_verify_recover decrypts |sig_len| bytes from |sig|. If |out| is // NULL, the maximum size of the plaintext is written to |out_len|. Otherwise, // |*out_len| must contain the number of bytes of space available at |out|. If // sufficient, the ciphertext will be written to |out| and |*out_len| updated // with the true length. // // WARNING: Setting |out| to NULL only gives the maximum size of the // plaintext. The actual plaintext may be smaller. // // See the warning about this operation in |EVP_PKEY_verify_recover_init|. It // is probably not what you want. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_verify_recover(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len, const uint8_t *sig, size_t siglen); // EVP_PKEY_derive_init initialises an |EVP_PKEY_CTX| for a key derivation // operation. It should be called before |EVP_PKEY_derive_set_peer| and // |EVP_PKEY_derive|. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_derive_init(EVP_PKEY_CTX *ctx); // EVP_PKEY_derive_set_peer sets the peer's key to be used for key derivation // by |ctx| to |peer|. It should be called after |EVP_PKEY_derive_init|. (For // example, this is used to set the peer's key in (EC)DH.) It returns one on // success and zero on error. OPENSSL_EXPORT int EVP_PKEY_derive_set_peer(EVP_PKEY_CTX *ctx, EVP_PKEY *peer); // EVP_PKEY_derive derives a shared key between the two keys configured in // |ctx|. If |key| is non-NULL then, on entry, |out_key_len| must contain the // amount of space at |key|. If sufficient then the shared key will be written // to |key| and |*out_key_len| will be set to the length. If |key| is NULL then // |out_key_len| will be set to the maximum length. // // WARNING: Setting |out| to NULL only gives the maximum size of the key. The // actual key may be smaller. // // It returns one on success and zero on error. OPENSSL_EXPORT int EVP_PKEY_derive(EVP_PKEY_CTX *ctx, uint8_t *key, size_t *out_key_len); // EVP_PKEY_keygen_init initialises an |EVP_PKEY_CTX| for a key generation // operation. It should be called before |EVP_PKEY_keygen|. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_keygen_init(EVP_PKEY_CTX *ctx); // EVP_PKEY_keygen performs a key generation operation using the values from // |ctx| and sets |*ppkey| to a fresh |EVP_PKEY| containing the resulting key. // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY **ppkey); // Generic control functions. // EVP_PKEY_CTX_set_signature_md sets |md| as the digest to be used in a // signature operation. It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); // EVP_PKEY_CTX_get_signature_md sets |*out_md| to the digest to be used in a // signature operation. It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md); // RSA specific control functions. // EVP_PKEY_CTX_set_rsa_padding sets the padding type to use. It should be one // of the |RSA_*_PADDING| values. Returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int padding); // EVP_PKEY_CTX_get_rsa_padding sets |*out_padding| to the current padding // value, which is one of the |RSA_*_PADDING| values. Returns one on success or // zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *out_padding); // EVP_PKEY_CTX_set_rsa_pss_saltlen sets the length of the salt in a PSS-padded // signature. A value of -1 cause the salt to be the same length as the digest // in the signature. A value of -2 causes the salt to be the maximum length // that will fit when signing and recovered from the signature when verifying. // Otherwise the value gives the size of the salt in bytes. // // If unsure, use -1. // // Returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int salt_len); // EVP_PKEY_CTX_get_rsa_pss_saltlen sets |*out_salt_len| to the salt length of // a PSS-padded signature. See the documentation for // |EVP_PKEY_CTX_set_rsa_pss_saltlen| for details of the special values that it // can take. // // Returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *out_salt_len); // EVP_PKEY_CTX_set_rsa_keygen_bits sets the size of the desired RSA modulus, // in bits, for key generation. Returns one on success or zero on // error. