/* Copyright (c) 2015, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include "../crypto/internal.h" #include "internal.h" namespace bssl { // BIO uses int instead of size_t. No lengths will exceed uint16_t, so this will // not overflow. static_assert(0xffff <= INT_MAX, "uint16_t does not fit in int"); static_assert((SSL3_ALIGN_PAYLOAD & (SSL3_ALIGN_PAYLOAD - 1)) == 0, "SSL3_ALIGN_PAYLOAD must be a power of 2"); // ensure_buffer ensures |buf| has capacity at least |cap|, aligned such that // data written after |header_len| is aligned to a |SSL3_ALIGN_PAYLOAD|-byte // boundary. It returns one on success and zero on error. static int ensure_buffer(SSL3_BUFFER *buf, size_t header_len, size_t cap) { if (cap > 0xffff) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return 0; } if (buf->cap >= cap) { return 1; } // Add up to |SSL3_ALIGN_PAYLOAD| - 1 bytes of slack for alignment. // // Since this buffer gets allocated quite frequently and doesn't contain any // sensitive data, we allocate with malloc rather than |OPENSSL_malloc| and // avoid zeroing on free. uint8_t *new_buf = (uint8_t *)malloc(cap + SSL3_ALIGN_PAYLOAD - 1); if (new_buf == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return 0; } // Offset the buffer such that the record body is aligned. size_t new_offset = (0 - header_len - (uintptr_t)new_buf) & (SSL3_ALIGN_PAYLOAD - 1); if (buf->buf != NULL) { OPENSSL_memcpy(new_buf + new_offset, buf->buf + buf->offset, buf->len); free(buf->buf); // Allocated with malloc(). } buf->buf = new_buf; buf->offset = new_offset; buf->cap = cap; return 1; } static void consume_buffer(SSL3_BUFFER *buf, size_t len) { if (len > buf->len) { abort(); } buf->offset += (uint16_t)len; buf->len -= (uint16_t)len; buf->cap -= (uint16_t)len; } static void clear_buffer(SSL3_BUFFER *buf) { free(buf->buf); // Allocated with malloc(). OPENSSL_memset(buf, 0, sizeof(SSL3_BUFFER)); } Span ssl_read_buffer(SSL *ssl) { return MakeSpan(ssl->s3->read_buffer.buf + ssl->s3->read_buffer.offset, ssl->s3->read_buffer.len); } static int dtls_read_buffer_next_packet(SSL *ssl) { SSL3_BUFFER *buf = &ssl->s3->read_buffer; if (buf->len > 0) { // It is an error to call |dtls_read_buffer_extend| when the read buffer is // not empty. OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return -1; } // Read a single packet from |ssl->rbio|. |buf->cap| must fit in an int. int ret = BIO_read(ssl->rbio, buf->buf + buf->offset, (int)buf->cap); if (ret <= 0) { ssl->rwstate = SSL_READING; return ret; } // |BIO_read| was bound by |buf->cap|, so this cannot overflow. buf->len = (uint16_t)ret; return 1; } static int tls_read_buffer_extend_to(SSL *ssl, size_t len) { SSL3_BUFFER *buf = &ssl->s3->read_buffer; if (len > buf->cap) { OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL); return -1; } // Read until the target length is reached. while (buf->len < len) { // The amount of data to read is bounded by |buf->cap|, which must fit in an // int. int ret = BIO_read(ssl->rbio, buf->buf + buf->offset + buf->len, (int)(len - buf->len)); if (ret <= 0) { ssl->rwstate = SSL_READING; return ret; } // |BIO_read| was bound by |buf->cap - buf->len|, so this cannot // overflow. buf->len += (uint16_t)ret; } return 1; } int ssl_read_buffer_extend_to(SSL *ssl, size_t len) { // |ssl_read_buffer_extend_to| implicitly discards any consumed data. ssl_read_buffer_discard(ssl); if (SSL_is_dtls(ssl)) { static_assert( DTLS1_RT_HEADER_LENGTH + SSL3_RT_MAX_ENCRYPTED_LENGTH <= 0xffff, "DTLS read buffer is too large"); // The |len| parameter is ignored in DTLS. len = DTLS1_RT_HEADER_LENGTH + SSL3_RT_MAX_ENCRYPTED_LENGTH; } if (!ensure_buffer(&ssl->s3->read_buffer, ssl_record_prefix_len(ssl), len)) { return -1; } if (ssl->rbio == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_BIO_NOT_SET); return -1; } int ret; if (SSL_is_dtls(ssl)) { // |len| is ignored for a datagram transport. ret = dtls_read_buffer_next_packet(ssl); } else { ret = tls_read_buffer_extend_to(ssl, len); } if (ret <= 0) { // If the buffer was empty originally and remained empty after attempting to // extend it, release the buffer until the next attempt. ssl_read_buffer_discard(ssl); } return ret; } void ssl_read_buffer_consume(SSL *ssl, size_t len) { SSL3_BUFFER *buf = &ssl->s3->read_buffer; consume_buffer(buf, len); // The TLS stack never reads beyond the current record, so there will never be // unconsumed data. If read-ahead is ever reimplemented, // |ssl_read_buffer_discard| will require a |memcpy| to shift the excess back // to the front of the buffer, to ensure there is enough space for the next // record. assert(SSL_is_dtls(ssl) || len == 0 || buf->len == 0); } void ssl_read_buffer_discard(SSL *ssl) { if (ssl->s3->read_buffer.len == 0) { ssl_read_buffer_clear(ssl); } } void ssl_read_buffer_clear(SSL *ssl) { clear_buffer(&ssl->s3->read_buffer); } int ssl_write_buffer_is_pending(const SSL *ssl) { return ssl->s3->write_buffer.len > 0; } static_assert(SSL3_RT_HEADER_LENGTH * 2 + SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD * 2 + SSL3_RT_MAX_PLAIN_LENGTH <= 0xffff, "maximum TLS write buffer is too large"); static_assert(DTLS1_RT_HEADER_LENGTH + SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD + SSL3_RT_MAX_PLAIN_LENGTH <= 0xffff, "maximum DTLS write buffer is too large"); int ssl_write_buffer_init(SSL *ssl, uint8_t **out_ptr, size_t max_len) { SSL3_BUFFER *buf = &ssl->s3->write_buffer; if (buf->buf != NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return 0; } if (!ensure_buffer(buf, ssl_seal_align_prefix_len(ssl), max_len)) { return 0; } *out_ptr = buf->buf + buf->offset; return 1; } void ssl_write_buffer_set_len(SSL *ssl, size_t len) { SSL3_BUFFER *buf = &ssl->s3->write_buffer; if (len > buf->cap) { abort(); } buf->len = len; } static int tls_write_buffer_flush(SSL *ssl) { SSL3_BUFFER *buf = &ssl->s3->write_buffer; while (buf->len > 0) { int ret = BIO_write(ssl->wbio, buf->buf + buf->offset, buf->len); if (ret <= 0) { ssl->rwstate = SSL_WRITING; return ret; } consume_buffer(buf, (size_t)ret); } ssl_write_buffer_clear(ssl); return 1; } static int dtls_write_buffer_flush(SSL *ssl) { SSL3_BUFFER *buf = &ssl->s3->write_buffer; if (buf->len == 0) { return 1; } int ret = BIO_write(ssl->wbio, buf->buf + buf->offset, buf->len); if (ret <= 0) { ssl->rwstate = SSL_WRITING; // If the write failed, drop the write buffer anyway. Datagram transports // can't write half a packet, so the caller is expected to retry from the // top. ssl_write_buffer_clear(ssl); return ret; } ssl_write_buffer_clear(ssl); return 1; } int ssl_write_buffer_flush(SSL *ssl) { if (ssl->wbio == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_BIO_NOT_SET); return -1; } if (SSL_is_dtls(ssl)) { return dtls_write_buffer_flush(ssl); } else { return tls_write_buffer_flush(ssl); } } void ssl_write_buffer_clear(SSL *ssl) { clear_buffer(&ssl->s3->write_buffer); } } // namespace bssl