/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #ifndef OPENSSL_HEADER_STACK_H #define OPENSSL_HEADER_STACK_H #include #include #if defined(__cplusplus) extern "C" { #endif /* A stack, in OpenSSL, is an array of pointers. They are the most commonly * used collection object. * * This file defines macros for type safe use of the stack functions. A stack * of a specific type of object has type |STACK_OF(type)|. This can be defined * (once) with |DEFINE_STACK_OF(type)| and declared where needed with * |DECLARE_STACK_OF(type)|. For example: * * struct foo { * int bar; * }; * * DEFINE_STACK_OF(struct foo); * * Although note that the stack will contain /pointers/ to |foo|. * * A macro will be defined for each of the sk_* functions below. For * STACK_OF(foo), the macros would be sk_foo_new, sk_foo_pop etc. */ /* stack_cmp_func is a comparison function that returns a value < 0, 0 or > 0 * if |*a| is less than, equal to or greater than |*b|, respectively. Note the * extra indirection - the function is given a pointer to a pointer to the * element. This differs from the usual qsort/bsearch comparison function. */ typedef int (*stack_cmp_func)(const void **a, const void **b); /* stack_st contains an array of pointers. It is not designed to be used * directly, rather the wrapper macros should be used. */ typedef struct stack_st { /* num contains the number of valid pointers in |data|. */ size_t num; void **data; /* sorted is non-zero if the values pointed to by |data| are in ascending * order, based on |comp|. */ int sorted; /* num_alloc contains the number of pointers allocated in the buffer pointed * to by |data|, which may be larger than |num|. */ size_t num_alloc; /* comp is an optional comparison function. */ stack_cmp_func comp; } _STACK; #define STACK_OF(type) struct stack_st_##type #define DECLARE_STACK_OF(type) STACK_OF(type); /* The make_macros.sh script in this directory parses the following lines and * generates the stack_macros.h file that contains macros for the following * types of stacks: * * STACK_OF:ACCESS_DESCRIPTION * STACK_OF:ASN1_ADB_TABLE * STACK_OF:ASN1_GENERALSTRING * STACK_OF:ASN1_INTEGER * STACK_OF:ASN1_OBJECT * STACK_OF:ASN1_STRING_TABLE * STACK_OF:ASN1_TYPE * STACK_OF:ASN1_VALUE * STACK_OF:BIO * STACK_OF:BY_DIR_ENTRY * STACK_OF:BY_DIR_HASH * STACK_OF:CONF_VALUE * STACK_OF:CRYPTO_EX_DATA_FUNCS * STACK_OF:DIST_POINT * STACK_OF:GENERAL_NAME * STACK_OF:GENERAL_NAMES * STACK_OF:GENERAL_SUBTREE * STACK_OF:POLICYINFO * STACK_OF:POLICYQUALINFO * STACK_OF:POLICY_MAPPING * STACK_OF:RSA_additional_prime * STACK_OF:SSL_COMP * STACK_OF:SSL_CUSTOM_EXTENSION * STACK_OF:STACK_OF_X509_NAME_ENTRY * STACK_OF:SXNETID * STACK_OF:X509 * STACK_OF:X509V3_EXT_METHOD * STACK_OF:X509_ALGOR * STACK_OF:X509_ATTRIBUTE * STACK_OF:X509_CRL * STACK_OF:X509_EXTENSION * STACK_OF:X509_INFO * STACK_OF:X509_LOOKUP * STACK_OF:X509_NAME * STACK_OF:X509_NAME_ENTRY * STACK_OF:X509_OBJECT * STACK_OF:X509_POLICY_DATA * STACK_OF:X509_POLICY_NODE * STACK_OF:X509_PURPOSE * STACK_OF:X509_REVOKED * STACK_OF:X509_TRUST * STACK_OF:X509_VERIFY_PARAM * STACK_OF:void * * Some stacks contain only const structures, so the stack should return const * pointers to retain type-checking. * * CONST_STACK_OF:SRTP_PROTECTION_PROFILE * CONST_STACK_OF:SSL_CIPHER */ /* Some stacks are special because, although we would like STACK_OF(char *), * that would actually be a stack of pointers to char*, but we just want to * point to the string directly. In this case we call them "special" and use * |DEFINE_SPECIAL_STACK_OF(type)| */ #define DEFINE_SPECIAL_STACK_OF(type, inner) \ STACK_OF(type) { _STACK special_stack; }; \ OPENSSL_COMPILE_ASSERT(sizeof(type) == sizeof(void *), \ special_stack_of_non_pointer_##type); typedef char *OPENSSL_STRING; DEFINE_SPECIAL_STACK_OF(OPENSSL_STRING, char) DEFINE_SPECIAL_STACK_OF(OPENSSL_BLOCK, uint8_t) /* The make_macros.sh script in this directory parses the following lines and * generates the stack_macros.h file that contains macros for the following * types of stacks: * * SPECIAL_STACK_OF:OPENSSL_STRING * SPECIAL_STACK_OF:OPENSSL_BLOCK */ #define IN_STACK_H #include #undef IN_STACK_H /* These are the raw stack functions, you shouldn't be using them. Rather you * should be using the type stack macros implemented above. */ /* sk_new creates a new, empty stack with the given comparison function, which * may be zero. It returns the new stack or NULL on allocation failure. */ OPENSSL_EXPORT _STACK *sk_new(stack_cmp_func comp); /* sk_new_null creates a new, empty stack. It returns the new stack or NULL on * allocation failure. */ OPENSSL_EXPORT _STACK *sk_new_null(void); /* sk_num returns the number of elements in |s|. */ OPENSSL_EXPORT size_t sk_num(const _STACK *sk); /* sk_zero resets |sk| to the empty state but does nothing to free the * individual elements themselves. */ OPENSSL_EXPORT void sk_zero(_STACK *sk); /* sk_value returns the |i|th pointer in |sk|, or NULL if |i| is out of * range. */ OPENSSL_EXPORT void *sk_value(const _STACK *sk, size_t i); /* sk_set sets the |i|th pointer in |sk| to |p| and returns |p|. If |i| is out * of range, it returns NULL. */ OPENSSL_EXPORT void *sk_set(_STACK *sk, size_t i, void *p); /* sk_free frees the given stack and array of pointers, but does nothing to * free the individual elements. Also see |sk_pop_free|. */ OPENSSL_EXPORT void sk_free(_STACK *sk); /* sk_pop_free calls |free_func| on each element in the stack and then frees * the stack itself. */ OPENSSL_EXPORT void sk_pop_free(_STACK *sk, void (*free_func)(void *)); /* sk_insert inserts |p| into the stack at index |where|, moving existing * elements if needed. It returns the length of the new stack, or zero on * error. */ OPENSSL_EXPORT size_t sk_insert(_STACK *sk, void *p, size_t where); /* sk_delete removes the pointer at index |where|, moving other elements down * if needed. It returns the removed pointer, or NULL if |where| is out of * range. */ OPENSSL_EXPORT void *sk_delete(_STACK *sk, size_t where); /* sk_delete_ptr removes, at most, one instance of |p| from the stack based on * pointer equality. If an instance of |p| is found then |p| is returned, * otherwise it returns NULL. */ OPENSSL_EXPORT void *sk_delete_ptr(_STACK *sk, void *p); /* sk_find returns the first value in the stack equal to |p|. If a comparison * function has been set on the stack, then equality is defined by it and the * stack will be sorted if need be so that a binary search can be used. * Otherwise pointer equality is used. If a matching element is found, its * index is written to |*out_index| (if |out_index| is not NULL) and one is * returned. Otherwise zero is returned. */ OPENSSL_EXPORT int sk_find(_STACK *sk, size_t *out_index, void *p); /* sk_shift removes and returns the first element in the stack, or returns NULL * if the stack is empty. */ OPENSSL_EXPORT void *sk_shift(_STACK *sk); /* sk_push appends |p| to the stack and returns the length of the new stack, or * 0 on allocation failure. */ OPENSSL_EXPORT size_t sk_push(_STACK *sk, void *p); /* sk_pop returns and removes the last element on the stack, or NULL if the * stack is empty. */ OPENSSL_EXPORT void *sk_pop(_STACK *sk); /* sk_dup performs a shallow copy of a stack and returns the new stack, or NULL * on error. */ OPENSSL_EXPORT _STACK *sk_dup(const _STACK *sk); /* sk_sort sorts the elements of |sk| into ascending order based on the * comparison function. The stack maintains a |sorted| flag and sorting an * already sorted stack is a no-op. */ OPENSSL_EXPORT void sk_sort(_STACK *sk); /* sk_is_sorted returns one if |sk| is known to be sorted and zero * otherwise. */ OPENSSL_EXPORT int sk_is_sorted(const _STACK *sk); /* sk_set_cmp_func sets the comparison function to be used by |sk| and returns * the previous one. */ OPENSSL_EXPORT stack_cmp_func sk_set_cmp_func(_STACK *sk, stack_cmp_func comp); /* sk_deep_copy performs a copy of |sk| and of each of the non-NULL elements in * |sk| by using |copy_func|. If an error occurs, |free_func| is used to free * any copies already made and NULL is returned. */ OPENSSL_EXPORT _STACK *sk_deep_copy(const _STACK *sk, void *(*copy_func)(void *), void (*free_func)(void *)); #if defined(__cplusplus) } /* extern C */ #endif #endif /* OPENSSL_HEADER_STACK_H */