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits); // EVP_PKEY_CTX_set_rsa_keygen_pubexp sets |e| as the public exponent for key // generation. Returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *e); // EVP_PKEY_CTX_set_rsa_oaep_md sets |md| as the digest used in OAEP padding. // Returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); // EVP_PKEY_CTX_get_rsa_oaep_md sets |*out_md| to the digest function used in // OAEP padding. Returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md); // EVP_PKEY_CTX_set_rsa_mgf1_md sets |md| as the digest used in MGF1. Returns // one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); // EVP_PKEY_CTX_get_rsa_mgf1_md sets |*out_md| to the digest function used in // MGF1. Returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md); // EVP_PKEY_CTX_set0_rsa_oaep_label sets |label_len| bytes from |label| as the // label used in OAEP. DANGER: On success, this call takes ownership of |label| // and will call |OPENSSL_free| on it when |ctx| is destroyed. // // Returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, uint8_t *label, size_t label_len); // EVP_PKEY_CTX_get0_rsa_oaep_label sets |*out_label| to point to the internal // buffer containing the OAEP label (which may be NULL) and returns the length // of the label or a negative value on error. // // WARNING: the return value differs from the usual return value convention. OPENSSL_EXPORT int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, const uint8_t **out_label); // Deprecated functions. // EVP_PKEY_DH is defined for compatibility, but it is impossible to create an // |EVP_PKEY| of that type. #define EVP_PKEY_DH NID_dhKeyAgreement // EVP_PKEY_RSA2 was historically an alternate form for RSA public keys (OID // 2.5.8.1.1), but is no longer accepted. #define EVP_PKEY_RSA2 NID_rsa // OpenSSL_add_all_algorithms does nothing. OPENSSL_EXPORT void OpenSSL_add_all_algorithms(void); // OPENSSL_add_all_algorithms_conf does nothing. OPENSSL_EXPORT void OPENSSL_add_all_algorithms_conf(void); // OpenSSL_add_all_ciphers does nothing. OPENSSL_EXPORT void OpenSSL_add_all_ciphers(void); // OpenSSL_add_all_digests does nothing. OPENSSL_EXPORT void OpenSSL_add_all_digests(void); // EVP_cleanup does nothing. OPENSSL_EXPORT void EVP_cleanup(void); OPENSSL_EXPORT void EVP_CIPHER_do_all_sorted( void (*callback)(const EVP_CIPHER *cipher, const char *name, const char *unused, void *arg), void *arg); OPENSSL_EXPORT void EVP_MD_do_all_sorted(void (*callback)(const EVP_MD *cipher, const char *name, const char *unused, void *arg), void *arg); // i2d_PrivateKey marshals a private key from |key| to an ASN.1, DER // structure. If |outp| is not NULL then the result is written to |*outp| and // |*outp| is advanced just past the output. It returns the number of bytes in // the result, whether written or not, or a negative value on error. // // RSA keys are serialized as a DER-encoded RSAPublicKey (RFC 3447) structure. // EC keys are serialized as a DER-encoded ECPrivateKey (RFC 5915) structure. // // Use |RSA_marshal_private_key| or |EC_KEY_marshal_private_key| instead. OPENSSL_EXPORT int i2d_PrivateKey(const EVP_PKEY *key, uint8_t **outp); // i2d_PublicKey marshals a public key from |key| to a type-specific format. // If |outp| is not NULL then the result is written to |*outp| and // |*outp| is advanced just past the output. It returns the number of bytes in // the result, whether written or not, or a negative value on error. // // RSA keys are serialized as a DER-encoded RSAPublicKey (RFC 3447) structure. // EC keys are serialized as an EC point per SEC 1. // // Use |RSA_marshal_public_key| or |EC_POINT_point2cbb| instead. OPENSSL_EXPORT int i2d_PublicKey(EVP_PKEY *key, uint8_t **outp); // d2i_PrivateKey parses an ASN.1, DER-encoded, private key from |len| bytes at // |*inp|. If |out| is not NULL then, on exit, a pointer to the result is in // |*out|. Note that, even if |*out| is already non-NULL on entry, it will not // be written to. Rather, a fresh |EVP_PKEY| is allocated and the previous one // is freed. On successful exit, |*inp| is advanced past the DER structure. It // returns the result or NULL on error. // // This function tries to detect one of several formats. Instead, use // |EVP_parse_private_key| for a PrivateKeyInfo, |RSA_parse_private_key| for an // RSAPrivateKey, and |EC_parse_private_key| for an ECPrivateKey. OPENSSL_EXPORT EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out, const uint8_t **inp, long len); // d2i_AutoPrivateKey acts the same as |d2i_PrivateKey|, but detects the type // of the private key. // // This function tries to detect one of several formats. Instead, use // |EVP_parse_private_key| for a PrivateKeyInfo, |RSA_parse_private_key| for an // RSAPrivateKey, and |EC_parse_private_key| for an ECPrivateKey. OPENSSL_EXPORT EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp, long len); // EVP_PKEY_get0_DH returns NULL. OPENSSL_EXPORT DH *EVP_PKEY_get0_DH(EVP_PKEY *pkey); // EVP_PKEY_get1_DH returns NULL. OPENSSL_EXPORT DH *EVP_PKEY_get1_DH(EVP_PKEY *pkey); // Preprocessor compatibility section (hidden). // // Historically, a number of APIs were implemented in OpenSSL as macros and // constants to 'ctrl' functions. To avoid breaking #ifdefs in consumers, this // section defines a number of legacy macros. #define EVP_PKEY_CTX_set_rsa_oaep_md EVP_PKEY_CTX_set_rsa_oaep_md #define EVP_PKEY_CTX_set0_rsa_oaep_label EVP_PKEY_CTX_set0_rsa_oaep_label // Private structures. struct evp_pkey_st { CRYPTO_refcount_t references; // type contains one of the EVP_PKEY_* values or NID_undef and determines // which element (if any) of the |pkey| union is valid. int type; union { void *ptr; RSA *rsa; DSA *dsa; DH *dh; EC_KEY *ec; } pkey; // ameth contains a pointer to a method table that contains many ASN.1 // methods for the key type. const EVP_PKEY_ASN1_METHOD *ameth; } /* EVP_PKEY */; #if defined(__cplusplus) } // extern C extern "C++" { namespace bssl { BORINGSSL_MAKE_DELETER(EVP_PKEY, EVP_PKEY_free) BORINGSSL_MAKE_UP_REF(EVP_PKEY, EVP_PKEY_up_ref) BORINGSSL_MAKE_DELETER(EVP_PKEY_CTX, EVP_PKEY_CTX_free) } // namespace bssl } // extern C++ #endif #define EVP_R_BUFFER_TOO_SMALL 100 #define EVP_R_COMMAND_NOT_SUPPORTED 101 #define EVP_R_DECODE_ERROR 102 #define EVP_R_DIFFERENT_KEY_TYPES 103 #define EVP_R_DIFFERENT_PARAMETERS 104 #define EVP_R_ENCODE_ERROR 105 #define EVP_R_EXPECTING_AN_EC_KEY_KEY 106 #define EVP_R_EXPECTING_AN_RSA_KEY 107 #define EVP_R_EXPECTING_A_DSA_KEY 108 #define EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE 109 #define EVP_R_INVALID_DIGEST_LENGTH 110 #define EVP_R_INVALID_DIGEST_TYPE 111 #define EVP_R_INVALID_KEYBITS 112 #define EVP_R_INVALID_MGF1_MD 113 #define EVP_R_INVALID_OPERATION 114 #define EVP_R_INVALID_PADDING_MODE 115 #define EVP_R_INVALID_PSS_SALTLEN 116 #define EVP_R_KEYS_NOT_SET 117 #define EVP_R_MISSING_PARAMETERS 118 #define EVP_R_NO_DEFAULT_DIGEST 119 #define EVP_R_NO_KEY_SET 120 #define EVP_R_NO_MDC2_SUPPORT 121 #define EVP_R_NO_NID_FOR_CURVE 122 #define EVP_R_NO_OPERATION_SET 123 #define EVP_R_NO_PARAMETERS_SET 124 #define EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE 125 #define EVP_R_OPERATON_NOT_INITIALIZED 126 #define EVP_R_UNKNOWN_PUBLIC_KEY_TYPE 127 #define EVP_R_UNSUPPORTED_ALGORITHM 128 #define EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE 129 #define EVP_R_NOT_A_PRIVATE_KEY 130 #define EVP_R_INVALID_SIGNATURE 131 #define EVP_R_MEMORY_LIMIT_EXCEEDED 132 #define EVP_R_INVALID_PARAMETERS 133 #endif // OPENSSL_HEADER_EVP_H